Skip to main content
Log in

Classical solutions of the Robin problem for the Darcy-Forchheimer-Brinkman system

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We study classical solutions of the Robin problem for the Brinkman system and for the Darcy-Forchheimer-Brinkman system in a bounded domain with Lyapunov boundary. First we prove unique solvability of the Robin problem for the Brinkman system in the function space \(\left[ {{\mathcal {C}}}^{1,\beta } ({\overline{\Omega }} ;{\mathbb R}^m)\cap {{\mathcal {C}}}^2 (\Omega ;{\mathbb R}^m)\right] \times \left[ {{\mathcal {C}}}^\beta ({\overline{\Omega }} )\cap {\mathcal {C}}^1 (\Omega )\right] \). Then we show the existence of a solution of the Robin problem for the Darcy-Forchheimer-Brinkman system in the same space for sufficiently small data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Nield, D.A., Bejan, A.: Convection in Porous Media. Springer, New York (2013)

    Book  Google Scholar 

  2. Grosan, T., Kohr, M., Wendland, W.L.: Dirichlet problem for a nonlinear generalized Darcy-Forchheimer-Brinkman system in Lipschitz domains. Math. Meth. Appl. Sci. 38, 3615–3628 (2015)

    Article  MathSciNet  Google Scholar 

  3. Gutt, R., Grosan, T.: On the lid-driven problem in a porous cavity: A theoretical and numerical approach. Appl. Math. Comput. 266, 1070–1082 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Kohr, M., Lanza de Cristoforis, M., Wendland, W.L.: Poisson problems for semilinear Brinkman systems on Lipschitz domains in \(R^n\). Z. Angew. Math. Phys. 66, 833–864 (2015)

  5. Kohr, M., Wendland, W. L.: Variational approach for the Stokes and Navier-Stokes systems with nonsmooth coefficients in Lipschitz domains on compact Riemannian manifolds. Calc. Var. Partial Differ. Equ. 57, paper no. 165 (2018)

  6. Medková, D.: Bounded solutions of the Dirichlet problem for the Stokes resolvent system. Complex Var. Elliptic Equ. 61, 1689–1715 (2016)

    Article  MathSciNet  Google Scholar 

  7. Medková, D.: Classical solutions of the Dirichlet problem for the Darcy-Forchheimer-Brinkman system. AIMS Math. 4, 1540–1553 (2019)

    Article  MathSciNet  Google Scholar 

  8. Albisoru, A.F.: A note on a transmission problem for the Brinkman system and the generalized Darcy-Forchheimer-Brinkman system in Lipschitz domains in \(R^3\). Stud. Univ. Babes-Bolyai Math. 64, 399–412 (2019)

    Article  MathSciNet  Google Scholar 

  9. Albisoru, A.F.: On transmission-type problems for the generalized Darcy-Forchheimer-Brinkman system and Stokes system in complementary Lipschitz domains in \(R^3\). FILOMAT 33, 3361–3373 (2019)

    Article  MathSciNet  Google Scholar 

  10. Kohr, M., Lanza de Cristoforis, M., Mikhailov, S.E., Wendland, W.L.: Integral potential method for a transmission problem with Lipschitz interface in \(R^3\) for the Stokes and Darcy-Forchheimer-Brinkman PDE systems. Z. Angew. Math. Phys. 67, paper no. 116 (2016)

  11. Kohr, M., Lanza de Cristoforis, M., Wendland, W..L.: On the Robin-transmission boundary value problems for the nonlinear Darcy-Forchheimer-Brinkman and Navier-Stokes systems. J. Math. Fluid Mech 18, 293–329 (2016)

    Article  MathSciNet  Google Scholar 

  12. Kohr, M., Lanza de Cristoforis, M., Wendland, W..L.: Boundary value problems of Robin type for the Brinkman and Darcy-Forchheimer-Brinkman systems in Lipschitz domains. J. Math. Fluid Mech 16, 595–630 (2014)

    Article  MathSciNet  Google Scholar 

  13. Gutt, R., Kohr, M., Mikhailov, S.E., Wendland, W.L.: On the mixed problem for the semilinear Darcy-Forchheimer-Brinkman PDE system in Besov spaces on creased Lipschitz domains. Math. Meth. Appl. Sci. 40, 7780–7829 (2017)

    Article  MathSciNet  Google Scholar 

  14. Medková, D.: The Robin problem for the Brinkman system and for the Darcy-Forchheimer-Brinkman system. Z.Angew. Math. Phys. 69, article 132 (2018)

  15. Choe, H.J., Kozono, H.: The Stokes problem for Lipschitz domains. Indiana Univ. Math. J. 51, 1235–1260 (2002)

    Article  MathSciNet  Google Scholar 

  16. Kohr, M., Pop, I.: Viscous Incompressible Flow for Low Reynolds Numbers. WIT Press, Southampton (2004)

    MATH  Google Scholar 

  17. Shen, Z.: Resolvent estimates in \(L^p\) for the Stokes operator in Lipschitz domains. Arch. Rational Mech. Anal. 205, 395–424 (2012)

    Article  MathSciNet  Google Scholar 

  18. Shibata, Y., Shimizu, S.: On a resolvent estimate for the Stokes system with Neumann boundary condition. Diff. Int. Equ. 16, 385–426 (2003)

    MathSciNet  MATH  Google Scholar 

  19. Shibata, Y., Shimizu, S.: On the \(L_p -L_q\) maximal regularity of the Neumann problem for the Stokes equations in a bounded domain. J. reine angew. Math. 615, 157–209 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Mitrea, D.: Distributions, Partial differential equations, and harmonic analysis. Springer, New York (2013)

    Book  Google Scholar 

  21. Varnhorn, W.: The Stokes equations. Akademie Verlag, Berlin (1994)

    MATH  Google Scholar 

  22. Kohr, M., Medková, D., Wendland, W.L.: On the Oseen-Brinkman flow around an \((m-1)\)-dimensional solid obstacle. Monatsh. Math. 183, 269–302 (2017)

    Article  MathSciNet  Google Scholar 

  23. Maremonti, P., Russo, R., Starita, G.: On the Stokes equations: the boundary value problem. in Maremonti P.: Advances in Fluid Dynamics. Dipartimento di Matematica Seconda Università di Napoli (1999)

  24. Varnhorn, W.: The boundary value problems of the Stokes resolvent equations in \(n\) dimensions. Math. Nachr. 269–270, 210–230 (2004)

    Article  MathSciNet  Google Scholar 

  25. Medková, D.: The Laplace equation. Springer, Cham (2018)

    Book  Google Scholar 

  26. Kress, R.: Linear Integral Equations. Springer, USA (1989)

    Book  Google Scholar 

  27. Kohr, M., Lanza de Cristoforis, M., Wendland, W. L.: Nonlinear Neumann–transmission problems for Stokes and Brinkman equations on Euclidean Lipschitz domains. Potential Anal. 38 , 1123–1171 (2013)

  28. Maz’ya, V., Mitrea, M., Shaposhnikova, T.: The inhomogenous Dirichlet problem for the Stokes system in Lipschitz domains with unit normal close to \(VMO^*\). Funct. Anal. Appl. 43, 217–235 (2009)

    Article  MathSciNet  Google Scholar 

  29. Triebel, H.: Theory of function spaces III. Birkhäuser, Basel (2006)

    MATH  Google Scholar 

  30. Triebel, H.: Theory of function spaces. Birkhäuser, Basel - Boston - Stuttgart (1983)

    Book  Google Scholar 

  31. Grisvard, P.: Elliptic problems in nonsmooth domains. SIAM, Philadelphia (2011)

    Book  Google Scholar 

  32. Verchota, G.: Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains. J. Funct. Anal. 59, 572–611 (1984)

    Article  MathSciNet  Google Scholar 

  33. Gilberg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Springer, Berlin Heidelberg (2001)

    Book  Google Scholar 

  34. Lanza de Cristoforis, M., Rossi, L.: Real analytic dependence of simple and double layer potentials upon perturbation of the support and the density. J. Int. Equ. Appl 16, 137–174 (2004)

    MathSciNet  MATH  Google Scholar 

  35. Dobrowolski, M.: Angewandte functionanalysis. Sobolev-Räume und elliptische Differentialgleichungen. Springer, Berlin Heidelberg, Functionanalysis (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dagmar Medková.

Ethics declarations

Conflicts of interest

The author declares no conflict of interest in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by RVO: 67985840.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medková, D. Classical solutions of the Robin problem for the Darcy-Forchheimer-Brinkman system. Z. Angew. Math. Phys. 72, 44 (2021). https://doi.org/10.1007/s00033-021-01479-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-021-01479-w

Keywords

Mathematics Subject Classification

Navigation