Abstract
In this paper we study the Brinkman system and the Darcy-Forchheimer-Brinkman system with the boundary condition of the Navier’s type \( {\textbf{u}}_{{\mathbf {\mathcal {T}}}} = {\textbf{g}}_{{\mathbf {\mathcal {T}}}} \), \(\rho =h\) on \(\partial \Omega \) for a bounded planar domain \(\Omega \) with connected boundary. Solutions are looked for in the Sobolev spaces \(W^{s+1,q}(\Omega ,{\mathbb R}^2)\times W^{s,q}(\Omega )\) and in the Besov spaces \(B_{s+1}^{p,r}(\Omega ,{\mathbb R}^2)\times B_s^{q,r}(\Omega )\). Classical solutions are from the spaces \({\mathcal C}^{k+1,\gamma }(\overline{\Omega },{\mathbb R}^2) \times {\mathcal C}^{k,\gamma }(\overline{\Omega })\). For the Brinkman system we show the unique solvability of the problem. Then we study the Navier problem for the Darcy-Forchheimer-Brinkman system and small boundary conditions.
1 Introduction
For systems of partial differential equations on domains several kinds of Neumann conditions are possible. The system
(called Stokes system for \(\lambda =0\) and Brinkman system for \(\lambda >0\)) has the relevant Neumann conditions
(studied for example in [49, 50, 56]) and
(studied for example in [18, 38,39,40, 49, 58, 59]). Here \(\Omega \subset {{\mathbb {R}}}^m\) is a bounded domain with Lipschitz boundary and \(\textbf{n}=\textbf{n}^\Omega \) is the outward unit normal vector of \(\Omega \). In \({{\mathbb {R}}}^3\) we have \(\Delta \textbf{u}=\nabla (\nabla \cdot \textbf{u})-\nabla \times (\nabla \times {\nabla u})\). This gives another Neumann condition for the Stokes and Brinkman systems
Very interesting boundary value problems are problems of Navier’s type. There are two types of Navier’s problem: (1) It is given the normal part of the Dirichlet condition and the tangential part of the Neumann condition. (2) It is given the tangential part of the Dirichlet condition and the normal part of the Neumann condition. If \(\textbf{v}\) is a vector, then \(\textbf{v}_\textbf{n}=(\textbf{v}\cdot \textbf{n})\textbf{n}\) denotes the normal part of \(\textbf{v}\), and \(\textbf{v}_{\tau }=\textbf{v}-\textbf{v}_\textbf{n}\) is the tangential part of \(\textbf{v}\). The Navier conditions corresponding to the Neumann condition (1.2) are
and
(studied in [20] and [54]). The Navier conditions corresponding to the Neumann condition (1.3) are
and
(studied in [3, 4, 7, 13, 19, 26, 27, 29, 37, 40, 44, 45, 55, 57, 61]), [62, 66]). The Navier conditions corresponding to the Neumann condition (1.4) are
and
These problems were studied in three-dimensional domains in [5, 6, 8, 11,12,13,14,15, 17, 21, 22, 25, 43] from the theoretical point of view and in [1, 2, 51] from the numerical point of view. The paper [16] studies the Brinkman system with the Navier condition (1.6) in a planar domain.
We study the Brinkman system with the condition (1.5) in planar domains. The papers [22] and [17] studied the problem with the condition (1.5) for the Stokes system in \(H^1(\Omega ,{{\mathbb {R}}}^3)\times H^1(\Omega )\) for \(\Omega \subset {{\mathbb {R}}}^3\). The paper [12] is devoted to this problem in \(W^{1,p}(\Omega ,{{\mathbb {R}}}^3)\times W^{1,p}(\Omega )\) for \(\Omega \subset {{\mathbb {R}}}^3\). The question when the velocity \(\textbf{u}\in W^{2,p}(\Omega ,{\mathbb R}^3)\) is answered. The paper [8] studies the Brinkman system with the condition (1.5) in \(W^{1,p}(\Omega ,{\mathbb R}^3)\times W^{1,p}(\Omega )\) for \(\Omega \subset {{\mathbb {R}}}^3\). The paper [14] treated a very weak solution \((\textbf{u},p)\in L^p(\Omega ,{{\mathbb {R}}}^3) \times L^p(\Omega )\) of the Stokes system with the condition (1.5) in \(\Omega \subset {\mathbb R}^3\). The paper [11] studies the Stokes system with the condition (1.5) in an exterior domain \(\Omega \subset {{\mathbb {R}}}^3\) in weighted Sobolev spaces. The Stokes system with the condition (1.5) on planar domains was studied from the numerical point of view in [10, 23, 41]. The author studied in [46] the Stokes system with the condition (1.5) on planar domains with connected boundary in Sobolev spaces \(W^{t,p}(\Omega ,{{\mathbb {R}}}^2)\times W^{s,q}(\Omega )\), in Besov spaces \(B_t^{p,\beta }(\Omega ,{\mathbb R}^2)\times B_s^{q,r}(\Omega )\) and in \({{\mathcal {C}}}^{k+1,\alpha }(\Omega ,{{\mathbb {R}}}^2)\times {{\mathcal {C}}}^{k,\alpha }(\Omega )\).
First we study problems with the boundary condition (1.5) on planar domains with connected boundary. We concern not only the Brinkman system (i.e. \(\lambda >0\)) but more generally the Stokes resolvent system (i.e. for complex \(\lambda \)). (Results for the Stokes resolvent system are useful in the study of boundary value problems for non-steady Stokes system.) We show that there exists a unique solution of the problem in the Sobolev spaces \(W^{s+1,q}(\Omega ,{{\mathbb {R}}}^2)\times W^{s,q}(\Omega )\) and in the Besov spaces \(B_{s+1}^{q,r}(\Omega ,{{\mathbb {R}}}^2)\times B_s^{q,r}(\Omega )\) for \(1/q<s<k-1\) and \(\partial \Omega \in {{\mathcal {C}}}^{k,1}\), and classical solutions in \({\mathcal C}^{k+1,\gamma }({\overline{\Omega }} ,{{\mathbb {R}}}^2)\times {\mathcal C}^{k,\gamma }({\overline{\Omega }} )\) for \(0<\gamma <1\) and \(\partial \Omega \in {{\mathcal {C}}}^{k+2,\gamma }\). As an application we study Darcy-Forchheimer-Brinkman system
with the boundary condition (1.5) in the same spaces.
Darcy-Forchheimer-Brinkman system with Navier’s condition has never been studied. But there are some papers concerning Darcy-Forchheimer-Brinkman system (1.7) with Dirichlet condition ( [31, 33, 53]), with the transmission condition ( [9]), the mixed Dirichlet-Neumann problem and the mixed Dirichlet-Robin problem ( [32, 34]).
2 Function spaces
Denote by \({{\mathbb {N}}}\) the set of all positive integers and by \({{\mathbb {N}}}_0\) the set of all non-negative integers.
Let \(\Omega \subset {{\mathbb {R}}}^m\) be a domain (i.e. an open connected set). For \(k\in {{\mathbb {N}}}_0\) denote by \({\mathcal C}^k({\overline{\Omega }} )\) the set of all \(f\in {{\mathcal {C}}}^k(\Omega )\) for which \(\partial ^\alpha f\) can be continuously extended onto \({\overline{\Omega }} \) for all \(|\alpha |\le k\). The space \({{\mathcal {C}}}^k({\overline{\Omega }} )\) is equipped with the norm
For \(k\in {{\mathbb {N}}}_0\) and \(0<\beta <1\) we denote
Let \(1<q<\infty \) and \(k\in {{\mathbb {N}}}_0\). Denote by \(W^{k,q}(\Omega )\) the space of all functions \(f\in L^q(\Omega )\) such that \(\partial ^\alpha f\in L^q(\Omega )\) in the sense of distributions for each multi-index \(\alpha \) with \(|\alpha |\le k\). If \(s=k+\delta \) with \(0<\delta <1\) denote \(W^{s,q}(\Omega ):=\{ u\in W^{k,q}(\Omega ); \Vert u\Vert _{W^{s,q}(\Omega )}<\infty \} \) where
Denote by \({{\mathcal {C}}}_c^\infty (\Omega )\) the space of infinitely differentiable functions with compact support in \(\Omega \). If \(s>0\) denote by \(W^{s,q}_0(\Omega )\) the closure of \({\mathcal C}_c^\infty (\Omega )\) in \(W^{s,q}(\Omega )\). Put \(q'=q/(q-1)\). Then \(W^{-s,q'}(\Omega )\) denotes the dual space of \(W^{s,q}_0(\Omega )\).
If \(s\in {{\mathbb {R}}}^1\) and \(1<p,q<\infty \) denote by \(B_s^{p,q}({{\mathbb {R}}}^m)\) the Besov space. (For the definition see for example [65].) If k is a non-negative integer and \(s=k+\delta \) with \(0<\delta <1\) then \(u\in B_s^{p,q}({\mathbb R}^2)\) if \(u\in W^{k,p}({{\mathbb {R}}}^2)\) and
By \(B_s^{p,q}(\Omega )\) we denote the space of restrictions of functions from \(B_s^{p,q}({{\mathbb {R}}}^2)\) onto \(\Omega \). The norm on \(B_s^{p,q}(\Omega )\) is defined by
Suppose that \(\Omega \) is a bounded domain with Lipschitz boundary. If \(s>t\) and \(1<r<\infty \) then \(B_s^{p,q}(\Omega )\hookrightarrow B_t^{p,r}(\Omega )\) (see [64, §4.6.1, Theorem]). If s is not integer then \(B_s^{p,p}(\Omega )=W^{s,p}(\Omega )\). (See [24, Theorem 6.7] or [63, Lemma 36.1].)
Let \(\varphi \) be a Lipschitz function on \({{\mathbb {R}}}^{m-1}\). Denote by \(G:=\{ [x;\varphi (x)];x\in {{\mathbb {R}}}^{m-1}\} \) the graph of \(\varphi \). Let X(U) be a space of functions on the set U (i.e \({{\mathcal {C}}}^{s,\alpha }(U)\), \(W^{s,p}(U)\) or \(B_s^{p,q}(U)\)). We say that \(f\in X(G)\) if \(f(x,\varphi (x))\in X({{\mathbb {R}}}^{m-1})\).
Let \(\Omega \subset {{\mathbb {R}}}^m\) be a bounded domain with Lipschitz boundary. Let \(z_1,\dots ,z_k\in \partial \Omega \) be such that \(\partial \Omega \subset B(z_1;r_1)\cup \dots B(z_k;r_k)\). Let \(G_1,\dots ,G_k\) be graph Lipschitz domains such that \(\Omega \cap B(z_j;r_j)=G_j\cap B(z_j;r_j)\) for \(j=1,\dots ,k\). Choose \(\alpha _j\in {{\mathcal {C}}}_c^\infty (B(z_j;r_j))\) such that \(\alpha _1 +\dots +\alpha _k =1\) on a neighborhood of \(\partial \Omega \). We say that \(f\in X(\partial \Omega )\) (where \(X=W^{s,p}\) or \(X=B_s^{p,q}\)) if \(f\alpha _j \in X(\partial G_j)\) for \(j=1,\dots ,k\).
Let \(X(\Omega )\) be a space of functions (here \(X=W^{s,q}\), \(X=B_s^{q,r}\), ...). We denote \(X(\Omega ;{{\mathbb {R}}}^k):=\{ (u_1,\dots ,u_k); u_j \in X(\Omega )\} \), \(X(\Omega ;{\mathbb C}):=\{ (u_1+iu_2); u_j \in X(\Omega )\} \), \(X(\Omega ;{\mathbb C}^k):=\{ (u_1,\dots ,u_k); u_j \in X(\Omega ;{{\mathbb {C}}})\} \). Similarly for \(X(\partial \Omega )\).
Proposition 2.1
Let \(\Omega \subset {{\mathbb {R}}}^m\) be a bounded domain. Let \(p(0),p(1),q(0),q(1)\in (1,\infty )\) and \(-\infty<s(1)<s(0)<\infty \). If \(s(0)-m/p(0)>s(1)-m/p(1)\) then the identity is a compact operator from \(B_{s(0)}^{p(0),q(0)}(\Omega )\) to \(B_{s(1)}^{p(1),q(1)}(\Omega )\).
(See [65, Theorem 1.97].)
Corollary 2.2
Let \(\Omega \subset {{\mathbb {R}}}^2\) be a bounded domain with Lipschitz boundary. Let \(1<p<\infty \) and \(s<t\). Then the identity is a compact operator from \(W^{t,p}(\Omega )\) to \(W^{s,p}(\Omega )\).
Proof
If \(s\ge 0\) then \(W^{t,p}(\Omega )\hookrightarrow W^{s,p}(\Omega )\) by [52, Chap. 2, §5.4, Lemma 5.4]. Let now \(t\le 0\). Put \(p'=p/(p-1)\). Since \(W^{-s,p'}(\Omega )\hookrightarrow W^{-t,p'}(\Omega )\), we infer that \(W^{t,p}(\Omega )\hookrightarrow W^{s,p}(\Omega )\). If \(s<0<t\) then \(W^{t,p}(\Omega )\hookrightarrow L^p(\Omega )\hookrightarrow W^{s,p}(\Omega )\).
Fix \(\tau \) and \(\theta \) such that \(s<\theta<\tau <t\) and \(\tau \) and \(\theta \) are not integer. Then \(W^{t,p}(\Omega )\hookrightarrow W^{\tau ,p}(\Omega )\) and \(W^{\theta ,p}(\Omega )\hookrightarrow W^{s,p}(\Omega )\). Since \(W^{\tau ,p}(\Omega )=B_\tau ^{p,p}(\Omega )\hookrightarrow B_\theta ^{p,p}(\Omega )=W^{\theta ,p}(\Omega )\) compactly by Proposition 2.1, we infer that the mapping \(W^{t,p}(\Omega )\hookrightarrow W^{s,p}(\Omega )\) is compact. \(\square \)
Lemma 2.3
Let \(\Omega \subset {{\mathbb {R}}}^2\) be a bounded domain with Lipschitz boundary, \(1<p,q<\infty \) and \(0<s<\infty \). Then \(\partial _j :B_s^{p,q}(\Omega )\rightarrow B_{s-1}^{p,q}(\Omega )\) is a bounded operator.
Proof
Choose small positive \(\epsilon \) such that \(s-\epsilon \) and \(s+\epsilon \) are not integer. Then
are bounded operators by [30, Theorem 1.4.4.6]. We now use interpolation. [65, Corollary 1.111] gives
Thus \(\partial _j :B_s^{p,q}(\Omega )\rightarrow B_{s-1}^{p,q}(\Omega )\) is a bounded operator by [63, Lemma 22.3]. \(\square \)
3 Brinkman system
We suppose that \(\Omega \subset {{\mathbb {R}}}^2\) is a bounded domain with connected boundary. The problem (1.1), (1.5) can be rewritten as
We need the following auxiliary lemma:
Lemma 3.1
Let \(X_1\), \(X_2\), \(Y_1\) and \(Y_2\) be Banach spaces. Suppose that \(X_1\) is a dense subset of \(X_2\), \(Y_1\) is a dense subset of \(Y_2\), \(X_1\hookrightarrow X_2\) and \(Y_1\hookrightarrow Y_2\). Let \(T_j :X_j \rightarrow Y_j\) for \(j=1,2\) be bounded linear Fredholm operators with the same index such that \(T_1 x=T_2 x\) for all \(x\in X_1\). Then \(T_1\) is an isomorphism if and only if \(T_2\) is an isomorphism.
(See [47, Lemma 1.3.4].)
Theorem 3.2
Let \(\Omega \subset {{\mathbb {R}}}^2\) be a bounded domain with connected boundary of class \({{\mathcal {C}}}^{k,1}\) with \(k\in {\mathbb N}\). Let \(\lambda \in {{\mathbb {C}}}\setminus (-\infty ,0)\), \(1<q<\infty \) and \(1/q<s<k-1\) with \(s-1/q \not \in {{\mathbb {N}}}\). Suppose that \(h\in W^{s-1/q,q}(\partial \Omega ;{{\mathbb {C}}})\), \(g\in W^{s+1-1/q,q}(\partial \Omega ;{{\mathbb {C}}})\), \(\textbf{F}\in W^{s-1,q}(\Omega ,{{\mathbb {C}}}^2)\) and \(G\in W^{s,q}(\Omega ;{{\mathbb {C}}})\). Then there exists a unique solution \((\textbf{u},\rho )\in W^{s+1,q}(\Omega ,{{\mathbb {C}}}^2)\times W^{s,q}(\Omega ;{{\mathbb {C}}})\) of the problem (3.1). Moreover,
where c depends only on \(\Omega \), \(\lambda \), q and s. If \(\lambda \ge 0\) and \(\textbf{F}\), h, g, G are real, then \((\textbf{u},\rho )\in W^{s+1,q}(\Omega ,{{\mathbb {R}}}^2)\times W^{s,q}(\Omega )\).
Proof
Denote
For a complex \(\delta \) define the operator \(S_\delta \) by
Then \(S_0:X^{s,q}\rightarrow Y^{s,q}\) is an isomorphism by [46, Theorem 5.5].
Let now \(\lambda \ne 0\). Remark that
Since \(W^{s+1,q}(\Omega )\hookrightarrow W^{s-1,q}(\Omega )\) compactly by Corollary 2.2, we infer that \(S_\lambda :X^{s,q}\rightarrow Y^{s,q}\) is a Fredholm operator with index 0.
Suppose first that \(q\ge 2\). Let \((\textbf{u},\rho )\in X^{s,q}\) and \(S_\lambda (\textbf{u},\rho )=0\). Since \(\nabla \cdot \textbf{u}=0\) we obtain
Since \(\rho =0\) on \(\partial \Omega \) we have \(\rho \equiv 0\). (See for example [46, Proposition 7.8].) We now show that there exists \(\psi \in L^1(\Omega ;{{\mathbb {C}}})\) such that \(\textbf{u}=(\partial _2 \psi ,-\partial _1 \psi )\). Fix \(z\in \Omega \). For \(x\in \Omega \) choose a piece-wise smooth functions \(\Phi _1\) ,\(\Phi _2\) on \(\langle t_1,t_2\rangle \) such that for \(\Phi :=(\Phi _1 ,\Phi _2)\) we have \(\Phi :\langle t_1,t_2\rangle \rightarrow \Omega \) and \(\Phi (t_1)=z\), \(\Phi (t_2)=x\). Put
We show that \(\psi \) does not depend on the choice of \(\Phi \). Let \(\Phi =(\Phi _1 ,\Phi _2): \langle t_1,t_2\rangle \rightarrow \Omega \) and \({\tilde{\Phi }} =({\tilde{\Phi }}_1 ,{\tilde{\Phi }}_2):\langle {\tilde{t}}_1, {\tilde{t}}_2\rangle \rightarrow \Omega \) be two such vector functions. Denote \(\Gamma :=\{ \Phi (t); t\in \langle t_1, t_2\rangle \}\) and \({\tilde{\Gamma }} :=\{ {\tilde{\Phi }} (t); t\in \langle {\tilde{t}}_1,{\tilde{t}}_2\rangle \} \). Suppose moreover that \(\Gamma \cap \{ {\tilde{\Phi }} (t); t\in ({\tilde{t}}_1,{\tilde{t}}_2)\} =\emptyset \) and \({\tilde{\Gamma }} \cap \{ \Phi (t); t\in (t_1,t_2)\} =\emptyset \). Let \(G\subset {\mathbb R}^2\) be a domain with boundary \(\Gamma \cup {\tilde{\Gamma }} \). Since \(\nabla \cdot \textbf{u}=0\), the divergence theorem gives
This forces that \(\psi \) does not depend on the choice of \(\Phi \). Since \(u_j\in W^{s+1,q}(\Omega ) \hookrightarrow {\mathcal C}({\overline{\Omega }} )\) by [28, Satz 9.38] and [28, Satz 6.40], we deduce that \(\psi \in L^\infty (\Omega ;{\mathbb C}^2)\). Clearly,
As \(\rho \equiv 0\) we have \(-\Delta \textbf{u}+\lambda \textbf{u}=0\). Hence \(-\Delta \partial _j \psi +\lambda \partial _j \psi =0\) for \(j=1,2\). Since \(\nabla (-\Delta \psi +\lambda \psi )=0\), there is a constant \(c_1\) such that \(-\Delta \psi +\lambda \psi \equiv c_1\). Put \(\varphi :=\psi -c_1/\lambda \). Then \(-\Delta \varphi +\lambda \varphi \equiv 0\) and \(\textbf{u}= (\partial _2 \varphi ,-\partial _1 \varphi )\). Since \(\textbf{u}\in W^{s+1,q}(\Omega ,{{\mathbb {C}}}^2)\), we deduce that \(\varphi \in W^{s+2,q}(\Omega ;{{\mathbb {C}}})\). As \(\partial \varphi /\partial n =\tau \cdot \textbf{u}=0\), Green’s formula forces
Since \(\lambda \in {{\mathbb {C}}}\setminus (-\infty ,0\rangle \), we infer that \(\varphi \equiv 0\). Thus \(\textbf{u}= (\partial _2 \varphi ,-\partial _1 \varphi )\equiv 0\). As \(S_\lambda \) is a Fredholm operator with index 0 from \(X^{s,q}\) to \(Y^{s,q}\), we infer that \(S_\lambda \) is an isomorphism from \(X^{s,q}\) to \(Y^{s,q}\).
Suppose now that \(q<2\). Choose \(t\in (s,k-1)\) such that \(t\not \in {{\mathbb {N}}}\) and \(t-1/2\not \in {{\mathbb {N}}}\). Since \(t-2/2 >s-2/q\), \(X^{t,2}\) is a dense subset of \(X^{s,q}\) and \(Y^{t,2}\) is a dense subset of the space \(Y^{s,q}\). (See Corollary 2.2 and [28, Satz 6.38].) We have proved that \(S_\lambda :X^{t,2}\rightarrow Y^{t,2}\) is an isomorphism. Lemma 3.1 forces that \(S_\lambda :X^{s,q}\rightarrow Y^{s,q}\) is an isomorphism, too. \(\square \)
Theorem 3.3
Let \(\Omega \subset {{\mathbb {R}}}^2\) be a bounded domain with connected boundary of class \({{\mathcal {C}}}^{k+2,\gamma }\), where \(k\in {{\mathbb {N}}}\) and \(0<\gamma <1\). Let \(\lambda \in {\mathbb C}\setminus (-\infty ,0)\), \(h\in {{\mathcal {C}}}^{k,\gamma }(\partial \Omega ;{{\mathbb {C}}})\), \(g\in {{\mathcal {C}}}^{k+1,\gamma }(\partial \Omega ; {{\mathbb {C}}})\), \(\textbf{F}\in {{\mathcal {C}}}^{k-1,\gamma }({\overline{\Omega }} ,{{\mathbb {C}}}^2)\) and \(G\in {{\mathcal {C}}}^{k,\gamma }(\overline{\Omega };{{\mathbb {C}}})\). Then there exists a unique solution \((\textbf{u},\rho )\in {{\mathcal {C}}}^{k+1,\gamma }({\overline{\Omega }} ,{{\mathbb {C}}}^2)\times {{\mathcal {C}}}^{k,\gamma }(\overline{\Omega };{{\mathbb {C}}})\) of the problem (3.1). Moreover,
where c depends only on \(\Omega \), \(\lambda \), k and \(\gamma \). If \(\lambda \ge 0\), \(\textbf{F}\in {{\mathcal {C}}}^{k-1,\gamma }({\overline{\Omega }} ,{{\mathbb {R}}}^2)\) and h, g, G are real functions, then \((\textbf{u},\rho )\in {{\mathcal {C}}}^{k+1,\gamma }({\overline{\Omega }} , {{\mathbb {R}}}^2)\times {{\mathcal {C}}}^{k,\gamma }({\overline{\Omega }} )\).
Proof
For a complex \(\delta \) define the operator \(S_\delta \) by (3.2). Then
is an isomorphism by [46, Theorem 6.2]. Remark that
Since \({{\mathcal {C}}}^{k+1,\gamma }({\overline{\Omega }} ,{\mathbb C}^2)\hookrightarrow {{\mathcal {C}}}^{k-1,\gamma }({\overline{\Omega }} ,{{\mathbb {C}}}^2) \) compactly (see [28, Satz 2.42] or [42, Remark 1.2.15]), we infer that \(S_\lambda \) is a Fredholm operator with index 0 from the space X:=\({{\mathcal {C}}}^{k+1,\gamma }({\overline{\Omega }} ,{{\mathbb {C}}}^2)\times {{\mathcal {C}}}^{k,\gamma } (\overline{\Omega };{{\mathbb {C}}})\) to \(Y:={{\mathcal {C}}}^{k-1,\gamma }({\overline{\Omega }} ,{{\mathbb {C}}}^2) \times {{\mathcal {C}}}^{k,\gamma }({\overline{\Omega }} ;{{\mathbb {C}}})\times {{\mathcal {C}}}^{k+1,\gamma } (\partial \Omega ;{{\mathbb {C}}})\times {{\mathcal {C}}}^{k,\gamma }(\partial \Omega ;{{\mathbb {C}}})\). If \(\lambda >0\) then
is a Fredholm operator with index 0.
Let \((\textbf{u},\rho )\in {{\mathcal {C}}}^{k+1,\gamma }(\overline{\Omega },{{\mathbb {C}}}^2)\times {{\mathcal {C}}}^{k,\gamma }({\overline{\Omega }} ;{{\mathbb {C}}})\) and \(S_\lambda (\textbf{u},\rho )=0\). Then \((\textbf{u},\rho )\equiv 0\) by Theorem 3.2. Thus \(S_\lambda :X\rightarrow Y\) is an isomorphism. If \(\lambda \ge 0\) and \(\textbf{F}\), g, h and G are real, then \(\textbf{u}\), \(\rho \) are real by Theorem 3.2. \(\square \)
Theorem 3.4
Let \(\Omega \subset {{\mathbb {R}}}^2\) be a bounded domain with connected boundary of class \({{\mathcal {C}}}^{k,1}\) with \(k\in {\mathbb N}\). Let \(\lambda \in {{\mathbb {C}}}\setminus (-\infty ,0)\), \(1<q, r<\infty \) and \(1/q<s<k-1\) with \(s-1/q\not \in {{\mathbb {N}}}\). If \(g\in B_{s+1-1/q}^{q,r}(\partial \Omega ;{{\mathbb {C}}})\), \(h\in B_{s-1/q}^{q,r}(\partial \Omega ;{{\mathbb {C}}})\), \(\textbf{F}\in B_{s-1}^{q ,r} (\Omega ,{{\mathbb {C}}}^2)\) and \(G\in B_s^{q ,r}(\Omega ;{{\mathbb {C}}})\), then there exists a unique solution \((\textbf{u},\rho )\in B_{s+1}^{q,r}(\Omega ,{{\mathbb {C}}}^2)\times B_s^{q,r}(\Omega ;{{\mathbb {C}}})\) of the Navier problem (3.1). Moreover,
where c depends only on \(\Omega \), \(\lambda \), q, r and s. If \(\lambda \ge 0\) and \(\textbf{F}\), h, g, G are real, then \((\textbf{u},\rho )\in B_{s+1}^{q,r}(\Omega ,{{\mathbb {R}}}^2)\times B_s^{q,r}(\Omega )\).
Proof
For a complex \(\delta \) define the operator \(S_\delta \) by (3.2). \(S_\delta \) is a bounded operator from \(X:=B_{s+1}^{q,r}(\Omega ,{{\mathbb {C}}}^2)\times B_s^{q,r}(\Omega ;{{\mathbb {C}}})\) to \(Y:= B_{s-1}^{q ,r} (\Omega ,{\mathbb C}^2)\times B_s^{q ,r}(\Omega ;{{\mathbb {C}}})\times B_{s+1-1/q}^{q,r}(\partial \Omega ;{{\mathbb {C}}})\times B_{s-1/q}^{q,r}(\partial \Omega ;{{\mathbb {C}}})\) by [36, Chapter VI, Theorem 1] and Lemma 2.3. [46, Theorem 5.4] gives that \(S_0\) is an isomorphism from X to Y. Since
and \(B_{s+1}^{q,r}(\Omega )\hookrightarrow B_{s-1}^{q ,r} (\Omega )\) compactly by Proposition 2.1, we infer that \(S_\lambda -S_0\) is compact and therefore \(S_\lambda \) is a Fredholm operator with index 0 from X to Y.
Let \((\textbf{u},\rho )\in X\) and \(S_\lambda (\textbf{u},\rho )=0\). Choose \(\tau \in (1/q,s)\) such that \(\tau \) and \(\tau -1/q\) are not integer. Since \(\textbf{u}\in B_{s+1}^{q,r}(\Omega ;{\mathbb C}^2)\subset B_{\tau +1}^{q,q}(\Omega ;{{\mathbb {C}}}^2)=W^{\tau +1,q}(\Omega ;{{\mathbb {C}}}^2)\) and \(\rho \in B_s^{q,r}(\Omega ;{{\mathbb {C}}})\subset B_\tau ^{q,q}(\Omega ;{{\mathbb {C}}})=W^{\tau ,q}(\Omega ;{{\mathbb {C}}})\) by Proposition 2.1, Theorem 3.2 gives that \(\textbf{u}\equiv 0\), \(\rho \equiv 0\). So, \(S_\lambda \) is an isomorphism from X to Y. \(\square \)
4 Darcy-Forchheimer-Brinkman system
This section is devoted to the Darcy-Forchheimer-Brinkman system (1.7) with the boundary condition (3.1b). We begin with proving some auxiliary results.
Lemma 4.1
Let \(\Omega \subset {{\mathbb {R}}}^2\) be a bounded domain with Lipschitz boundary, \(1<q,r<\infty \), \(1/q<s\le 1\) and \(a\in L^q (\Omega )\). Define
-
(1)
Then there exists a positive constant C such that \(A_a(\textbf{u},\textbf{v})\in W^{s-1,q}(\Omega ;{{\mathbb {R}}}^2)\) for \(\textbf{u},\textbf{v}\in W^{s+1,q}(\Omega ;{{\mathbb {R}}}^2)\) and
$$\begin{aligned}{} & {} \Vert A_a(\textbf{u},\textbf{v})\Vert _{W^{s-1,q}(\Omega )}\le C\Vert \textbf{u}\Vert _{W^{s+1,q}(\Omega )}\Vert \textbf{v}\Vert _{W^{s+1,q}(\Omega )}, \\{} & {} \Vert A_a(\textbf{u},\textbf{u})-A_a(\textbf{v},\textbf{v})\Vert _{W^{s-1,q}(\Omega )}\le C\Vert \textbf{u}-\textbf{v}\Vert _{W^{s+1,q}(\Omega )} \left( \Vert \textbf{u}\Vert _{W^{s+1,q}(\Omega )}+\Vert \textbf{v}\Vert _{W^{s+1,q}(\Omega )}\right) . \end{aligned}$$ -
(2)
If \(s<1\) then there exists a positive constant C such that \(A_a(\textbf{u},\textbf{v})\in B_{s-1}^{q,r}(\Omega ;{{\mathbb {R}}}^2)\) for \(\textbf{u},\textbf{v}\in B_{s+1}^{q,r}(\Omega ;{{\mathbb {R}}}^2)\) and
$$\begin{aligned}{} & {} \Vert A_a(\textbf{u},\textbf{v})\Vert _{B_{s-1}^{q,r}(\Omega )}\le C\Vert \textbf{u}\Vert _{B_{s+1}^{q,r}(\Omega )}\Vert \textbf{v}\Vert _{B_{s+1}^{q,r}(\Omega )}, \\{} & {} \Vert A_a(\textbf{u},\textbf{u})-A_a(\textbf{v},\textbf{v})\Vert _{B_{s-1}^{q,r}(\Omega )}\le C\Vert \textbf{u}-\textbf{v}\Vert _{B_{s+1}^{q,r}(\Omega )} \left( \Vert \textbf{u}\Vert _{B_{s+1}^{q,r}(\Omega )}+\Vert \textbf{v}\Vert _{B_{s+1}^{q,r}(\Omega )}\right) . \end{aligned}$$
Proof
In the case 1) put \(X:=W^{s+1,q}(\Omega ;{{\mathbb {R}}}^2)\), \(Y:=W^{s-1,q}(\Omega ;{{\mathbb {R}}}^2)\). In the case 2) put \(X:=B_{s+1}^{q,r}(\Omega ;{{\mathbb {R}}}^2)\), \(Y:=B_{s-1}^{q,r}(\Omega ;{{\mathbb {R}}}^2)\). Since \(X\hookrightarrow W^{1/q+1,q}(\Omega ;{\mathbb R}^2)=B_{1/q+1}^{q,q}(\Omega ;{{\mathbb {R}}}^2)\hookrightarrow {{\mathcal {C}}}({\overline{\Omega }} ;{{\mathbb {R}}}^2)\) by [52, Chap. 2, §5.4, Lemma 5.4] and [65, Proposition 4.6], there exists a positive constant \(C_1\) such that
Thus
Suppose now that \(s<1\). In the case 1) put \(Z:=W^{(s-1)/2,q}(\Omega ;{{\mathbb {R}}}^2)\), in the case 2) put \(Z:=B_{(s-1)/2}^{q,q}(\Omega ;{{\mathbb {R}}}^2)\). Remark that \(L^q_0(\Omega )=L^q(\Omega )\) where \(L_s^q(\Omega )\) denotes Bessel spaces. According to [64, §4.6.2, Theorem] there exists a constant \(C_2\) such that
According to [64, §4.6.1, Theorem] and [52, Chap. 2, §5.4, Lemma 5.4] there exists a constant \(C_3\) such that
Hence
\(\square \)
Lemma 4.2
Let \(\Omega \subset {{\mathbb {R}}}^m\) be a bounded domain with Lipschitz boundary. Let \(1<p<\infty \) and \(0<s<\infty \). Then there exists a bounded linear operator \(E:W^{s,p}(\Omega )\rightarrow W^{s,p}({{\mathbb {R}}}^m)\) such that \(Ef=f\) on \(\Omega \).
Proof
For s integer see [60, Chapter VI, §3, Theorem 5]. If s is not integer then the lemma is a consequence of [63, Lemma 36.1] and [65, Theorem 1.105]. \(\square \)
Lemma 4.3
Let \(\Omega \subset {{\mathbb {R}}}^m\) be a bounded domain with Lipschitz boundary. Let \(0<s(1),s(2)<\infty \), \(\min (s(1),s(2))\ge s>-\infty \) and \(1<p<\infty \). Suppose that \(s(1)+s(2)-s>m/p\). Then there exists a positive constant C such that
for all \(f\in W^{s(1),p}(\Omega )\), \(g\in W^{s(2),p}(\Omega )\).
Proof
Choose a bounded domain \(\omega \subset {{\mathbb {R}}}^m\) with smooth boundary such that \({\overline{\Omega }} \subset \omega \). According to Lemma 4.2 there exists an extension operator \(E_j:W^{s(j),p}(\Omega )\rightarrow W^{s(j),p}({{\mathbb {R}}}^m)\) and a positive constant \(C_1\) such that
Fix \(\varphi \in {{\mathcal {C}}}^\infty ({{\mathbb {R}}}^m)\) supported in \(\omega \) such that \(\varphi =1 \) on \(\Omega \). Then there exists a positive constant \(C_2\) such that
We can choose an m-dimensional smooth closed manifold M such that \({\overline{\omega }} \subset M\). According to [35, Lemma 28] there exists a positive constant \(C_3\) such that
for all \(f\in W^{s(1),p}(M)\) and \(g\in W^{s(2),p}(M)\). Define \(Ef:=f\) in \(\omega \), \(Ef:=0\) in \(M\setminus \omega \). If \(f\in W^{s(j),p}({{\mathbb {R}}}^m)\) then \(E(\varphi f)\in W^{s(j),p}(M)\). Therefore
for all \(f\in W^{s(1),p}(\Omega )\), \(g\in W^{s(2),p}(\Omega )\). \(\square \)
Lemma 4.4
Let \(\Omega \subset {{\mathbb {R}}}^m\) be a bounded domain with Lipschitz boundary. Let \(0<s(1),s(2)<\infty \), \(\min (s(1),s(2))>s>-\infty \) and \(1<p,q<\infty \). Suppose that \(s(1)+s(2)-s>m/p\). Then there exists a positive constant C such that
for all \(f\in B_{s(1)}^{p,q}(\Omega )\), \(g\in B_{s(2)}^{p,q}(\Omega )\).
Proof
Choose \(\epsilon \in (0,\infty )\) such that \(s(j)-\epsilon >s\), \( s(1)+s(2)-s-3\epsilon >m/p\) and \(s(j)-\epsilon \), \(s-\epsilon \), \(s(j)+\epsilon \), \(s+\epsilon \) are not integer. According to Lemma 4.3 there exists a positive constant \(C_1\) such that
for all \(f\in W^{t(1),p}(\Omega )\), \(g\in W^{t(2),p}(\Omega )\) with \(t(j)\in \{ s(j)-\epsilon , s(j)+\epsilon \} \), \(t\in \{ s-\epsilon ,s+\epsilon \} \). We use the real interpolation.
by [64, §4.3.1, Theorem 2]. Fix \(g\in W^{t(2),p}(\Omega )\) and define \(G_g(f):=fg\). According to (4.1), (4.2) and [63, Lemma 22.3]
We now use the real interpolation with respect to g. According to (4.1), (4.2) and [63, Lemma 22.3]
\(\square \)
Lemma 4.5
Let \(\Omega \subset {{\mathbb {R}}}^2\) be a bounded domain with Lipschitz boundary. Let \(1<q,r<\infty \) and \(1/q<s<\infty \). For a given function b define
-
(1)
If \(b\in W^{s,q}(\Omega )\) then there exists a positive constant C such that \(B_b(\textbf{u},\textbf{v})\in W^{s-1,q}(\Omega ;{{\mathbb {R}}}^2)\) for \(\textbf{u},\textbf{v}\in W^{s+1,q}(\Omega ;{{\mathbb {R}}}^2)\) and
$$\begin{aligned}{} & {} \Vert B_b(\textbf{u},\textbf{v})\Vert _{W^{s-1,q}(\Omega )}\le C\Vert \textbf{u}\Vert _{W^{s+1,q}(\Omega )}\Vert \textbf{v}\Vert _{W^{s+1,q}(\Omega )}, \\{} & {} \Vert B_b(\textbf{u},\textbf{u})-B_b(\textbf{v},\textbf{v})\Vert _{W^{s-1,q}(\Omega )}\nonumber \\{} & {} \quad \le C\Vert \textbf{u}-\textbf{v}\Vert _{W^{s+1,q}(\Omega )} \left( \Vert \textbf{u}\Vert _{W^{s+1,q}(\Omega )}+\Vert \textbf{v}\Vert _{W^{s+1,q}(\Omega )}\right) . \end{aligned}$$ -
(2)
If \(b\in B_s^{q,r}(\Omega )\) then there exists a positive constant C such that \(B_b(\textbf{u},\textbf{v}) \in B_{s-1}^{q,r}(\Omega ;{{\mathbb {R}}}^2)\) for \(\textbf{u},\textbf{v}\in B_{s+1}^{q,r}(\Omega ;{{\mathbb {R}}}^2)\) and
$$\begin{aligned}{} & {} \Vert B_b(\textbf{u},\textbf{v})\Vert _{B_{s-1}^{q,r}(\Omega )}\le C\Vert \textbf{u}\Vert _{B_{s+1}^{q,r}(\Omega )} \Vert \textbf{v}\Vert _{B_{s+1}^{q,r}(\Omega )}, \\{} & {} \Vert B_b(\textbf{u},\textbf{u})-B_b(\textbf{v},\textbf{v})\Vert _{B_{s-1}^{q,r}(\Omega )}\le C\Vert \textbf{u}-\textbf{v}\Vert _{B_{s+1}^{q,r}(\Omega )} \left( \Vert \textbf{u}\Vert _{B_{s+1}^{q,r}(\Omega )}+\Vert \textbf{v}\Vert _{B_{s+1}^{q,r}(\Omega )}\right) . \end{aligned}$$
Proof
Choose \(\epsilon \in (0,1-1/q)\). In the case (1) put \(X:=W^{s+1,q}(\Omega )\), \(Y:=W^{s,q}(\Omega )\), \(W:=W^{s-\epsilon ,q}(\Omega )\), \(Z:=W^{s-1,q}(\Omega )\), \({\mathcal X}:=W^{s+1,q}(\Omega ;{{\mathbb {R}}}^2)\), \({\mathcal W}:=W^{s-\epsilon ,q}(\Omega ;{{\mathbb {R}}}^2)\), \({\mathcal Z}:=W^{s-1,q}(\Omega ;{{\mathbb {R}}}^2)\). In the case (2) put \(X:=B_{s+1}^{q,r}(\Omega )\), \(Y:=B_s^{q,r}(\Omega )\), \(W:=B_{s-\epsilon }^{q,r}(\Omega )\), \(Z:=B_{s-1}^{q,r}(\Omega )\), \({{\mathcal {X}}}:=B_{s+1}^{q,r}(\Omega ;{{\mathbb {R}}}^2)\), \({{\mathcal {W}}}:=B_{s-\epsilon }^{q,r} (\Omega ;{{\mathbb {R}}}^2)\), \({{\mathcal {Z}}}:=B_{s-1}^{q,r}(\Omega ;{{\mathbb {R}}}^2)\). Since \((s+1)+s-(s-\epsilon )=s+1-\epsilon >1/q+1-(1-1/q)=2/q\), Lemma 4.3 and Lemma 4.4 force that there exists a positive constant \(C_1\) such that
Since \(s+(s-\epsilon )-(s-1)=s+1-\epsilon >2/q\), Lemma 4.3 and Lemma 4.4 give that there exists a positive constant \(C_2\) such that
If \(\textbf{u},\textbf{v}\in {{\mathcal {X}}}\) then
So,
\(\square \)
Theorem 4.6
Let \(\Omega \subset {{\mathbb {R}}}^2\) be a bounded domain with connected Lipschitz boundary and \(0\le \lambda <\infty \).
-
(1)
Let \(\partial \Omega \) be of class \({{\mathcal {C}}}^{k+2,\gamma }\) where \(k\in {{\mathbb {N}}}\) and \(0<\gamma <1\). Let \(a\in {{\mathcal {C}}}^{0,\gamma }({\overline{\Omega }} )\) and \(b\in {{\mathcal {C}}}^{k-1,\gamma }({\overline{\Omega }} )\). If \(k\ne 1\) suppose that \(a=0\). Then there exist \(\delta ,\epsilon , C\in (0,\infty )\) such that the following holds: If \(h\in {\mathcal C}^{k,\gamma }(\partial \Omega )\), \(g\in {{\mathcal {C}}}^{k+1,\gamma }(\partial \Omega )\), \(\textbf{f}\in {{\mathcal {C}}}^{k-1,\gamma }({\overline{\Omega }} ;{{\mathbb {R}}}^2)\) and \(G \in {\mathcal C}^{k,\gamma }({\overline{\Omega }} )\) satisfy
$$\begin{aligned} \Vert h\Vert _{{{\mathcal {C}}}^{k,\gamma }(\partial \Omega )}+\Vert g\Vert _{{{\mathcal {C}}}^{k+1,\gamma }(\partial \Omega )}+ \Vert \textbf{f}\Vert _{{{\mathcal {C}}}^{k-1,\gamma }({\overline{\Omega }} )}+\Vert G \Vert _{{{\mathcal {C}}}^{k,\gamma }({\overline{\Omega }} )}<\delta , \end{aligned}$$then there exists a unique solution \((\textbf{u},\rho )\in {\mathcal C}^{k+1,\gamma }({\overline{\Omega }} ; {{\mathbb {R}}}^2)\times {{\mathcal {C}}}^{k,\gamma }({\overline{\Omega }} )\) of (1.7), (3.1b) satisfying \(\Vert \textbf{u}\Vert _{{{\mathcal {C}}}^{k+1,\gamma }({\overline{\Omega }} )}<\epsilon \). Moreover
$$\begin{aligned}{} & {} \Vert \textbf{u}\Vert _{{{\mathcal {C}}}^{k+1,\gamma }({\overline{\Omega }} )}+\Vert \rho \Vert _{{{\mathcal {C}}}^{k,\gamma }({\overline{\Omega }} )} \\{} & {} \quad \le C\left( \Vert h\Vert _{{{\mathcal {C}}}^{k,\gamma }(\partial \Omega )}+\Vert g\Vert _{{{\mathcal {C}}}^{k+1,\gamma }(\partial \Omega )}+ \Vert \textbf{f}\Vert _{{{\mathcal {C}}}^{k-1,\gamma }({\overline{\Omega }} )}+\Vert G \Vert _{{{\mathcal {C}}}^{k,\gamma }({\overline{\Omega }} )}\right) . \end{aligned}$$ -
(2)
Suppose that \(\partial \Omega \) is of class \({{\mathcal {C}}}^{k,1}\) with \(k\in {{\mathbb {N}}}\). Let \(1<q<\infty \) and \(1/q<s<k-1\) with \(s-1/q \not \in {{\mathbb {N}}}\). Let \(a\in L^q (\Omega )\) and \(b\in W^{s,q}(\Omega )\). If \(s>1\) suppose that \(a\equiv 0\). Then there exist \(\delta ,\epsilon , C\in (0,\infty )\) such that the following holds: If \(h\in W^{s-1/q,q}(\partial \Omega )\), \(g\in W^{s+1-1/q,q}(\partial \Omega )\), \(\textbf{f}\in W^{s-1,q}(\Omega ;{{\mathbb {R}}}^2)\) and \(G \in W^{s,q}(\Omega )\) satisfy
$$\begin{aligned} \Vert h\Vert _{W^{s-1/q,q}(\partial \Omega )}+\Vert g\Vert _{W^{s+1-1/q,q}(\partial \Omega )}+ \Vert \textbf{f}\Vert _{W^{s-1,q}(\Omega )}+\Vert G \Vert _{W^{s,q}(\Omega )}<\delta , \end{aligned}$$then there exists a unique solution \((\textbf{u},\rho )\in W^{s+1,q}(\Omega ;{{\mathbb {R}}}^2)\times W^{s,q}(\Omega )\) of (1.7), (3.1b) satisfying \(\Vert \textbf{u}\Vert _{W^{s+1,q}(\Omega )}<\epsilon \). Moreover,
$$\begin{aligned}{} & {} \Vert \textbf{u}\Vert _{W^{s+1,q}(\Omega )}+\Vert \rho \Vert _{W^{s,q}(\Omega )} \\{} & {} \quad \le C\left( \Vert h\Vert _{W^{s-1/q,q}(\partial \Omega )} +\Vert g\Vert _{W^{s+1-1/q,q}(\partial \Omega )}+ \Vert \textbf{f}\Vert _{W^{s-1,q}(\Omega )}+\Vert G \Vert _{W^{s,q}(\Omega )}\right) . \end{aligned}$$ -
(3)
Suppose that \(\partial \Omega \) is of class \({{\mathcal {C}}}^{k,1}\) with \(k\in {{\mathbb {N}}}\). Let \(1<q,r<\infty \) and \(1/q<s<k-1\) with \(s-1/q \not \in {{\mathbb {N}}}\). Let \(a\in L^q (\Omega )\) and \(b\in B_s^{q,r}(\Omega )\). If \(s\ge 1\) suppose that \(a\equiv 0\). Then there exist \(\delta ,\epsilon , C\in (0,\infty )\) such that the following holds: If \(h\in B_{s-1/q}^{q,r}(\partial \Omega )\), \(g\in B_{s+1-1/q}^{q,r}(\partial \Omega )\), \(\textbf{f}\in B_{s-1}^{q,r}(\Omega ;{{\mathbb {R}}}^2)\) and \(G \in B_s^{q,r}(\Omega )\) satisfy
$$\begin{aligned} \Vert h\Vert _{B_{s-1/q}^{q,r}(\partial \Omega )}+\Vert g\Vert _{B_{s+1-1/q}^{q,r}(\partial \Omega )}+ \Vert \textbf{f}\Vert _{B_{s-1}^{q,r}(\Omega )}+\Vert G \Vert _{B_s^{q,r}(\Omega )}<\delta , \end{aligned}$$then there exists a unique solution \((\textbf{u},\rho )\in B_{s+1}^{q,r}(\Omega ;{{\mathbb {R}}}^2)\times B_s^{q,r}(\Omega )\) of (1.7), (3.1b) satisfying \(\Vert \textbf{u}\Vert _{B_{s+1}^{q,r}(\Omega )}<\epsilon \). Moreover,
$$\begin{aligned}{} & {} \Vert \textbf{u}\Vert _{B_{s+1}^{q,r}(\Omega )}+\Vert \rho \Vert _{B_s^{q,r}(\Omega )} \\{} & {} \quad \le C\left( \Vert h\Vert _{B_{s-1/q}^{q,r}(\partial \Omega )} +\Vert g\Vert _{B_{s+1-1/q}^{q,r}(\partial \Omega )}+ \Vert \textbf{f}\Vert _{B_{s-1}^{q,r}(\Omega )}+\Vert G \Vert _{B_s^{q,r}(\Omega )}\right) . \end{aligned}$$
Proof
In the case 1) put \(U:={{\mathcal {C}}}^{k+1,\gamma }(\overline{\Omega };{{\mathbb {R}}}^2)\), \(V:={{\mathcal {C}}}^{k,\gamma } ({\overline{\Omega }} )\), \(W:={{\mathcal {C}}}^{k-1}({\overline{\Omega }} ;{{\mathbb {R}}}^2)\), \(Y:={{\mathcal {C}}}^{k+1,\gamma } (\partial \Omega )\), \(Z:= {{\mathcal {C}}}^{k,\gamma }(\partial \Omega )\). In the case 2) put \(U:=W^{s+1,q}(\Omega ;{{\mathbb {R}}}^2)\), \(V:=W^{s,q}(\Omega )\), \(W:=W^{s-1,q}(\Omega ;{{\mathbb {R}}}^2)\), \(Y:=W^{s+1-1/q,q}(\partial \Omega )\), \(Z:=W^{s-1/q,q}(\partial \Omega )\). In the case 3) put \(U:=B_{s+1}^{q,r}(\Omega ;{{\mathbb {R}}}^2)\), \(V:=B_s^{q,r}(\Omega )\), \(W:=B_{s-1}^{q,r}(\Omega ; {{\mathbb {R}}}^2)\), \(Y:=B_{s+1-1/q}^{q,r}(\partial \Omega )\), \(Z:=B_{s-1/q}^{q,r}(\partial \Omega )\).
Define
According to [48, Lemma 3.1], [48, Lemma 3.2], Lemma 4.1 and Lemma 4.5 there exists a constant \(C_1\) such that
By Theorem 3.2, Theorem 3.3 and Theorem 3.4 there exists a constant \(C_2\) such that the following holds: For each \(h\in Z\), \(g\in Y\), \(\textbf{F}\in W\) and \(G\in V\) there is a unique solution \((\textbf{u},\rho )\in U\times V\) of the problem (3.1) and
Put
If \((\textbf{u},\rho )\in U\times V\) is a solution of (1.7), (3.1b) with \(\Vert \textbf{u}\Vert _U<\epsilon \) and \((\tilde{\textbf{u}},{\tilde{\rho }} )\in U\times V\) is a solution of
with \(\Vert \tilde{\textbf{u}}\Vert _U<\epsilon \), then
Since \(2C_1C_2 \epsilon <1/2\) we get subtracting \(2\epsilon C_1C_2\Vert \textbf{u}-\tilde{\textbf{u}}\Vert _U\) from the both sides
Therefore a solution of (1.7), (3.1b) satisfying \(\Vert \textbf{u}\Vert _U<\epsilon \) is unique. For \(\tilde{\textbf{u}}\equiv 0\), \({\tilde{\rho }} \equiv 0\), \(\tilde{\textbf{f}}\equiv 0\), \({\tilde{g}}\equiv 0\), \({\tilde{G}}\equiv 0\) and \({\tilde{h}}\equiv 0\) we obtain the estimate
Denote \(X:=\{ \textbf{v}\in U;\Vert \textbf{v}\Vert _U\le \epsilon \} \). Choose \(h\in Z\), \(g\in Y\), \(\textbf{f}\in W\) and \(G \in V\) satisfying
For a fixed \(\textbf{v}\in X\) there exists a unique solution \((\textbf{u}^\textbf{v},\rho ^\textbf{v})\in U\times V\) of (3.1) with \(\textbf{F}=\textbf{f}-L\textbf{v}\). (See Theorem 3.2, Theorem 3.3 and Theorem 3.4.) Remark that \((\textbf{u},\rho )\) is a solution of (1.7), (3.1b) if \((\textbf{u},\rho )\) is a solution of (3.1) with \(\textbf{F}=\textbf{f}-L\textbf{u}\). We have
Since \(C_2 \delta +C_2 C_12 \epsilon ^2 <\epsilon \) we deduce that \(\textbf{u}^\textbf{v}\in X\). If \(\textbf{w}\in X\) then
Since \(C_2 C_1 2\epsilon <1\), Banach’s fixed point theorem ( [28, Satz 1.24]) gives that there exists \(\textbf{v}\in X\) such that \(\textbf{u}^\textbf{v}=\textbf{v}\). So, \((\textbf{u}^\textbf{v},\rho ^\textbf{v})\) is a solution of (1.7), (3.1b) in \(U\times V\) satisfying \(\Vert \textbf{v}\Vert _U<\epsilon \). \(\square \)
References
Abboud, H., El Chami, F., Sayah, T.: Error estimates for three-dimensional Stokes problem with non-standard boundary conditions. C. R. Acad. Sci. Paris 349, 523–528 (2011)
Abboud, H., El Chami, F., Sayah, T.: A priory and a posteriori estimates for three-dimensional Stokes equation with nonstandard boundary conditions. Num. Meth. Part. Diff. Equ. 28, 1178–1193 (2012)
Acevedo, P., Amrouche, C., Conca, C., Ghosh, A.: Stokes and Navier-Stokes equations with Navier boundary condition. C. R. Acad. Sci. Paris 357(2), 115–119 (2019)
Acevedo Tapia, P., Amrouche, Ch., Conca, C., Ghosh, A.: Stokes and Navier-Stokes equations with Navier boundary condition. J. Diff. Equ. 285, 258–320 (2019)
Al Baba, H., Amrouche, Ch., Escobedo, M.: Analyticity of the semi-group generated by the Stokes operator with Navier-type boundary conditions on \(L^p\)-spaces. In: V. D. Radulescu (eds.) Recent advances in partial differential equations and applications, Providence, RI: AMS, Contemporary Mathematics 666, 23–40 (2016)
Al Baba, H., Amrouche, Ch., Escobedo, M.: Semi-group theory for the Stokes operator with Navier-type boundary conditions on \(L^p\)-spaces. Arch. Rational Mech. Anal. 223, 881–940 (2017)
Al Baba, H., Amrouche, Ch., Rejaba, A.: The time dependent Stokes problem with Navier slip boundary conditions on \(L^p\)-spaces. Analysis 99, 901–925 (2004)
Al Baba, H., Amrouche, Ch., Seloula, N.: Instationary Stokes problem with pressure boundary condition in \(L^p\)-spaces. J. Evol. Equ. 17, 641–667 (2017)
Albisoru, A.F.: A note on a transmission problem for the Brinkman system and the generalized Darcy-Forchheimer-Brinkman system in Lipschitz domains in \(R^3\). Stud. Univ. Babes-Bolyai Math. 64(3), 399–412 (2019)
Amara, M., Chacón Vera, E., Trujillo, D.: Vorticity-velocity-pressure formulation for Stokes problem. Math. Comput. 73, 1673–1697 (2004)
Amrouche, Ch., Meslameni, M.: Stokes problem with several types of boundary conditions in an exterior domain. Electron. J. Diff. Equ. 2013 (2013)
Amrouche, Ch., Penel, P., Seloula, N.: Some remarks on the boundary conditions in the theory of Navier-Stokes equations. Ann. Math. Blaise Pascal 20, 37–73 (2013)
Amrouche, Ch., Rejaiba, A.: \(L^p\)-theory for Stokes and Navier-Stokes equations with Navier boundary condition. J. Diff. Equ. 256, 1515–1547 (2014)
Amrouche, Ch., Seloula, N.: Stokes equations and elliptic systems with nonstandard boundary conditions. C. R. Acad. Sci. Paris 349, 703–708 (2011)
Amrouche, Ch., Seloula, N.: On the Stokes equations with the Navier-type boundary conditions. Diff. Equ. Appl. 3, 581–607 (2011)
Bardos, C.: Existence et unicité de la solution de l’équation d’Euler en dimension deux. J. Math. Anal. Appl. 40, 769–790 (1972)
Bernard, J.M.: Non-standard Stokes and Navier-Stokes problems: existence and regularity in stationary case. Math. Meth. Appl. Sci. 25, 627–661 (2002)
Borchers, W., Varnhorn, W.: On the boundedness of the Stokes semigroup in two-dimensional exterior domains. Math. Z. 213, 275–299 (1993)
Boulmezaoud, T.Z.: On the Stokes system and on the biharmonic equation in the half-space: an approach via weighted Sobolev spaces. Math. Meth. Appl. Sci. 25, 373–398 (2002)
Boulmezaoud, T.Z., Medjden, M.: Weighted \(L^p\) theory of the Stokes and the bilaplacian operators in the half-space. J. Math. Anal. Appl. 342, 220–245 (2008)
Bramble, J.H., Lee, P.: On variational formulations for the Stokes equations with nonstandard boundary conditions. RAIRO - Model. Math. Anal. Numer. 28, 909–919 (1994)
Conca, C., Murat, F., Pironeau, O.: The Stokes and Navier-Stokes equations with boundary conditions involving the pressure. Japanese J. Math. 20, 279–316 (1994)
Delcourte, S., Omnes, P.: A discrete duality finite volume discretization of the vorticity-velocity-pressure Stokes problem on almost arbitrary two-dimensional grids. Num. Meth. Part. Diff. Equ. 31, 1–30 (2015)
Devore, R.A., Sharpley, R.C.: Besov spaces on domains in \(R^d\). Trans. Math. Soc. 335, 843–864 (1993)
Dhifaoui, A.: \(L^p\)-theory for the exterior Stokes problem with Navier’s type slip-without-friction boundary conditions. Z. Angew. Math. Phys. 73, article 87 (2022)
Dhifaoui, A.: \(L^p\)-strong solution for the stationary exterior Stokes equations with Navier boundary condition. Discrete Contin. Dyn. Syst. 15(6), 1403–1420 (2022)
Dhifaoui, A.: Wery weak solution for the stationary exterior Stokes equations with non-standard boundary conditions in \(L^p\)-theory. Math. Meth. Appl. Sci. 46, 641–655 (2023)
Dobrowolski, M.: Angewandte Functionalanalysis. Sobolev-Räume und elliptische Differentialgleichungen. Springer, Berlin Heidelberg, Functionalanalysis (2006)
Farwig, R., Rosteck, V.: Resolvent estimates of the Stokes system with Navier boundary conditions in general unbounded domains. Advances Diff. Equ. 21(5–6), 401–428 (2016)
Grisvard, P.: Elliptic Problems in Nonsmooth Domains. SIAM, Philadelphia (2011)
Grosan, T., Kohr, M., Wendland, W.L.: Dirichlet problem for a nonlinear generalized Darcy-Forchheimer-Brinkman system in Lipschitz domains. Math. Meth. Appl. Sci. 38(17), 3615–3628 (2015)
Gutt, R.: Boundary integral approach for the mixed Dirichlet-Robin boundary value problem for the nonlinear Darcy-Forchheimer-Brinkman system. Comp. Math. Apll. 79, 2805–2818 (2020)
Gutt, R., Grosan, T.: On the lid-driven problem in a porous cavity: a theoretical and numerical approach. Appl. Math. Comput. 266, 1070–1082 (2015)
Gutt, R., Kohr, M., Mikhailov, S.E., Wendland, W.L.: On the mixed problem for the semilinear Darcy-Forchheimer-Brinkman PDE system in Besov spaces on creased Lipschitz domains. Math. Meth. Appl. Sci. 40(18), 7780–7829 (2017)
Holst, M., Nagy, G., Tsogtgerei, G.: Rough solutions of the Einstein constraints on closed manifolds without near-CMC conditions. Commun. Math. Phys. 288, 547–613 (2009)
Jonsson, A., Wallin, H.: Function spaces on subsets of \(R^n\). Harwood academic publishers, London (1984)
Kerdid, N.: A mixed formulation of the Stokes equation with slip conditions in exterior domains and in the half-space. Hiroshima Math. J. 48, 119–131 (2018)
Kohr, M., Lanza de Cristoforis, M., Wendland, W.L.: Boundary value problems of Robin type for the Brinkman and Darcy-Forchheimer-Brinkman systems in Lipschitz domains. J. Math. Fluid Mech. 16, 595–630 (2014)
Kohr, M., Lanza de Cristoforis, M., Wendland, W.L.: Poisson problems for semilinear Brinkman systems on Lipschitz domains in \(R^n\). Z. Angew. Math. Phys. 66, 833–864 (2015)
Kozhesnikov, A., Lepsky, O.: Power series solutions to basic stationary value problems of elasticity. Integr. Equ. Oper. Theory 31, 449–469 (1998)
Kwon, O.S., Kweon, J.R.: For the vorticity-velocity-pressure form of the Navier-Stokes equations on a bounded plane domain with corners. Nonlinear Anal. 75, 2936–2956 (2012)
Kufner, A., John, O., Fučík, S.: Function Spaces. Academia, Prague (1977)
Louati, H., Meslameni, M., Razafison, U.: On the three-dimensional stationary exterior Stokes problem with non standard boundary conditions. Z. Angew. Math. Mech. 100, paper e201900181 (2020)
Maz’ya, V., Rossmann, J.: Pointwise estimates for Green’s kernel of a mixed boundary value problem to the Stokes system in a polyhedral cone. Math. Nachr. 278, 1766–1810 (2005)
Maz’ya, V., Rossmann, J.: \(L_p\) estimates of solutions to mixed boundary value problems for the Stokes system in polyhedral domains. Math. Nachr. 280, 751–793 (2007)
Medková, D.: One problem of the Navier type for the Stokes system in planar domains. J. Diff. Equ. 261, 5670–5689 (2016)
Medková, D.: The Laplace equation. Springer, Cham (2018)
Medková, D.: Classical solutions of the Dirichlet problem for the Darcy-Forchheimer-Brinkman system. AIMS Math. 4, 1540–1553 (2019)
Mitrea, M., Monniaux, S., Wright, M.: The Stokes operator with Neumann boundary conditions in Lipschitz domains. J. Math. Sci. 176, 409–457 (2011)
Mitrea, M., Wright, M.: Boundary value problems for the Stokes system in arbitrary Lipschitz domains. Astérisque 344, Paris (2012)
Muha, B., Tutek, Z.: On a free Piston problem for Stokes and Navier-Stokes equations. Glasn. Matem. 47, 381–400 (2012)
Nečas, J.: Les méthodes directes en théorie des équations élliptiques. Academia, Prague (1967)
Papuc, I.: On a Dirichlet problem for the Darcy-Forchheimer-Brinkman system with application to lid-driven porous cavity flow with internal square block. Appl. Math. Comput. 402, article no. 125906 (2021)
Raudin, Y.: On a generalized Stokes system with slip boundary conditions in the half-space. Hiroshima Math. J. 41, 179–209 (2011)
Russo, A., Tartaglione, A.: On the Navier problem for the stationary Navier-Stokes equations. J. Diff. Equ. 251, 2387–2408 (2011)
Shen, Z.: Resolvent estimates in \(L^p\) for the Stokes operator in Lipschitz domains. Arch. Rational Mech. Anal. 205, 395–424 (2012)
Shibata, Y., Shimada, R.: On a generalized resolvent estimate for the Stokes system with Robin boundary condition. J. Math. Soc. Japan 59(2), 469–516 (2007)
Shibata, Y., Shimizu, S.: On the \(L_p -L_q\) maximal regularity of the Neumann problem for the Stokes equations in a bounded domain. J. Reine Angew. Math. 615, 157–209 (2008)
Shibata, Y., Shimizu, S.: On a resolvent estimate for the Stokes system with Neumann boundary condition. Diff. Int. Equ. 16, 385–426 (2003)
Stein, E.M.: Singular Integrals and Differentiability of Functions. Princeton University Press, Princeton - New Jersey (1970)
Tanaka, N.: On the boundary value problem for the stationary Stokes system in the half-space. J. Diff. Equ. 115, 70–74 (1995)
Tartaglione, A.: On the Stokes problem with slip boundary conditions. Commun. Appl. Ind. Math. 1, 186–205 (2010)
Tartar, L.: An Introduction to Sobolev Spaces and Interpolation Spaces. Springer, Berlin Heidelberg (2007)
Triebel, H.: Interpolation Theory, Function Spaces. Differential Operators. VEB Deutscher Verlag der Wissenschaften, Berlin (1978)
Triebel, H.: Theory of function spaces III. Birkhäuser, Basel (2006)
Zadrzyňska, E., Zajackowski, W.M.: Solvability of the stationary Stokes system in spaces \(H^2_{-\mu }\), \(\mu \in (0,1)\). Appl. Math. 37, 13–38 (2010)
Funding
Open access publishing supported by the National Technical Library in Prague. The work was supported by RVO: 67985840.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The author discloses financial or non-financial interests that are directly or indirectly related to this paper.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Medková, D. One Navier’s problem for the Brinkman system. Ann Univ Ferrara (2023). https://doi.org/10.1007/s11565-023-00458-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11565-023-00458-5
Keywords
- Brinkman system
- Navier problem
Mathematics Subject Classification
- 35Q35