Skip to main content

Advertisement

Log in

A multicentric study of radiomics and artificial intelligence analysis on contrast-enhanced mammography to identify different histotypes of breast cancer

  • Breast Radiology
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Objective

To evaluate the performance of radiomic analysis on contrast-enhanced mammography images to identify different histotypes of breast cancer mainly in order to predict grading, to identify hormone receptors, to discriminate human epidermal growth factor receptor 2 (HER2) and to identify luminal histotype of the breast cancer.

Methods

From four Italian centers were recruited 180 malignant lesions and 68 benign lesions. However, only the malignant lesions were considered for the analysis. All patients underwent contrast-enhanced mammography in cranium caudal (CC) and medium lateral oblique (MLO) view. Considering histological findings as the ground truth, four outcomes were considered: (1) G1 + G2 vs. G3; (2) HER2 + vs. HER2 − ; (3) HR + vs. HR − ; and (4) non-luminal vs. luminal A or HR + /HER2−  and luminal B or HR + /HER2 + . For multivariate analysis feature selection, balancing techniques and patter recognition approaches were considered.

Results

The univariate findings showed that the diagnostic performance is low for each outcome, while the results of the multivariate analysis showed that better performances can be obtained. In the HER2 + detection, the best performance (73% of accuracy and AUC = 0.77) was obtained using a linear regression model (LRM) with 12 features extracted by MLO view. In the HR + detection, the best performance (77% of accuracy and AUC = 0.80) was obtained using a LRM with 14 features extracted by MLO view. In grading classification, the best performance was obtained by a decision tree trained with three predictors extracted by MLO view reaching an accuracy of 82% on validation set. In the luminal versus non-luminal histotype classification, the best performance was obtained by a bagged tree trained with 15 predictors extracted by CC view reaching an accuracy of 94% on validation set.

Conclusions

The results suggest that radiomics analysis can be effectively applied to design a tool to support physician decision making in breast cancer classification. In particular, the classification of luminal versus non-luminal histotypes can be performed with high accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data are reported in the manuscript and at link https://zenodo.org/record/8392919

References

  1. Patel BK, Lobbes M, Lewin J (2018) Contrast enhanced spectral mammography: a review. Semin Ultrasound CT MRI 39:70–79. https://doi.org/10.1053/j.sult.2017.08.005

    Article  Google Scholar 

  2. Heywang-Köbrunner S, Viehweg P, Heinig A, Küchler C (1997) Contrast-enhanced MRI of the breast: accuracy, value, controversies, solutions. Eur J Radiol 24:94–108. https://doi.org/10.1016/s0720-048x(96)01142-4

    Article  PubMed  Google Scholar 

  3. Satake H, Ishigaki S, Ito R, Naganawa S (2022) Radiomics in breast MRI: current progress toward clinical application in the era of artificial intelligence. Radiol Med 127(1):39–56. https://doi.org/10.1007/s11547-021-01423-y

    Article  PubMed  Google Scholar 

  4. Dromain C, Balleyguier C, Muller S, Mathieu MC, Rochard F, Opolon P, Sigal R (2006) Evaluation of tumor angiogenesis of breast carcinoma using contrast-enhanced digital mammography. AJR Am J Roentgenol 187:528–537. https://doi.org/10.2214/AJR.05.1944

    Article  Google Scholar 

  5. Dromain C, Balleyguier C, Adler G, Garbay JR, Delalogeet S (2009) Contrast-enhanced digital mammography. Eur J Radiol 69:34–42. https://doi.org/10.1016/j.ejrad.2008.07.035

    Article  PubMed  Google Scholar 

  6. Li L, Roth R, Germaine P, Ren S, Lee M, Hunter K, Tinney E, Liao L (2017) Contrast-enhanced spectral mammography (CESM) versus breast magnetic resonance imaging (MRI): a retrospective comparison in 66 breast lesions. Diagn Interv Imaging 98:113–123. https://doi.org/10.1016/j.diii.2016.08.013

    Article  CAS  PubMed  Google Scholar 

  7. Fallenberg EM, Dromain C, Diekmann F, Engelken F, Krohn M, Singh JM, Ingold-Heppner B, Winzer KJ, Bick U, Renz DM (2014) Contrast-enhanced spectral mammography versus MRI: initial results in the detection of breast cancer and assessment of tumour size. Eur Radiol 24:256–264. https://doi.org/10.1007/s00330-013-3007-7

    Article  CAS  PubMed  Google Scholar 

  8. Lewin JM, Isaacs PK, Vance V, Larke FJ (2003) Dual-energy contrast-enhanced digital subtraction mammography: feasibility. Radiology 229:261–268. https://doi.org/10.1148/radiol.2291021276

    Article  PubMed  Google Scholar 

  9. Jochelson MS, Dershaw DD, Sung JS, Heerdt AS, Thornton C, Moskowitz CS, Ferrara J, Morris EA (2013) Bilateral contrast-enhanced dual-energy digital mammography: feasibility and comparison with conventional digital mammography and MR imaging in women with known breast carcinoma. Radiology 266:743–751. https://doi.org/10.1148/radiol.12121084

    Article  PubMed  Google Scholar 

  10. Tagliafico AS, Bignotti B, Rossi F, Signori A, Sormani MP, Valdora F, Calabrese M, Houssami N (2016) Diagnostic performance of contrast-enhanced spectral mammography: systematic review and meta-analysis. Breast 28:13–19. https://doi.org/10.1016/j.breast.2016.04.008

    Article  PubMed  Google Scholar 

  11. Liney GP, Sreenivas M, Gibbs P, Garcia-Alvarez R, Turnbull LW (2006) Breast lesion analysis of shape technique: semiautomated vs. manual morphological description. J. Magn. Reason. Imaging 23:493–498. https://doi.org/10.1002/jmri.20541

    Article  Google Scholar 

  12. Jochelson MS, Lobbes MBI (2021) Contrast-enhanced mammography: state of the art. Radiology 299(1):36–48. https://doi.org/10.1148/radiol.2021201948

    Article  PubMed  Google Scholar 

  13. Covington MF, Salmon S, Weaver BD, Fajardo LL (2024) State-of-the-art for contrast-enhanced mammography. Br J Radiol. https://doi.org/10.1093/bjr/tqae017

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fusco R, Sansone M, Granata V, Grimm R, Pace U, Delrio P, Tatangelo F, Botti G, Avallone A, Pecori B, Petrillo A (2019) Diffusion and perfusion MR parameters to assess preoperative short-course radiotherapy response in locally advanced rectal cancer: a comparative explorative study among Standardized Index of Shape by DCE-MRI, intravoxel incoherent motion- and diffusion kurtosis imaging-derived parameters. Abdom Radiol (NY) 44(11):3683–3700. https://doi.org/10.1007/s00261-018-1801-z

    Article  PubMed  Google Scholar 

  15. Granata V, Grassi R, Fusco R, Setola SV, Palaia R, Belli A, Miele V, Brunese L, Grassi R, Petrillo A, Izzo F (2020) Assessment of ablation therapy in pancreatic cancer: the radiologist’s challenge. Front Oncol 27(10):560952. https://doi.org/10.3389/fonc.2020.560952

    Article  Google Scholar 

  16. Granata V, Fusco R, Risi C, Ottaiano A, Avallone A, De Stefano A, Grimm R, Grassi R, Brunese L, Izzo F, Petrillo A (2020) Diffusion-weighted MRI and diffusion kurtosis imaging to detect RAS mutation in colorectal liver metastasis. Cancers (Basel) 12(9):2420. https://doi.org/10.3390/cancers12092420

    Article  CAS  PubMed  Google Scholar 

  17. Granata V, Fusco R, Avallone A, Catalano O, Filice F, Leongito M, Palaia R, Izzo F, Petrillo A (2017) Major and ancillary magnetic resonance features of LI-RADS to assess HCC: an overview and update. Infect Agent Cancer 28(12):23. https://doi.org/10.1186/s13027-017-0132-y

    Article  Google Scholar 

  18. Granata V, Fusco R, Sansone M, Grassi R, Maio F, Palaia R, Tatangelo F, Botti G, Grimm R, Curley S, Avallone A, Izzo F, Petrillo A (2020) Magnetic resonance imaging in the assessment of pancreatic cancer with quantitative parameter extraction by means of dynamic contrast-enhanced magnetic resonance imaging, diffusion kurtosis imaging and intravoxel incoherent motion diffusion-weighted imaging. Therap Adv Gastroenterol 21(13):1756284819885052. https://doi.org/10.1177/1756284819885052

    Article  CAS  Google Scholar 

  19. Cholangiocarcinoma Working Group (2020) Italian clinical practice guidelines on cholangiocarcinoma - Part I: classification, diagnosis and staging. Dig Liver Dis 52(11):1282–1293. https://doi.org/10.1016/j.dld.2020.06.045

    Article  Google Scholar 

  20. Granata V, Fusco R, Setola SV, Picone C, Vallone P, Belli A, Incollingo P, Albino V, Tatangelo F, Izzo F, Petrillo A (2019) Microvascular invasion and grading in hepatocellular carcinoma: correlation with major and ancillary features according to LIRADS. Abdom Radiol (NY) 44(8):2788–2800. https://doi.org/10.1007/s00261-019-02056-6

    Article  PubMed  Google Scholar 

  21. Fusco R, Sansone M, Filice S, Carone G, Amato DM, Sansone C, Petrillo A (2016) Pattern recognition approaches for breast cancer DCE-MRI classification: a systematic review. J Med Biol Eng 36:449–459. https://doi.org/10.1007/s40846-016-0163-7

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fusco R, Piccirillo A, Sansone M, Granata V, Rubulotta MR, Petrosino T, Barretta ML, Vallone P, Di Giacomo R, Esposito E et al (2021) Radiomics and artificial intelligence analysis with textural metrics extracted by contrast-enhanced mammography in the breast lesions classification. Diagnostics 30:815. https://doi.org/10.3390/diagnostics11050815

    Article  Google Scholar 

  23. Fusco R, Piccirillo A, Sansone M, Granata V, Vallone P, Barretta ML, Petrosino T, Siani C, Di Giacomo R, Petrillo A et al (1880) Radiomic and artificial intelligence analysis with textural metrics, morphological and dynamic perfusion features extracted by dynamic contrast-enhanced magnetic resonance imaging in the classification of breast lesions. Appl Sci 2021:11. https://doi.org/10.3390/app11041880

    Article  CAS  Google Scholar 

  24. Fanizzi A, Losurdo L, Basile TMA, Bellotti R, Bottigli U, Delogu P, Diacono D, Didonna V, Fausto A, Lombardi A et al (2019) Fully automated support system for diagnosis of breast cancer in contrast-enhanced spectral mammography images. J Clin Med 8:891. https://doi.org/10.3390/jcm8060891

    Article  PubMed  PubMed Central  Google Scholar 

  25. Massafra R, Bove S, Lorusso V, Biafora A, Comes MC, Didonna V, Diotaiuti S, Fanizzi A, Nardone A, Nolasco A et al (2021) Radiomic feature reduction approach to predict breast cancer by contrast-enhanced spectral mammography images. Diagnostics 11:684. https://doi.org/10.3390/diagnostics11040684

    Article  PubMed  PubMed Central  Google Scholar 

  26. La Forgia D, Fanizzi A, Campobasso F, Bellotti R, Didonna V, Lorusso V, Moschetta M, Massafra R, Tamborra P, Tangaro S et al (2020) Radiomic analysis in contrast-enhanced spectral mammography for predicting breast cancer histological outcome. Diagnostics 10:708. https://doi.org/10.3390/diagnostics10090708

    Article  PubMed  PubMed Central  Google Scholar 

  27. Petrillo A, Fusco R, Di Bernardo E, Petrosino T, Barretta ML, Porto A, Granata V, Di Bonito M, Fanizzi A, Massafra R, Petruzzellis N, Arezzo F, Boldrini L, La Forgia D (2022) Prediction of breast cancer histological outcome by radiomics and artificial intelligence analysis in contrast-enhanced mammography. Cancers (Basel) 14(9):2132. https://doi.org/10.3390/cancers14092132

    Article  CAS  PubMed  Google Scholar 

  28. van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-Tan RGH, Fillon-Robin JC, Pieper S, Aerts HJWL (2017) Computational radiomics system to decode the radiographic phenotype. Can Res 77(21):e104–e107. https://doi.org/10.1158/0008-5472.CAN-17-0339

    Article  CAS  Google Scholar 

  29. Chen Z, Lin T, Xia X, Xu H, Ding S (2017) A synthetic neighborhood generation based ensemble learning for the imbalanced data classification. Appl Intell 48:2441–2457

    Article  Google Scholar 

  30. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B Statist Methodol. 58:267–288

    Article  Google Scholar 

  31. Fusco R, Sansone M, Filice S, Carone G, Amato DM, Sansone C, Petrillo A (2016) Pattern recognition approaches for breast cancer DCE-MRI classification: a systematic review. J Med Biol Eng 36:449–459

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sinha S, Lucas-Quesada FA, DeBruhl ND, Sayre J, Farria D, Gorczyca DP, Bassett LW (1997) Multifeature analysis of Gd-enhanced MR images of breast lesions. J Magn Reson Imaging 7:1016–1026. https://doi.org/10.1002/jmri.1880070613

    Article  CAS  PubMed  Google Scholar 

  33. Vomweg TW, Buscema PM, Kauczor HU, Teifke A, Intraligi M, Terzi S, Heussel CP, Achenbach T, Rieker O, Mayer D et al (2003) Improved artificial neural networks in prediction of malignancy of lesions in contrast-enhanced MR-mammography. Med Phys 30:2350–2359. https://doi.org/10.1118/1.1600871

    Article  CAS  PubMed  Google Scholar 

  34. Sathya DJ, Geetha K (2013) Mass classification in breast DCE-MR images using an artificial neural network trained via a bee colony optimization algorithm. Science 39:294. https://doi.org/10.2306/scienceasia1513-1874.2013.39.294

    Article  Google Scholar 

  35. Sathya J, Geetha K (2013) Experimental investigation of classification algorithms for predicting lesion type on breast DCE-MR images. Int J Comput Appl 82:1–8. https://doi.org/10.5120/14101-2125

    Article  Google Scholar 

  36. Fusco R, Sansone M, Petrillo A, Sansone C (2012) A Multiple classifier system for classification of breast lesions using dynamic and morphological features in DCE-MRI. Comput Vis 7626:684–692

    Google Scholar 

  37. Degenhard A, Tanner C, Hayes C, Hawkes DJO, Leach M (2002) The UK MRI breast screening study comparison between radiological and artificial neural network diagnosis in clinical screening. Physiol Meas 23:727–739. https://doi.org/10.1088/0967-3334/23/4/311

    Article  CAS  PubMed  Google Scholar 

  38. Fusco R, Sansone M, Sansone C, Petrillo A (2012) Segmentation and classification of breast lesions using dynamic and textural features in dynamic contrast enhanced-magnetic resonance imaging. In: Proceedings of the 25th IEEE International Sympo-sium on Computer-Based Medical Systems (CBMS), Rome, Italy, 20–22; pp 1–4

  39. Abdolmaleki P, Buadu LD, Naderimansh H (2001) Feature extraction and classification of breast cancer on dynamic magnetic resonance imaging using artificial neural network. Cancer Lett 171:183–191. https://doi.org/10.1016/s0304-3835(01)00508-0

    Article  CAS  PubMed  Google Scholar 

  40. Agner SC, Soman S, Libfeld E, McDonald M, Thomas K, Englander S, Rosen MA, Chin D, Nosher J, Madabhushi A (2010) Textural kinetics: a novel dynamic contrast-enhanced (DCE)-MRI feature for breast lesion classification. J Digit Ima-ging 24:446–463. https://doi.org/10.1007/s10278-010-9298-1

    Article  Google Scholar 

  41. Levman J, Leung T, Causer P, Plewes D, Martel AL (2008) Classification of dynamic contrast-enhanced magnetic resonance breast lesions by support vector machines. IEEE Trans Med Imaging 27:688–696. https://doi.org/10.1109/TMI.2008.916959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rotili A, Trimboli RM, Penco S, Pesapane F, Tantrige P, Cassano E, Sardanelli F (2020) Double reading of diffusion-weighted magnetic resonance imaging for breast cancer detection. Breast Cancer Res Treat 180:111–120. https://doi.org/10.1007/s10549-019-05519-y

    Article  CAS  PubMed  Google Scholar 

  43. Pesapane F, Rotili A, Penco S, Nicosia L, Cassano E (2022) Digital twins in radiology. J Clin Med 11:6553. https://doi.org/10.3390/jcm11216553

    Article  PubMed  PubMed Central  Google Scholar 

  44. La Forgia D, Fanizzi A, Campobasso F, Bellotti R, Didonna V, Lorusso V, Moschetta M, Massafra R, Tam-borra P, Tangaro S et al (2020) Radiomic analysis in contrast-enhanced spectral mammography for predicting breast cancer histological outcome. Diagnostics 10:708. https://doi.org/10.3390/diagnostics10090708

    Article  PubMed  PubMed Central  Google Scholar 

  45. Marino MA, Leithner D, Sung J, Avendano D, Morris EA, Pinker K, Jochelson MS (2020) Radiomics for tumor characterization in breast cancer patients: a feasibility study comparing contrast-enhanced mammography and magnetic reso-nance imaging. Diagnostics 10:492. https://doi.org/10.3390/diagnostics10070492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Losurdo L, Fanizzi A, Basile TMA, Bellotti R, Bottigli U, Dentamaro R, Didonna V, Lorusso V, Massafra R, Tam-borra P et al (2019) Radiomics analysis on contrast-enhanced spectral mammography images for breast cancer diagnosis: a pilot study. Entropy 21:1110. https://doi.org/10.3390/e21111110

    Article  PubMed Central  Google Scholar 

  47. Ahmed SA, Samy M, Ali AM, Hassan RA (2022) Architectural distortion outcome: digital breast tomosynthesis-detected versus digital mammography-detected. Radiol Med 127(1):30–38. https://doi.org/10.1007/s11547-021-01419-8

    Article  PubMed  Google Scholar 

  48. Sansone M, Fusco R, Grassi F, Gatta G, Belfiore MP, Angelone F, Ricciardi C, Ponsiglione AM, Amato F, Galdiero R, Grassi R, Granata V, Grassi R (2023) Machine learning approaches with textural features to calculate breast density on mammography. Curr Oncol 30(1):839–853. https://doi.org/10.3390/curroncol30010064

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sansone M, Grassi R, Belfiore MP, Gatta G, Grassi F, Pinto F, La Casella GV, Fusco R, Cappabianca S, Granata V, Grassi R (2021) Radiomic features of breast parenchyma: assessing differences between FOR PROCESSING and FOR PRESENTATION digital mammography. Insights Imaging 12(1):147. https://doi.org/10.1186/s13244-021-01093-4

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sansone M, Marrone S, Di Salvio G, Belfiore MP, Gatta G, Fusco R, Vanore L, Zuiani C, Grassi F, Vietri MT, Granata V, Grassi R (2022) Comparison between two packages for pectoral muscle removal on mammographic images. Radiol Med 127(8):848–856. https://doi.org/10.1007/s11547-022-01521-5

    Article  PubMed  PubMed Central  Google Scholar 

  51. Neri E, Granata V, Montemezzi S, Belli P, Bernardi D, Brancato B, Caumo F, Calabrese M, Coppola F, Cossu E, Faggioni L, Frigerio A, Fusco R, Petrillo A, Girardi V, Iacconi C, Marini C, Marino MA, Martincich L, Nori J, Pediconi F, Saguatti G, Sansone M, Sardanelli F, Scaperrotta GP, Zuiani C, Ciaghi E, Montella M, Miele V, Grassi R (2022) Structured reporting of x-ray mammography in the first diagnosis of breast cancer: a Delphi consensus proposal. Radiol Med 127(5):471–483. https://doi.org/10.1007/s11547-022-01478-5

    Article  PubMed  PubMed Central  Google Scholar 

  52. Fusco R, Raiano N, Raiano C, Maio F, Vallone P, Mattace Raso M, Setola SV, Granata V, Rubulotta MR, Barretta ML, Petrosino T, Petrillo A (2020) Evaluation of average glandular dose and investigation of the relationship with compressed breast thickness in dual energy contrast enhanced digital mammography and digital breast tomosynthesis. Eur J Radiol 126:108912. https://doi.org/10.1016/j.ejrad.2020.108912

    Article  PubMed  Google Scholar 

  53. Brancato V, Brancati N, Esposito G, La Rosa M, Cavaliere C, Allarà C, Romeo V, De Pietro G, Salvatore M, Aiello M, Sangiovanni M (2023) A two-step feature selection radiomic approach to predict molecular outcomes in breast cancer. Sensors (Basel) 23(3):1552. https://doi.org/10.3390/s23031552

    Article  CAS  PubMed  Google Scholar 

  54. Nicosia L, Pesapane F, Bozzini AC, Latronico A, Rotili A, Ferrari F, Signorelli G, Raimondi S, Vignati S, Gaeta A, Bellerba F, Origgi D, De Marco P, Castiglione Minischetti G, Sangalli C, Montesano M, Palma S, Cassano E (2023) Prediction of the malignancy of a breast lesion detected on breast ultrasound: radiomics applied to clinical practice. Cancers (Basel) 15(3):964. https://doi.org/10.3390/cancers15030964

    Article  PubMed  Google Scholar 

  55. Cui H, Sun Y, Zhao D, Zhang X, Kong H, Hu N, Wang P, Zuo X, Fan W, Yao Y, Fu B, Tian J, Wu M, Gao Y, Ning S, Zhang L (2023) Radiogenomic analysis of prediction HER2 status in breast cancer by linking ultrasound radiomic feature module with biological functions. J Transl Med 21(1):44. https://doi.org/10.1186/s12967-022-03840-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li Y, Fan Y, Xu D, Li Y, Zhong Z, Pan H, Huang B, Xie X, Yang Y, Liu B (2023) Deep learning radiomic analysis of DCE-MRI combined with clinical characteristics predicts pathological complete response to neoadjuvant chemotherapy in breast cancer. Front Oncol 5(12):1041142. https://doi.org/10.3389/fonc.2022.1041142

    Article  Google Scholar 

  57. Tagliafico AS, Campi C, Bianca B, Bortolotto C, Buccicardi D, Francesca C, Prost R, Rengo M, Faggioni L (2022) Blockchain in radiology research and clinical practice: current trends and future directions. Radiol Med 127(4):391–397. https://doi.org/10.1007/s11547-022-01460-1

    Article  PubMed  PubMed Central  Google Scholar 

  58. Scapicchio C, Gabelloni M, Barucci A, Cioni D, Saba L, Neri E (2021) A deep look into radiomics. Radiol Med 126(10):1296–1311. https://doi.org/10.1007/s11547-021-01389-x

    Article  PubMed  PubMed Central  Google Scholar 

  59. Sardanelli F, Trimboli RM, Houssami N, Gilbert FJ, Helbich TH, Álvarez Benito M, Balleyguier C, Bazzocchi M, Bult P, Calabrese M, Camps Herrero J, Cartia F, Cassano E, Clauser P, Cozzi A, de Andrade DA, de Lima Docema MF, Depretto C, Dominelli V, Forrai G, Girometti R, Harms SE, Hilborne S, Ienzi R, Lobbes MBI, Losio C, Mann RM, Montemezzi S, Obdeijn IM, Ozcan UA, Pediconi F, Pinker K, Preibsch H, Raya Povedano JL, Sacchetto D, Scaperrotta GP, Schiaffino S, Schlooz M, Szabó BK, Taylor DB, Ulus ÖS, Van Goethem M, Veltman J, Weigel S, Wenkel E, Zuiani C, Di Leo G (2022) Magnetic resonance imaging before breast cancer surgery: results of an observational multicenter international prospective analysis (MIPA). Eur Radiol 32(3):1611–1623. https://doi.org/10.1007/s00330-021-08240-x

    Article  PubMed  Google Scholar 

  60. Fusco R, Granata V, Maio F, Sansone M, Petrillo A (2020) Textural radiomic features and time-intensity curve data analysis by dynamic contrast-enhanced MRI for early prediction of breast cancer therapy response: preliminary data. Eur Radiol Exp 4(1):8. https://doi.org/10.1186/s41747-019-0141-2

    Article  PubMed  PubMed Central  Google Scholar 

  61. Feng S, Yin J (2022) Radiomics of dynamic contrast-enhanced magnetic resonance imaging parametric maps and apparent diffusion coefficient maps to predict Ki-67 status in breast cancer. Front Oncol 25(12):847880. https://doi.org/10.3389/fonc.2022.847880

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the Radiomics Group of “Alleanza Contro il Cancro” and the Italian Ministry of Health.

Funding

This research was funded by the Italian Ministry of Health through the Project RCR-2021–23671213 of the “Alleanza Contro il Cancro (ACC)” network.

Author information

Authors and Affiliations

Authors

Contributions

Each author contributed for methodology, enrollment of patient and investigation. Each author written, revised and approved the manuscript.

Corresponding author

Correspondence to Antonella Petrillo.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Roberta Fusco and Vincenza Granata are editors in Radiologia Medica journal.

Ethical approval

This multicenter retrospective study is performed according to the rules distributed by the local institutional review board that approved the study.

Informed consent

All patients enrolled signed the informed consent.

Institutional review board

The study was conducted according to the guidelines of the Declaration of Helsinki, and approved by the Ethics Committee National Cancer Institute of Naples Pascale Foundation. The authorization number is: Executive Resolution No. 868 of 03/09/2020.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Roberta Fusco and Vincenza Granata are editors in Radiologia Medica journal.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrillo, A., Fusco, R., Petrosino, T. et al. A multicentric study of radiomics and artificial intelligence analysis on contrast-enhanced mammography to identify different histotypes of breast cancer. Radiol med (2024). https://doi.org/10.1007/s11547-024-01817-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11547-024-01817-8

Keywords

Navigation