Skip to main content
Log in

The Navier–Stokes flow around the linearly growing steady state with bounded disturbance

  • Published:
ANNALI DELL'UNIVERSITA' DI FERRARA Aims and scope Submit manuscript

Abstract

The existence and uniqueness of locally-in-time solutions of the Cauchy problem to the incompressible Navier–Stokes equations is established. The initial velocity U 0 is of the form U 0(x) := u 0(x)−M x, where M is a real-valued matrix and u 0 is a bounded smooth function. Our solutions satisfy the equations in the classical sense, even though the semigroup is not analytic. If M is skew-symmetric, and u 0 is small and a sum of trigonometric functions, then obtained solutions can be extended globally-in-time with the exponential decay in time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cannon J.R., Knightly G.H.: A note on the Cauchy problem for the Navier–Stokes equations. SIAM J. Appl. Math. 18, 641–644 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cannone M.: Ondelettes, Paraproduits et Navier–Stokes, Diderot Editeur. Arts et Sciences, Paris-New York-Amsterdam (1995)

    Google Scholar 

  3. Fujita H., Kato T.: On the Navier–Stokes initial value problem . I. Arch. Rat. Mech. Anal. 16, 269–315 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  4. Fushchich, W.I., Shtelen, W.M., Serov, N.I.: Symmetry Analysis and Exact Solutions of Equations of Bilinear Mathematical Physics.Mathematics and Its Applications. vol. 246, Kluwer, Dordrecht (1993)

  5. Giga Y.: Solutions for semilinear parabolic equations in L p and regularity of weak solutions of the Navier–Stokes system. J. Differ. Equ. 62, 186–212 (1986)

    Article  MathSciNet  Google Scholar 

  6. Giga, Y., Inui, K., Mahalov, A., Matsui, S.: Uniform local solvability for the Navier–Stokes equations with the Coriolis force. In: Giga, Y., Kozono, H., Okamoto, H., Shibata, Y. (eds.) Kyoto Conference on the Navier–Stokes Equations and Their Applications. RIMS Kôkyûroku Bessatsu, vol. B1, pp. 187–198 (2007)

  7. Giga Y., Inui K., Mahalov A., Saal J.: Global solvability of the Navier–Stokes equations in spaces based on sum-closed frequency sets. Adv. Differ. Equ. 12, 721–736 (2007)

    MATH  MathSciNet  Google Scholar 

  8. Giga Y., Inui K., Matsui S.: On the Cauchy problem for the Navier–Stokes equations with nondecaying initial data. Quaderni di Matematica 4, 28–68 (1999)

    MathSciNet  Google Scholar 

  9. Giga Y., Matsui S., Sawada O.: Global existence of two-dimensional Navier–Stokes flow with nondecaying initial velocity. J. Math. Fluid Mech. 3, 302–315 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Giga Y., Miyakawa T.: Solutions in L r of the Navier–Stokes initial value problem. Arch. Ration. Mech. Anal. 89, 267–281 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  11. Giga, Y., Sawada, O.: On regularizing-decay rate estimates for solutions to the Navier–Stokes initial value problem. Nonlinear Anal. Appl.: to V. Lakshmikantham on his 80th birthday. 1, 549–562 (2003)

  12. Hieber, M., Rhandi, A., Sawada, O.: The Navier–Stokes flow for globally Lipschitz continuous initial data. In : Giga, Y., Kozono, H., Okamoto, H., Shibata, Y. (eds.) Kyoto Conference on the Navier–Stokes Equations and their Applications. RIMS Kôkyûroku Bessatsu, vol. B1, pp. 159–165 (2007)

  13. Hieber M., Sawada O.: The Navier–Stokes equations in \({\mathbb{R}^n}\) with linearly growing initial data. Arch. Ration. Mech. Anal. 175, 269–285 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kato J.: The uniqueness of nondecaying solutions for the Navier–Stokes equations. Arch. Ration. Mech. Anal. 169, 159–175 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kato T.: Strong L p-solutions of Navier–Stokes equations in \({\mathbb{R}^n}\) with applications to weak solutions. Math. Z. 187, 471–480 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kato T., Fujita H.: On the nonstationary Navier–Stokes system. Rend. Sem. Mat. Univ. Padova 32, 243–260 (1962)

    MATH  MathSciNet  Google Scholar 

  17. Kim N., Chae D.: On the uniqueness of the unbounded classical solutions of the Navier–Stokes and associated equations. J. Math. Anal. Appl. 186, 91–96 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  18. Koch H., Tataru D.: Well-posedness for the Navier–Stokes equations. Adv. Math. 157, 22–35 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Leray J.: Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’Hydrodynamique. J. Math. Pures Appl. 12, 1–82 (1933)

    MATH  MathSciNet  Google Scholar 

  20. Leray J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lunardi A., Metafune G.: On the domains of elliptic operators in L 1. Differ. Integral Equ. 17, 73–97 (2004)

    MATH  MathSciNet  Google Scholar 

  22. Majda A.: Vorticity and the mathematical theory of incompressible fluid flow. Comm. Pure Appl. Math. 34, 187–220 (1986)

    Article  MathSciNet  Google Scholar 

  23. Maremonti, P.: Stokes and Navier–Stokes problem in the half-space: existence and uniqueness of solutions non converging to a limit at infinity (preprint)

  24. Maremonti, P.: On the uniqueness of bounded weak solutions to the Navier–Stokes Cauchy problem. In: Seconda Università degli Studi di Napoli, Dipartimento di Mathematica. no. 9 (2008) (preprint)

  25. Metafune G., Prüss J., Rhandi A., Schnaubelt R.: The domain of the Ornstein-Uhlenbeck operator on an L p-space with invariant measure. Ann. Sc. Norm. Super. Pisa Cl. Sci. 1, 471–485 (2002)

    MATH  MathSciNet  Google Scholar 

  26. Okamoto H.: A uniqueness theorem for the unbounded classical solution of the nonstationary Navier–Stokes equations in \({\mathbb{R}^3}\) . J. Math. Anal. Appl. 181, 191–218 (1994)

    Article  Google Scholar 

  27. Sawada O.: On time-local solvability of the Navier–Stokes equations in Besov spaces. Adv. Differ. Equ. 8, 385–412 (2003)

    MATH  MathSciNet  Google Scholar 

  28. Sawada O., Taniuchi Y.: On the Boussinesq flow with nondecaying initial data. Funkcial. Ekvac. 47, 225–250 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  29. Sawada O., Taniuchi Y.: A remark on L solutions to the 2-D Navier–Stokes equations. J. Math. Fluid Mech. 9, 533–542 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  30. Sawada, O., Usui, T.: The Navier–Stokes equations for linearly growing velocity with nondecaying initial disturbance (preprint)

  31. Triebel H.: Theory of Function Spaces. Birkhäuser, Boston (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Okihiro Sawada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sawada, O. The Navier–Stokes flow around the linearly growing steady state with bounded disturbance. Ann. Univ. Ferrara 55, 367–376 (2009). https://doi.org/10.1007/s11565-009-0078-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11565-009-0078-0

Keywords

Mathematics Subject Classification (2000)

Navigation