Skip to main content

Mathematical Perspective of Hodgkin-Huxley Model and Bifurcation Analysis

  • Chapter
  • First Online:
Methods of Mathematical Modelling and Computation for Complex Systems

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 373))

Abstract

Hodgkin-Huxley model (HH model) qualitatively describes the generation of the action potential of squid giant axons. The resting state or oscillatory phase state of the membrane potential (voltage) in the HH model depends mainly on applied stimulus (external currents) to neurons. The firing of the action potential in neurons depends upon the depolarization or repolarization of ions. The probability of channel gates (to be open or close) determines the movement of ions across the cell membrane. The term of K+ ionic currents (related to several activation gates) in external current contains exponential power 4 in HH model in which we propose a modified HH model by considering the higher power (5 and 6) of K activation in potassium ionic currents and studied the behavior of all three models comparatively. The modified HH model with a higher power of potassium activation reached resting-state sooner and gains stability (after oscillatory) at a high external current. The qualitative behavior of the modified model (with the higher exponential power) is different as there is a shifting of Hopf bifurcation points in comparison with the original HH model. Moreover, a larger periodic region was observed in most of the parameter phase spaces (external current I versus parameters) except against the Na conductance and Na potential. The modified HH model which determines that higher power of K activation is more significant for action potential in neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liqun Luo, Principal of Neurobiology, Taylor and Francis Group, ISBN 978–0–8153–4492–6 (1966).

    Google Scholar 

  2. Neuroscience: The Science of the Brain, British Neuroscience Association, ISBN: 0–9545204--0–8 (2003).

    Google Scholar 

  3. Square, L.R., Bloom, F.E., Spitzer, N.C., Lac, S., Ghosh, A., Berg, D.: Fundamental of Neuroscience, 3rd edn. Academic Press, Elsevier (2008)

    Google Scholar 

  4. Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Rev. Mod. Phys. 78, 1213–1265 (2006)

    Article  Google Scholar 

  5. N. I. Krouchev, F. Rattay, M. Sawan, and A. Vinet, From Squid to Mammals with the HH Model through the Nav Channels’ Half-Activation-Voltage Parameter, PLoS ONE, 2015, 10(12).

    Google Scholar 

  6. Bean, B.P.: The action potential in mammalian central neurons. Nat. Rev. Neurosci. 8, 451–465 (2007)

    Article  Google Scholar 

  7. Guckenheimer, J., Oliva, A.: Chaos in the Hodgkin-Huxley model. SIAM J. Appl. Dyn. Syst. 1, 105–114 (2002)

    Article  MathSciNet  Google Scholar 

  8. Schwiening, C.J.: A brief historical perspective: Hodgkin and Huxley. J Physiol 590, 2571–2575 (2012)

    Article  Google Scholar 

  9. L. J. Colwell and M. P. Brenner, Action Potential Initiation in the Hodgkin-Huxley Model. PLoS Comput Biol 5(1) (2009).

    Google Scholar 

  10. J. Cronin, Mathematical Aspects of Hodgkin–Huxley Neural Theory, Cambridge University Press (1987).

    Google Scholar 

  11. Strassberg, A.F., DeFelice, L.J.: Limitation of the Hodgkin-Huxley Formalism: Effects of Single Channel Kinetics on Transmembrane Voltage Dynamics. Neural Comput. 5, 843–855 (1993)

    Article  Google Scholar 

  12. Feudel, U., Neiman, A., Pei, X., Wojtenek, W., Braun, H., Huber, M., Moss, F.: Homoclinic bifurcation in a Hodgkin-Huxley model of thermally sensitive neurons. Chaos 10, 231 (2000)

    Article  MathSciNet  Google Scholar 

  13. Traub, R.D., Wong, R.K.S., Miles, R., Michelson, H.: Amodelofa CA3 hippo-campal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J. Neurophysiol. 66, 635–650 (1991)

    Article  Google Scholar 

  14. F. Bezanilla and C. M. Armstrong, Inactivation of the sodium channel. I. Sodium current experiments. J. Gen. Physiol. 70(1977), 549–566.

    Google Scholar 

  15. Levy, A.: What was Hodgkin and Huxley’s Achievement? Br. J. Philos. Sci. 65, 469–492 (2014)

    Article  MathSciNet  Google Scholar 

  16. Hodgkin, A.L., Huxley, A.F.: A quantitative description of the membrane and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Article  Google Scholar 

  17. Gangal, H., Dar, G.: Mode locking, chaos, and bifurcations in Hodgkin-Huxley neuron forced by sinusoidal current. Chaotic Modeling and Simulation (CMSIM) 3, 287–294 (2014)

    Google Scholar 

  18. Bedrov, Y.A., Akoev, G.N., Dick, O.E.: On the relationship between the number of negative slope regions in the voltage-current curve of the Hodgkin-Huxley model and its parameter values. Biol. Cybern. 73, 149–154 (1995)

    Article  Google Scholar 

  19. Caterall, W.A., Raman, I.M., Robinson, H.P.C., Sejnowski, T.J., Paulsen, O.: The Hodgkin-Huxley Heritage: From channels to circuits. J. Neuroscience 32(41), 14064–14073 (2012)

    Article  Google Scholar 

  20. Fan, Y.S., Chay, T.R.: Generation of periodic and chaotic bursting in an excitable cell model. Biol. Cybern 71, 417–431 (1994)

    Article  Google Scholar 

  21. Shirahata, T.: Numerical Simulation of Bistability between Regular Bursting and Chaotic Spiking in a Mathematical Model of Snail Neurons. International Journal of Theoretical and Mathematical Physics 5(5), 145–150 (2015)

    Google Scholar 

  22. K. Terada, H. Tanaka and S. Yoshizawa, Bifurcations and chaos in the Hodgkin-Huxley equations for muscle. Proc. Nolta `95, Las Vegas, Nevada, U.S.A, pp. (1995) 327–330.

    Google Scholar 

  23. H. Fukai, S. Doi, T. Nomura, and S. Sato, Hopf bifurcations in multiple parameter space of the Hodgkin–Huxley equations. I. Global organization of bistable periodic solutions, Biol. Cybern. 82(2000) 215–222.

    Google Scholar 

  24. J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields, Springer (1983).

    Google Scholar 

  25. Hassard, B.: Bifurcation of periodic solutions of the Hodgkin-Huxley model for the squid giant axon. J. Theory Biol. 71, 401–420 (1978)

    Article  MathSciNet  Google Scholar 

  26. Che, Y., Wang, J., Deng, B., Wei, X., Han, C.: Bifurcation in the Hodgkin- Huxley model exposed to DC electric fields. Neurocomputing 81, 41–48 (2012)

    Article  Google Scholar 

  27. Guckenheimer, J., Labouriau, I.S.: Bifurcation of the Hodgkin and Huxley equations: a new twist. Bull Math Biol 55, 937–952 (1993)

    Article  Google Scholar 

  28. Alexander, J.C., Cai, D.: On the dynamics of bursting systems. J. Math Biol 29, 405–423 (1991)

    Article  MathSciNet  Google Scholar 

  29. Fox, R.F.: Stochastic Version of the Hodgkin-Huxley Equations. Biophys. J . 72, 2068–2074 (1997)

    Article  Google Scholar 

  30. P. Pathamanathan and R.A. Gray, Validation and Trustworthiness of Multiscale Models of Cardiac Electrophysiology, Front. Physiol. 2018.

    Google Scholar 

  31. F. R. Chavarette, J. M. Balthazar, I. R. Guilherme, and L. Barbanti, Control Design Applied Of The Action Potential Of Membranes Based On Optional Linear Control And Particle Swarm Optimization, Proceedings of the 9th Brazilian Conference On Dynamics Control and their Applications, Serra Negra, 2010, SP-ISSN 2178–3667.

    Google Scholar 

  32. Boland, L.M., Jiang, M., Lee, S.Y., Fahrenkrug, S.C., Harnett, M.T., O’Grady, S.M.: Functional properties of a brain-specific NH2-terminally spliced modulator of KV4 channels. Am. J. Physiol. Cell Physiol. 285, C161–C170 (2003)

    Article  Google Scholar 

  33. Lee, S.G., Neiman, A., Kim, S.: Coherence resonance in a Hodgkin-Huxley neuron. Phys. Rev. E 57, 3 (1998)

    Google Scholar 

  34. Kashef, B., Bellman, R.: Solution of the Partial Differential Equation of the Hodgkin-Huxley Model Using Differential Quadrature. Math. Biosci. 19, 1–8 (1974)

    Article  MathSciNet  Google Scholar 

  35. Tagluk, M.E., Tekin, R.: The influence of ion concentration on the dynamics behavior of the Hodgkin-Huxley Model-based cortial network. CognNeurodyn 8, 287–298 (2014)

    Google Scholar 

  36. Tasaki, I.: Demonstration of two stable states of the nerve membrane in potassium-rich media. J. Physiol. (London) 148, 306–331 (1959)

    Article  Google Scholar 

  37. Binstock, L., Goldman, L.: Rectification in instantaneous potassium current-voltage relations in Myxicola giant axons. J. Physiol. 217, 517–531 (1971)

    Article  Google Scholar 

  38. Johnston, J., Griffin, S.J., Baker, C., Forsythe, I.D.: Kv4 (A-type) potassium currents in the mouse medial nucleus of the trapezoid body. Eur. J. Neurosci. 27(6), 1391–1399 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge DST-INSPIRE [DST/INSPIRE/03/2016/000597], UGC-BSR, and DST-SERB [SERB/2017/000279] for their financial support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gautam, A., Priyadarshi, A. (2022). Mathematical Perspective of Hodgkin-Huxley Model and Bifurcation Analysis. In: Singh, J., Dutta, H., Kumar, D., Baleanu, D., Hristov, J. (eds) Methods of Mathematical Modelling and Computation for Complex Systems. Studies in Systems, Decision and Control, vol 373. Springer, Cham. https://doi.org/10.1007/978-3-030-77169-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77169-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77168-3

  • Online ISBN: 978-3-030-77169-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics