Skip to main content
Log in

Essential skeletons of pairs and Temkin’s metric

  • Published:
ANNALI DELL'UNIVERSITA' DI FERRARA Aims and scope Submit manuscript

Abstract

We study weight metrics and essential skeletons of pairs in the Berkovich analytification of a variety over a trivially-valued field of characteristic zero. In the smooth case, we show that Temkin’s canonical metric on pluricanonical bundles coincides with the weight metric defined via log discrepancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. In loc. cit. the retraction is defined on \(X^{\textrm{bir}} \cap X^\beth \), but it extends to \(X^\beth \).

References

  1. Berkovich, G.V.: Spectral theory and analytic geometry over non-Archimedean fields. Vol. ; 33. Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, pp. ; x+169. isbn: 0-8218-1534-2 (1990)

  2. Berkovich, V.G.: Etale cohomology for non-Archimedean analytic spaces. eng. In: Publications Mathématiques del’IHÉS 78. pp. 5–161. URL: https://eudml.org/doc/104093. (1993)

  3. Blum, H.: Singularities and K-stability. PhD Thesis. University of Michigan (2018)

  4. Boucksom, S., de Fernex, T., Favre, C., Urbinati, S.: Valuation spaces and multiplier ideals on singular varieties. In: Recent Advances in Algebraic Geometry. Vol. 417. London Mathematical Society Lecture Note Series. Cambridge Univ. Press, Cambridge, pp. 29–51 (2015)

  5. Boucksom, S., Hisamoto, T., Jonsson, M.: Uniform K-stability, Duistermaat-Heckman measures and singularities of pairs. In: Annales de l’institut Fourier (Grenoble) 67(2) (2017), pp. 743–841. issn: 0373-0956. http://aif.cedram.org/item?id=AIF_2017__67_2_743_0

  6. Boucksom, S., Jonsson, M.: Singular semipositive metrics on line bundles on varieties over trivially valued fields. In: Preprint (2018). arXiv:1801.08229 [math.AG]

  7. Boucksom, S., Jonsson, M.: A non-Archimedean approach to K-stability, II: Divisorial stability and openness. J. Reine Angew. Math. 805, 1–53 (2003). https://doi.org/10.1515/crelle-2023-0062

    Article  MathSciNet  Google Scholar 

  8. Brown, M.V., Mazzon, E.: The essential skeleton of a product of degenerations. Comp. Math. 155(7), 1259–1300 (2019)

    Article  MathSciNet  Google Scholar 

  9. Chambert-Loir, A.: Heights and measures on analytic spaces. A survey of recent results, and some remarks. In: Motivic integration and its interactions with model theory and non-Archimedean geometry. Volume II. Vol. 384. London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, pp. 1–50 (2011)

  10. Ducros, A.: Families of Berkovich spaces. In: Astérisque 400 (2018), pp. vii+262. ISSN: 0303-1179,2492-5926

  11. Esnault, H., Viehweg, E.: Lectures on vanishing theorems. Vol. 20. DMV Seminar. Birkhäuser Verlag, Basel, (1992), pp. vi+164. ISBN: 3-7643-2822-3. https://doi.org/10.1007/978-3-0348-8600-0

  12. Filipazzi, S., Mauri, M., Moraga, J.: Index of coregularity zero log Calabi-Yau pairs. In: Preprint (2022). arXiv:2209.02925. [math.AG]

  13. Hartshorne, R.: Algebraic geometry. Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York-Heidelberg, pp. xvi+496 (1977). ISBN: 0-387-90244-9

  14. Jonsson, M., Mustaţǎ, M.: Valuations and asymptotic invariants for sequences of ideals. Ann. Inst. Fourier Grenoble. 62(6), 2145–2209 (2013). https://doi.org/10.5802/aif.2746

  15. Kollár, J., Xu, C.: The dual complex of Calabi-Yau pairs. Invent. Math 205(3), 527–557 (2016). https://doi.org/10.1007/s00222-015-0640-6

    Article  MathSciNet  Google Scholar 

  16. Kontsevich, M., Soibelman, Y.: Affine Structures and Non-Archimedean Analytic Spaces. In: The Unity of Mathematics: In Honor of the Ninetieth Birthday of I.M. Gelfand. Ed. by P. Etingof, V. Retakh, and I. M. Singer. Boston, MA: Birkhäuser Boston, pp. 321–385 (2006)

  17. Mauri, M., Mazzon, E., Stevenson, M.: On the geometric P=W conjecture. Selecta Math. 28(3), 65 (2022). https://doi.org/10.1007/s00029-022-00776-0

    Article  Google Scholar 

  18. Mazzon, E.: Applications of Berkovich spaces. PhD Thesis. Imperial College London, (2019)

  19. Mustata, M., Nicaise, J.: Weight functions on non-Archimedean analytic spaces and the Kontsevich-Soibelman skeleton. Algebr. Geom. 2(3), 365–404 (2015). https://doi.org/10.14231/AG-2015-016

  20. Nicaise, J.: Singular cohomology of the analytic Milnor fiber, and mixed Hodge structure on the nearby cohomology. J. Algebraic Geom. 20(2), 199–237 (2011). https://doi.org/10.1090/S1056-3911-10-00526-6

    Article  MathSciNet  Google Scholar 

  21. Nicaise, J., Xu, C., Yu, T.Y.: The non-archimedean SYZ fibration. Compositio Math. 155(5), 953–972 (2019)

    Article  MathSciNet  Google Scholar 

  22. Poineau, J.: Les espaces de Berkovich sont angéliques. Bull. Soc. Math. France 141(2), 267–297 (2013)

    Article  MathSciNet  Google Scholar 

  23. Temkin, M.: Metrization of differential pluriforms on Berkovich analytic spaces. In: Nonarchimedean and Tropical Geometry. In: Baker, M., Payne, S.: Vol. Simons Symposia. pp. 195–285 (2016)

  24. Thuillier, A.: Géométrie toroïdale et géométrie analytique non archimédienne. Application au type d’homotopie de certains schémas formels. Manuscripta Math. 123(4), 381–451 (2007). https://doi.org/10.1007/s00229-007-0094-2

  25. Zariski, O., Samuel, P.: Commutative algebra. Vol. II. The University Series in Higher Mathematics. D. Van Nostrand Co. Princeton, N. J.-Toronto-London-New York, pp. x+414 (1960)

Download references

Acknowledgements

We would like to thank Walter Gubler, Mattias Jonsson, Mircea Mustata and Michael Temkin for useful conversations on this paper, and the anonymous referees for their precious comments and specifically for suggesting the proof of Lemma 2.1.5.

Funding

Funding was provided by Deutsche Forschungsgemeinschaft (Grant Number SFB 1085). European Union’s Horizon 2020 research and innovation programme (Grant Number 101034413) and Max Planck Institute for Mathematics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirko Mauri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Mirko Mauri was supported by the Institute of Science and Technology Austria, and École Polytechnique in France. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 101034413. Enrica Mazzon was supported by Max Planck Institute for Mathematics in Bonn during the preparation of this paper, and by the collaborative research center SFB 1085 Higher Invariants-Interactions between Arithmetic Geometry and Global Analysis funded by the Deutsche Forschungsgemeinschaft. All authors declare that they have no conflicts of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mauri, M., Mazzon, E. & Stevenson, M. Essential skeletons of pairs and Temkin’s metric. Ann Univ Ferrara (2024). https://doi.org/10.1007/s11565-024-00504-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11565-024-00504-w

Navigation