Skip to main content
Log in

Assessment of Late Blight Resistance in Indian Potato Cultivars and Associated Biochemical Changes During Disease Development

  • Published:
Potato Research Aims and scope Submit manuscript

Abstract

The present study was focused on screening of Indian potato cultivars [‘Kufri Khyati’ (KK), ‘Kufri Chipsona 1’ (CS-1), and ‘Kufri Pukhraj’ (KP)] for late blight resistance followed by an investigation of biochemical changes during infection. The varied level of disease resistance in potato cultivars was found to be associated with tested biochemical markers. Late blight progression was found to reduce total protein content and increase proline accumulation prominently in sensitive (KP) and moderately sensitive (CS-1) cultivars, whereas minimal changes were observed in the resistant cultivar (KK). The highest melonaldehyde (MDA) content (a marker of lipid peroxidation) was recorded in KP, where about 93% of plants showed necrosis after 7 days of inoculation. The activities of antioxidant enzymes also varied in potato cultivars during pathogenic interaction. The superoxide dismutase activity was observed to increase in all the cultivars till day 4 of inoculation. After that, it remained constant in cultivar KK while a decrease in the activity was observed in cultivars KP and CS-1. Although, an increment in the peroxidase and ascorbate peroxidase activities were observed in KK, yet catalase, glutathione reductase, and polyphenol peroxidase activities were found to decrease during the early phases of infection. Throughout the experiment, the highest levels of activities of all the antioxidant enzymes studied were recorded in cultivar KK, showing their significant role in disease resistance. The identified blight resistance linked biochemical markers can be effectively utilised in development of blight resistant potato cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data supporting the findings of this study are available with MS Amanpreet Kaur and can be made available upon request.

References

  • Aebi H (1984) [13] Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Almagro L, Gómez Ros L, Belchi-Navarro S, Bru R, Ros Barceló A, Pedreno M (2009) Class III peroxidases in plant defence reactions. J Exp Bot 60(2):377–390

    Article  CAS  PubMed  Google Scholar 

  • Andersen K, Ospina-Giraldo MD (2011) Relative disease susceptibility of cultivated varieties of potato to different isolates of Phytophthora infestans. J Pennsylvania Acad Sci 85(4):140–146

    Article  Google Scholar 

  • Armstrong MR, Vossen J, Lim TY, Hutten RC, Xu J, Strachan SM, Harrower B, Champouret N, Gilroy EM, Hein I (2019) Tracking disease resistance deployment in potato breeding by enrichment sequencing. Plant Biotechnol J 17(2):540–549

    Article  CAS  PubMed  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Ann Rev Plant Biol 50(1):601–639

    Article  CAS  Google Scholar 

  • Asakaviciute R, Razukas A, Jundulas J (2009) Susceptibility of new potato varieties to the potato late blight oomycete Phytophthora infestans (Mont.) de Bary in Lithuania. Agrociencia 43(6):625–633

    Google Scholar 

  • Bao G, Bi Y, Li Y, Kou Z, Hu L, Ge Y, Wang Y, Wang D (2014) Overproduction of reactive oxygen species involved in the pathogenicity of Fusarium in potato tubers. Physiol Mol Plant Pathol 86:35–42

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44(1):276–287

    Article  CAS  PubMed  Google Scholar 

  • Bispo W, Araújo L, Bermúdez-Cardona M, Cacique I, DaMatta F, Rodrigues F (2015) Ceratocystis fimbriata-induced changes in the antioxidative system of mango cultivars. Plant Pathol 64(3):627–637

    Article  CAS  Google Scholar 

  • Carlberg I, Mannervik B (1975) Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J Biol Chem 250(14):5475–5480

    Article  CAS  PubMed  Google Scholar 

  • Caverzan A, Passaia G, Rosa SB, Ribeiro CW, Lazzarotto F, Margis-Pinheiro M (2012) Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Gen Mol Biol 35(4):1011–1019

    Article  CAS  Google Scholar 

  • Chatterjee A, Ghosh SK (2008) Alterations in biochemical components in mesta plants infected with yellow vein mosaic disease. Braz J Plant Physiol 20(4):267–275

    Article  Google Scholar 

  • Chen C, Belanger RR, Benhamou N, Paulitz TC (2000) Defense enzymes induced in cucumber roots by treatment with plant growth-promoting rhizobacteria (PGPR) and Pythium aphanidermatum. Physiol Mol Plant Pathol 56(1):13–23

    Article  CAS  Google Scholar 

  • Chen X, Lewandowska D, Armstrong MR, Baker K, Lim T-Y, Bayer M, Harrower B, McLean K, Jupe F, Witek K (2018) Identification and rapid mapping of a gene conferring broad-spectrum late blight resistance in the diploid potato species Solanum verrucosum through DNA capture technologies. Theor Appl Gen 131(6):1287–1297

    Article  CAS  Google Scholar 

  • Choudhary A, Kumar A, Kaur N (2020) ROS and oxidative burst: Roots in plant development. Plant Divers 42(1):33–43

    Article  PubMed  Google Scholar 

  • Chung JS, Zhu JK, Bressan RA, Hasegawa PM, Shi H (2008) Reactive oxygen species mediate Na+-induced SOS1 mRNA stability in Arabidopsis. Plant J 53(3):554–565

    Article  CAS  PubMed  Google Scholar 

  • Cooke DE, Cano LM, Raffaele S, Bain RA, Cooke LR, Etherington GJ, Deahl KL, Farrer RA, Gilroy EM, Goss EM (2012) Genome analyses of an aggressive and invasive lineage of the Irish potato famine pathogen

  • Cvetkovska M, Alber NA, Vanlerberghe GC (2013) The signaling role of a mitochondrial superoxide burst during stress. Plant Signal Behav 8(1):1121–1136

    Article  Google Scholar 

  • de Dios Alché J (2019) A concise appraisal of lipid oxidation and lipoxidation in higher plants. Redox Biol 23:101136

    Article  Google Scholar 

  • Debona D, Rodrigues FÁ, Rios JA, Nascimento KJT (2012) Biochemical changes in the leaves of wheat plants infected by Pyricularia oryzae. Phytopathology 102(12):1121–1129

    Article  CAS  PubMed  Google Scholar 

  • Debona D, Rodrigues F, Rios J, Nascimento K, Silva L (2014) The effect of silicon on antioxidant metabolism of wheat leaves infected by P yricularia oryzae. Plant Pathol 63(3):581–589

    Article  CAS  Google Scholar 

  • Demiral T, Turkan I, Sekmen AH (2011) Signalling strategies during drought and salinity, recent news. Adv Bot Res 57:293–317

    Article  CAS  Google Scholar 

  • Deng J, Li F, Duan TY (2020) Claroideoglomus etunicatum reduces leaf spot incidence and improves drought stress resistance in perennial ryegrass. Aust Plant Pathol 49(2):147–157

    Article  CAS  Google Scholar 

  • Díaz-Vivancos P, Rubio M, Mesonero V, Periago PM, Ros Barceló A, Martínez-Gómez P, Hernández JA (2006) The apoplastic antioxidant system in Prunus: response to long-term plum pox virus infection. J Exp Bot 57(14):3813–3824

    Article  PubMed  Google Scholar 

  • Doyle JJ (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Ehsani-Moghaddam B, Charles MT, Carisse O, Khanizadeh S (2006) Superoxide dismutase responses of strawberry cultivars to infection by Mycosphaerella fragariae. J Plant Physiol 163(2):147–153

    Article  CAS  PubMed  Google Scholar 

  • Evers D, Welschbillig N, Dommes J, Hausman J (2003) Biochemical and morphological characterization of potato clones differing in their resistance to late blight. Potato Res 46(3-4):105–115

    Article  Google Scholar 

  • Flor HH (1971) Current status of the gene-for-gene concept. Ann Rev Phytopathol 9(1):275–296

    Article  Google Scholar 

  • Fortunato AA, Debona D, Bernardeli AMA, Rodrigues FÁ (2015) Changes in the antioxidant system in soybean leaves infected by Corynespora cassiicola. Phytopathology 105(8):1050–1058

    Article  CAS  PubMed  Google Scholar 

  • Garyali S, Kumar A, Reddy MS (2013) Taxol production by an endophytic fungus, Fusarium redolens, isolated from Himalayan yew. J Microbiol Biotechnol 23(10):1372–1380

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  PubMed  Google Scholar 

  • Goicoechea N, Aguirreolea J, Cenoz S, Garcia-Mina J (2000) Verticillium dahliae modifies the concentrations of proline, soluble sugars, starch, soluble protein and abscisic acid in pepper plants. Eur J Plant Pathol 106(1):19–25

    Article  CAS  Google Scholar 

  • Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32(6):481–494

    Article  PubMed  Google Scholar 

  • Haber F, Weiss J (1932) Über die Katalyse des Hydroperoxydes. Naturwissenschaften 20(51):948–950

  • Hameed S, Akhtar KP, Hameed A, Gulzar T, Kiran S, Yousaf S, Abbas G, Asghar MJ, Sarwar N (2017) Biochemical changes in the leaves of mungbean (Vigna radiata) plants infected by phytoplasma. Turk J Biochem 42(6):591–599

    CAS  Google Scholar 

  • Hasanuzzaman M, Bhuyan M, Anee TI, Parvin K, Nahar K, Mahmud JA, Fujita M (2019) Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants 8(9):384

    Article  CAS  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Fujita M (2011) Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings. Biol Trace Elem Res 143(3):1758–1776

    Article  CAS  PubMed  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125(1):189–198

    Article  CAS  PubMed  Google Scholar 

  • Hernández J, Barba-Espín G, Diaz-Vivancos P (2017) Glutathione-mediated biotic stress tolerance in plants. In: Glutathione in plant growth, development, and stress tolerance. Springer, pp 309–329

  • Hernández J, Talavera J, Martínez-Gómez P, Dicenta F, Sevilla F (2001) Response of antioxidative enzymes to plum pox virus in two apricot cultivars. Physiologia Plantarum 111(3):313–321

    Article  PubMed  Google Scholar 

  • Jiménez A, Hernández J, Barceló AR, Sandalio L, Del Río L, Sevilla F (1998) Mitochondrial and peroxisomal ascorbate peroxidase of pea leaves. Physiologia Plantarum 104(4):687–692

    Article  Google Scholar 

  • Kacperska A (2004) Sensor types in signal transduction pathways in plant cells responding to abiotic stressors: do they depend on stress intensity? Physiologia Plantarum 122(2):159–168

    Article  CAS  Google Scholar 

  • Kar M, Mishra D (1976) Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiol 57(2):315–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur A, Reddy MS, Kumar A (2017) Efficient, one step and cultivar independent shoot organogenesis of potato. Physiol Mol Biol Plants 23(2):461–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khalil MI, Youssef SA, Tartoura KA, Eldesoky AA (2021) Comparative evaluation of physiological and biochemical alteration in tomato plants infected by Alternaria alternata in response to Trichoderma viride and Chaetomium globosum application. Physiol Mol Plant Pathol 101671

  • Khavkin E (2021) Plant–pathogen molecular dialogue: evolution, mechanisms and agricultural implementation. Russian J Plant Physiol 68(2):197–211

    Article  CAS  Google Scholar 

  • Kużniak E, Skłodowska M (2005) Fungal pathogen-induced changes in the antioxidant systems of leaf peroxisomes from infected tomato plants. Planta 222(1):192–200

    Article  PubMed  Google Scholar 

  • Lanubile A, Maschietto V, De Leonardis S, Battilani P, Paciolla C, Marocco A (2015) Defense responses to mycotoxin-producing fungi Fusarium proliferatum, F. subglutinans, and Aspergillus flavus in kernels of susceptible and resistant maize genotypes. Mol Plant Microbe Int 28(5):546–557

    Article  CAS  Google Scholar 

  • Lavania M, Chauhan PS, Chauhan S, Singh HB, Nautiyal CS (2006) Induction of plant defense enzymes and phenolics by treatment with plant growth–promoting rhizobacteria Serratia marcescens NBRI1213. Curr Microbiol 52(5):363–368

    Article  CAS  PubMed  Google Scholar 

  • Lin X, Song T, Fairhead S, Witek K, Jouet A, Jupe F, Witek AI, Karki HS, Vleeshouwers VG, Hein I (2020) Identification of Avramr1 from Phytophthora infestans using long read and cDNA pathogen-enrichment sequencing (PenSeq). Mol Plant Pathol 21(11):1502–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    Article  CAS  PubMed  Google Scholar 

  • Magbanua ZV, De Moraes CM, Brooks T, Williams WP, Luthe DS (2007) Is catalase activity one of the factors associated with maize resistance to Aspergillus flavus? Mol Plant Microbe Int 20(6):697–706

    Article  CAS  Google Scholar 

  • McEwen Jr CM (1971) [230] Monoamine oxidase [rabbit serum]. In: Methods in enzymology, vol 17. Elsevier, pp 686–692

  • Mhatre PH, Lekshmanan DK, Palanisamy VE, Bairwa A, Sharma S (2021) Management of the late blight (Phytophthora infestans) disease of potato in the southern hills of India. J Phytopathol 169(1):52–61

    Article  CAS  Google Scholar 

  • Misra RS, Sharma K, Mishra AK, Sriram S (2008) Biochemical alterations induced in Taro in response to Phytophthora colocasiae infection. Adv Nat Appl Sci 2(3):112–121

    CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16(6):300–309

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi M, Kazemi H (2002) Changes in peroxidase and polyphenol oxidase activities in susceptible and resistant wheat heads inoculated with Fusarium graminearum and induced resistance. Plant Sci 162(4):491–498

    Article  CAS  Google Scholar 

  • Morales M, Barceló AR (1997) A basic peroxidase isoenzyme from vacuoles and cell walls of Vitis vinifera. Phytochemistry 45(2):229–232

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22(5):867–880

    CAS  Google Scholar 

  • Okazaki Y, Ishihara A, Nishioka T, Iwamura H (2004) Identification of a dehydrodimer of avenanthramide phytoalexin in oats. Tetrahedron 60(22):4765–4771

    Article  CAS  Google Scholar 

  • Okazaki Y, Ishizuka A, Ishihara A, Nishioka T, Iwamura H (2007) New dimeric compounds of avenanthramide phytoalexin in oats. J Org Chem 72(10):3830–3839

    Article  CAS  PubMed  Google Scholar 

  • Palma JM, Sandalio LM, Corpas FJ, Romero-Puertas MC, McCarthy I, Luis A (2002) Plant proteases, protein degradation, and oxidative stress: role of peroxisomes. Plant Physiol Biochem 40(6-8):521–530

    Article  CAS  Google Scholar 

  • Passardi F, Cosio C, Penel C, Dunand C (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 24(5):255–265

    Article  CAS  PubMed  Google Scholar 

  • Polkowska-Kowalczyk L, Wielgat B, Maciejewska U (2007) Changes in the antioxidant status in leaves of Solanum species in response to elicitor from Phytophthora infestans. J Plant Physiol 164(10):1268–1277

    Article  CAS  PubMed  Google Scholar 

  • Pradel W, Gatto M, Hareau G, Pandey S, Bhardway V (2019) Adoption of potato varieties and their role for climate change adaptation in India. Clim Risk Manag 23:114–123

    Article  PubMed  PubMed Central  Google Scholar 

  • Rojas CM, Senthil-Kumar M, Tzin V, Mysore K (2014) Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. Front Plant Sci 5:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Sahoo MR, Dasgupta M, Kole PC, Mukherjee A (2010) Biochemical changes in leaf tissues of taro [Colocasia esculenta L.(Schott)] infected with Phytophthora colocasiae. J Phytopathol 158(3):154–159

    Article  Google Scholar 

  • Sang S, Li S, Fan W, Wang N, Gao M, Wang Z (2019) Zinc thiazole enhances defense enzyme activities and increases pathogen resistance to Ralstonia solanacearum in peanut (Arachis hypogaea) under salt stress. Plos one 14(12):e0226951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarker U, Oba S (2018) Catalase, superoxide dismutase and ascorbate-glutathione cycle enzymes confer drought tolerance of Amaranthus tricolor. Sci Rep 8(1):1–12

    Article  Google Scholar 

  • Sasaki K, Iwai T, Hiraga S, Kuroda K, Seo S, Mitsuhara I, Miyasaka A, Iwano M, Ito H, Matsui H (2004) Ten rice peroxidases redundantly respond to multiple stresses including infection with rice blast fungus. Plant Cell Physiol 45(10):1442–1452

    Article  CAS  PubMed  Google Scholar 

  • Scandalios J (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res 38(7):995–1014

    Article  CAS  PubMed  Google Scholar 

  • Silva FLB, Vieira LGE, Ribas AF, Moro AL, Neris DM, Pacheco AC (2018) Proline accumulation induces the production of total phenolics in transgenic tobacco plants under water deficit without increasing the G6PDH activity. Theor Exp Plant Physiol 30(3):251–260

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Pokhrel A, Coleman JJ (2021) The extracellular superoxide dismutase Sod5 from fusarium oxysporum is localized in response to external stimuli and contributes to fungal pathogenicity. Front Plant Sci 12:294

    Google Scholar 

  • Welinder KG (1992) Superfamily of plant, fungal and bacterial peroxidases. Curr Opin Struct Biol 2(3):388–393

    Article  CAS  Google Scholar 

  • Zhang J, Sun X (2021) Recent advances in polyphenol oxidase-mediated plant stress responses. Phytochemistry 181:112588

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to TIFAC-CORE, Thapar Institute of Engineering & Technology for providing facilities for conducting experiments.

Author information

Authors and Affiliations

Authors

Contributions

Amanpreet Kaur and Vikrant Sharma conducted the experiments, compiled data, analysed the results and wrote the initial draft of the manuscript. Anil Kumar designed the experiments and finalized the manuscript.

Corresponding author

Correspondence to Anil Kumar.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, A., Sharma, V. & Kumar, A. Assessment of Late Blight Resistance in Indian Potato Cultivars and Associated Biochemical Changes During Disease Development. Potato Res. 65, 863–879 (2022). https://doi.org/10.1007/s11540-022-09553-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11540-022-09553-0

Keywords

Navigation