Skip to main content

Advertisement

Log in

Breast Cancer Exosomal microRNAs Facilitate Pre-Metastatic Niche Formation in the Bone: A Mathematical Model

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Pre-metastatic niche is a location where cancer cells, separating from a primary tumor, find “fertile soil” for growth and proliferation, ensuring successful metastasis. Exosomal miRNAs of breast cancer are known to enter the bone and degrade it, which facilitates cancer cells invasion into the bone interior and ensures its successful colonization. In this paper, we use a mathematical model to first describe, in health, the continuous remodeling of the bone by bone-forming osteoblasts, bone-resorbing osteoclasts and the RANKL-OPG-RANK signaling system, which keeps the balance between bone formation and bone resorption. We next demonstrate how breast cancer exosomal miRNAs disrupt this balance, either by increasing or by decreasing the ratio of osteoclasts/osteoblasts, which results in abnormal high bone resorption or abnormal high bone forming, respectively, and in bone weakening in both cases. Finally we consider the case of abnormally high resorption and evaluate the effect of drugs, which may increase bone density to normal level, thus protecting the bone from invasion by cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All relevant data are within the manuscript and its Supporting information files.

References

  • Abdelmaksoud-Dammak R, Chamtouri N, Triki M, Saadallah-Kallel A, Ayadi W, Charfi S, Khabir A, Ayadi L, Sallemi-Boudawara T, Mokdad-Gargouri R (2017) Overexpression of mir-10b in colorectal cancer patients: correlation with twist-1 and e-cadherin expression. Tumour Biol 39(3):1010428317695916

    Article  Google Scholar 

  • Aghajanian P, Mohan S (2018) The art of building bone: emerging role of chondrocyte-to-osteoblast transdifferentiation in endochondral ossification. Bone Res 6:19

    Article  Google Scholar 

  • Ait Oumghar I, Barkaoui A, Chabrand P (2020) Toward a mathematical modeling of diseases’ impact on bone remodeling: technical review. Front Bioeng Biotechnol 8:584198

    Article  Google Scholar 

  • Al-Bari AA, Mamun AA (2020) Current advances in regulation of bone homeostasis. FASEB Bioadv 2(11):668–679

    Article  Google Scholar 

  • Amgen Manufacturing Limited, a subsidiary of Amgen Inc, Xgeva (denosumab): Highlights of prescribing information, US Patent Nos. 6,740,522; 7,097,834; 7,364,736; and 7,411,050 (2010)

  • Araujo A, Cook LM, Lynch CC, Basanta D (2014) An integrated computational model of the bone microenvironment in bone-metastatic prostate cancer. Cancer Res 74(9):2391–401

    Article  Google Scholar 

  • Ayati BP, Edwards CM, Webb GF, Wikswo JP (2010) A mathematical model of bone remodeling dynamics for normal bone cell populations and myeloma bone disease. Biol Direct 5:28

    Article  Google Scholar 

  • Boyce BF, Li J, Xing L, Yao Z (2018) Bone remodeling and the role of traf3 in osteoclastic bone resorption. Front Immunol 9:2263

    Article  Google Scholar 

  • Brozovich A, Sinicrope BJ, Bauza G, Niclot FB, Lintner D, Taraballi F, McCulloch PC (2021) High variability of mesenchymal stem cells obtained via bone marrow aspirate concentrate compared with traditional bone marrow aspiration technique. Orthop J Sports Med 6:12

    Google Scholar 

  • Buenzli PR, Pivonka P, Gardiner BS, Smith DW, Dunstan CR, Mundy GR (2010) Theoretical analysis of the spatio-temporal structure of bone multicellular units. IOP Conf Ser Mater Sci Eng 10(1):012132

    Article  Google Scholar 

  • Coelho RM, Lemos JM, Alho I, Valério D, Ferreira AR, Costa L, Vinga S (2016) Dynamic modeling of bone metastasis, microenvironment and therapy: integrating parathyroid hormone (pth) effect, anti-resorptive and anti-cancer therapy. J Theor Biol 391:1–12

    Article  MATH  Google Scholar 

  • Cook CV, Islam MA, Smith BJ, Ford Versypt AN (2022) Mathematical modeling of the effects of wnt-10b on bone metabolism. AIChE J 68(12):e17809

    Article  Google Scholar 

  • Crane JL, Xian L, Cao X (2016) Role of tgf-\(\beta \) signaling in coupling bone remodeling. Method Mol Biol 1344:287–300

    Article  Google Scholar 

  • Croset M, Goehrig D, Frackowiak A, Bonnelye E, Ansieau S, Puisieux A, Clézardin P (2014) Twist1 expression in breast cancer cells facilitates bone metastasis formation. J Bone Min. Res 29(8):1886–1899

    Article  Google Scholar 

  • Deep G, Jain A, Kumar A, Agarwal C, Kim S, Leevy WM, Agarwal R (2020) Exosomes secreted by prostate cancer cells under hypoxia promote matrix metalloproteinases activity at pre-metastatic niches. Mol Carcinog 59(3):323–332

    Article  Google Scholar 

  • Dettori D, Orso F, Penna E, Baruffaldi D, Brundu S, Maione F, Turco E, Giraudo E, Taverna D (2018) Therapeutic silencing of mir-214 inhibits tumor progression in multiple mouse models. Mol Ther 26(8):2008–2018

    Article  Google Scholar 

  • Dillekas H, Rogers MS, Straume O (2019) Are 90% of deaths from cancer caused by metastases? Cancer Med 8(12):5574–5576

    Article  Google Scholar 

  • Dong Q, Liu X, Cheng K, Sheng J, Kong J, Liu T (2021) Pre-metastatic niche formation in different organs induced by tumor extracellular vesicles. Front Cell Dev Biol 9:733627

    Article  Google Scholar 

  • Eggenhofer E, Benseler V, Kroemer A, Popp FC, Geissler EK, Schlitt HJ, Baan CC, Dahlke MH, Hoogduijn MJ (2012) Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion. Front Immunol 3:297

    Article  Google Scholar 

  • Furesi G, de Jesus Domingues AM, Alexopoulou D, Dahl A, Hackl M, Schmidt JR, Kalkhof S, Kurth T, Taipaleenmäki H, Conrad S, Hofbauer C, Rauner M, Hofbauer LC (2022) Exosomal mirnas from prostate cancer impair osteoblast function in mice. Int J Mol Sci 23(3):1285

    Article  Google Scholar 

  • Gardner CR (2007) Morphological analysis of osteoclastogenesis induced by rankl in mouse bone marrow cell cultures. Cell Biol Int 31:672–682

    Article  Google Scholar 

  • Graham JM, Ayati BP, Holstein SA, Martin JA (2013) The role of osteocytes in targeted bone remodeling: a mathematical model. PLoS ONE 8(5):e63884

    Article  Google Scholar 

  • Gu P, Sun M, Li L, Yang Y, Jiang Z, Ge Y, Wang W, Mu W, Wang H (2021) Breast tumor-derived exosomal microrna-200b-3p promotes specific organ metastasis through regulating ccl2 expression in lung epithelial cells. Front Cell Dev Biol 9:657158

    Google Scholar 

  • Gu Z, Yin H, Zhang H, Zhang H, Liu X, Zeng X, Zheng X (2022) Optimization of a method for the clinical detection of serum exosomal mir-940 as a potential biomarker of breast cancer. Front Oncol 12:956167

    Article  Google Scholar 

  • Guo Y, Ji X, Liu J, Fan D, Zhou Q, Chen C, Wang W, Wang G, Wang H, Yuan W, Ji Z, Sun Z (2019) Effects of exosomes on pre-metastatic niche formation in tumors. Mol Cancer 18(1):39

    Article  Google Scholar 

  • Hashimoto K, Ochi H, Sunamura S, Kosaka N, Mabuchi Y, Fukuda T, Yao K, Kanda H, Ae K, Okawa A, Akazawa C, Ochiya T, Futakuchi M, Takeda S, Sato S (2018) Cancer-secreted hsa-mir-940 induces an osteoblastic phenotype in the bone metastatic microenvironment via targeting arhgap1 and fam134a. Proc Natl Acad Sci USA 115(9):2204–2209

    Article  Google Scholar 

  • Hassan MQ, Maeda Y, Taipaleenmaki H, Zhang W, Jafferji M, Gordon JA, Li Z, Croce CM, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2012) mir-218 directs a wnt signaling circuit to promote differentiation of osteoblasts and osteomimicry of metastatic cancer cells. J Biol Chem 287(50):42084–92

    Article  Google Scholar 

  • He Z, Allers C, Sugimoto C, Ahmed N, Fujioka H, Kim WK, Didier ES, Kuroda MJ (2018) Rapid turnover and high production rate of myeloid cells in adult rhesus macaques with compensations during aging. J Immunol 200(12):4059–4067

    Article  Google Scholar 

  • Heaney RP, Whedon GD (1958) Radiocalcium studies of bone formation rate in human metabolic bone disease. J Clin Endocrinol Metab 18(11):1246–1267

    Article  Google Scholar 

  • Hoogduijn MJ, Lombardo E (2019) Mesenchymal stromal cells anno 2019: dawn of the therapeutic era? concise review. Stem Cells Transl Med 8(11):1126–1134

    Article  Google Scholar 

  • Huang JF, Shen J, Li X, Rengan R, Silvestris N, Wang M, Derosa L, Zheng X, Belli A, Zhang XL, Li YM, Wu A (2020) Incidence of patients with bone metastases at diagnosis of solid tumors in adults: a large population-based study. Ann Transl Med 8(7):482

    Article  Google Scholar 

  • Iseri K, Iyoda M, Watanabe M, Matsumoto K, Sanada D, Inoue T, Tachibana S, Shibata T (2018) The effects of denosumab and alendronate on glucocorticoid-induced osteoporosis in patients with glomerular disease: A randomized, controlled trial. PLoS ONE 13(3):e019346

    Article  Google Scholar 

  • Iseri K, Watanabe M, Yoshikawa H, Mitsui H, Endo T, Yamamoto Y, Iyoda M, Ryu K, Inaba T, Shibata T (2019) Effects of denosumab and alendronate on bone health and vascular function in hemodialysis patients: a randomized, controlled trial. J Bone Min Res 34(6):1014–1024

    Article  Google Scholar 

  • Javanmard SH, Vaseghi G, Ghasemi A, Rafiee L, Ferns GA, Esfahani HN, Nedaeinia R (2020) Therapeutic inhibition of microrna-21 (mir-21) using locked-nucleic acid (lna)-anti-mir and its effects on the biological behaviors of melanoma cancer cells in preclinical studies. Cancer Cell Int 20:384

    Article  Google Scholar 

  • Ji B, Genever PG, Patton RJ, Fagan MJ (2014) Mathematical modelling of the pathogenesis of multiple myeloma-induced bone disease. Int J Numer Method Biomed Eng 30(11):1085–1102

    Article  MathSciNet  Google Scholar 

  • Jiang W, Rixiati Y, Zhao B, Li Y, Tang C, Liu J (2020) Incidence, prevalence, and outcomes of systemic malignancy with bone metastases. J Orthop Surg (Hong Kong) 28(2):482

    Article  Google Scholar 

  • Jinnah AH, Zacks BC, Gwam CU, Kerr BA (2018) Emerging and established models of bone metastasis. Cancers (Basel) 10(6):176

    Article  Google Scholar 

  • Jolly JJ, Chin KY, Farhana MFN, Alias E, Chua KH, Hasan WNW, Ima-Nirwana S (2018) Optimization of the static human osteoblast/osteoclast co-culture system. Iran J Med Sci 43(2):208–213

    Google Scholar 

  • Keshishi D, Makunts T, Abagyan R (2021) Common osteoporosis drug associated with increased rates of depression and anxiety. Sci Rep 11:23956

    Article  Google Scholar 

  • Kirschner DE (2007–2008) Uncertainty and sensitivity functions and implementation, source code, University of Michigan, http://malthus.micro.med.umich.edu/lab/usadata/

  • Komarova SV, Smith RJ, Dixon SJ, Sims SM, Wahl LM (2003) Mathematical model predicts a critical role for osteoclast autocrine regulation in the control of bone remodeling. Bone 23(2):206–215

    Article  Google Scholar 

  • Kylmäoja E, Nakamura M, Turunen S, Patlaka C, Andersson G, Lehenkari P, Tuukkanen J (2018) Peripheral blood monocytes show increased osteoclast differentiation potential compared to bone marrow monocytes. Heliyon 4(9):e00780

    Article  Google Scholar 

  • Le Pape F, Vargas G, Clézardin P (2016) The role of osteoclasts in breast cancer bone metastasis. J Bone Oncol 5(3):93–95

    Article  Google Scholar 

  • Leder BZ (2018) Optimizing sequential and combined anabolic and antiresorptive osteoporosis therapy. JBMR Plus 2(2):62–68

    Article  MathSciNet  Google Scholar 

  • Lemaire V, Tobin FL, Greller LD, Cho CR, Suva LJ (2004) Modeling the interactions between osteoblast and osteoclast activities in bone remodeling. J Theor Biol 229(3):293–309

    Article  MATH  MathSciNet  Google Scholar 

  • Li FX, Liu JJ, Xu F, Lin X, Zhong JY, Wu F, Yuan LQ (2019) Role of tumor-derived exosomes in bone metastasis. Oncol Lett 18(4):3935–3945

    Google Scholar 

  • Liu Y, Cao X (2016) Characteristics and significance of the pre-metastatic niche. Cancer Cell 30(5):668–681

    Article  Google Scholar 

  • Liu J, Li D, Dang L, Liang C, Guo B, Lu C, He X, Cheung HYS, He B, Liu B, Li F, Lu J, Wang L, Shaikh AB, Jiang F, Lu C, Peng S, Zhang Z, Zhang B-T, Pan X, Xiao L, Lu A, Zhang G (2017) Osteoclastic mir-214 targets traf3 to contribute to osteolytic bone metastasis of breast cancer. Sci Rep 7:40487

    Article  Google Scholar 

  • Logothetis CJ, Lin SH (2005) Osteoblasts in prostate cancer metastasis to bone. Nat Rev Cancer 5(1):21–28

    Article  Google Scholar 

  • Lösslein AK, Lohrmann F, Scheuermann L, Gharun K, Neuber J, Kolter J, Forde AJ, Kleimeyer C, Poh YY, Mack M, Triantafyllopoulou A, Dunlap MD, Khader SA, Seidl M, Hölscher A, Hölscher C, Guan XL, Dorhoi A, Henneke P (2021) Monocyte progenitors give rise to multinucleated giant cells. Nat Commun 12:2027

    Article  Google Scholar 

  • Lou S, Lv H, Chen Y, Zhang L, Tang P (2016) Use of combination therapy in the treatment of primary osteoporosis: protocol for a network meta-analysis of randomised trials. BMJ Open 6(11):e012802

    Article  Google Scholar 

  • Makler A, Asghar W (2020) Exosomal biomarkers for cancer diagnosis and patient monitoring. Expert Rev Mol Diagn 20(4):387–400

    Article  Google Scholar 

  • Manolagas SC (2000) Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 21(2):115–137

    Google Scholar 

  • Marathe A, Peterson MC, Mager DE (2008) Integrated cellular bone homeostasis model for denosumab pharmacodynamics in multiple myeloma patients. J Pharmacol Exp Ther 326(2):555–562

    Article  Google Scholar 

  • Marino S, Hogue IB, Ray CJ, Kirschner DE (2008) A methodology for performing global uncertainty and sensitivity analysis in systems biology. J Theor Biol 254:178–196

    Article  MATH  MathSciNet  Google Scholar 

  • Martin TJ, Grill V (2000) Bisphosphonates—mechanisms of action. Aust Prescr 23:130–132

    Article  Google Scholar 

  • Maurizi A, Rucci N (2018) The osteoclast in bone metastasis: player and target. Cancers (Basel) 10(7):218

    Article  Google Scholar 

  • Meema HE, Meema S (1978) Compact bone mineral density of the normal human radius. Acta Radiol Oncol Radiat Phys Biol 17(4):342–352

    Article  Google Scholar 

  • Sharp M (1995) Dohme Corp., a subsidiary of MERCK & CO, INC, Fosamax (alendronate sodium), RxList

  • Mishra PJ, Banerjee D (2011) Activation and differentiation of mesenchymal stem cells. Method Mol Biol 717:245–253

    Article  Google Scholar 

  • Narayanan P (2013) Denosumab: a comprehensive review. South Asian J Cancer 2(4):272–277

    Article  Google Scholar 

  • Niu X, Xu H (2021) Bone metabolism and the development of denosumab: a narrative review. Transl Breast Cancer Res 2:1

    Article  Google Scholar 

  • Ottewell P, Wilson C (2019) Bone-targeted agents in breast cancer: Do we now have all the answers? Breast Cancer (Auckl) 13:1178223419843501

    Google Scholar 

  • Padalecki SS, Guise TA (2002) Actions of bisphosphonates in animal models of breast cancer. Breast Cancer Res 4(1):35–41

    Article  Google Scholar 

  • Paglia DN, Yang X, Kalinowski J, Jastrzebski S, Drissi H, Lorenzo J (2016) Runx1 regulates myeloid precursor differentiation into osteoclasts without affecting differentiation into antigen presenting or phagocytic cells in both males and females. Endocrin 157(8):3058–3069

    Article  Google Scholar 

  • Patel AA, Zhang Y, Fullerton JN, Boelen L, Rongvaux A, Maini AA, Bigley V, Flavell RA, Gilroy DW, Asquith B, Macallan D, Yona S (2017) The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J Exp Med 214(7):1913–1923

    Article  Google Scholar 

  • Perico ME, Maluta T, Conti G, Vella A, Provezza L, Cestari T, De Cao G, Segalla L, Tecchio C, Benedetti F, Santini F, Bronte V, Magnan B, Sbarbati A, Ramarli D (2022) The cross-talk between myeloid and mesenchymal stem cells of human bone marrow represents a biomarker of aging that regulates immune response and bone reabsorption. Cells 11:1

    Article  Google Scholar 

  • Pivonka P, Zimak J, Smith DW, Gardiner BS, Dunstan CR, Sims NA, John Martin T, Mundy GR (2008) Model structure and control of bone remodeling: a theoretical study. Bone 43(2):249–263

    Article  Google Scholar 

  • Preethi KA, Selvakumar SC, Ross K, Jayaraman S, Tusubira D, Sekar D (2022) Liquid biopsy: exosomal micrornas as novel diagnostic and prognostic biomarkers in cancer. Mol Cancer 21:54

    Article  Google Scholar 

  • Qayoom I, Raina DB, Širka A, Tarasevičius S, Tägil M, Kumar A, Lidgren L (2018) Anabolic and antiresorptive actions of locally delivered bisphosphonates for bone repair: a review. Bone Joint Res 7(10):548–560

    Article  Google Scholar 

  • Qin Y, Guan J, Zhang C (2014) Mesenchymal stem cells: mechanisms and role in bone regeneration. Postgrad Med J 90(1069):643–647

    Article  Google Scholar 

  • Qiu ZY, Cui Y, Wang XM (2019) Chapter 1 - natural bone tissue and its biomimetic. In: Mineralized collagen bone graft substitutes (X M Wang, Z Y Qiu, and H Cui, eds.), Woodhead Publishing Series in Biomaterials, Woodhead Publishing, pp 1–22

  • Rajani R, Quinn RH (2021) Metastatic bone disease. Ortho Info Am Aca Orthop Surg 1–9

  • Rantalainen T, Nikander R, Heinonen A, Cervinka T, Sievänen H, Daly RM (2013) Differential effects of exercise on tibial shaft marrow density in young female athletes. J Clin Endocrinol Metab 98(5):2037–2044

    Article  Google Scholar 

  • Raue R, Frank AC, Syed SN, Brune B (2021) Therapeutic targeting of micrornas in the tumor microenvironment. Int J Mol Sci 22(4):2210

    Article  Google Scholar 

  • Razaq A, Khan S, Hassan J, Malik BH, Razaq M (2019) Comparing the efficacy and safety of denosumab with bisphosphonates in increasing bone mineral density in patients with prostate cancer and breast cancer on antihormonal treatment. Cureus 11(12):e6401

    Google Scholar 

  • Ryser MD, Nigam N, Komarova SV (2009) Mathematical modeling of spatio-temporal dynamics of a single bone multicellular unit. J Bone Min Res 24(5):860–870

    Article  Google Scholar 

  • Sanmartin MC, Borzone FR, Giorello MB, Pacienza N, Yannarelli G, Chasseing NA (2021) Bone marrow/bone pre-metastatic niche for breast cancer cells colonization: the role of mesenchymal stromal cells. Crit Rev Oncol Hematol 164:103416

    Article  Google Scholar 

  • Scheiner S, Pivonka P, Hellmich C (2013) Coupling systems biology with multiscale mechanics, for computer simulations of bone remodeling. Comp Methods App Mech Eng 254:181–196

    Article  MATH  MathSciNet  Google Scholar 

  • Siewe N, Friedman A (2021) Tgf-\(\beta \) inhibition can overcome cancer primary resistance to pd-1 blockade: a mathematical model. PLoS ONE 16(6):1–16

    Article  Google Scholar 

  • Stafford MYC, Willoughby CE, Walsh CP, McKenna DJ (2022) Prognostic value of mir-21 for prostate cancer: a systematic review and meta-analysis. Biosci Rep 42:1

    Article  Google Scholar 

  • Taipaleenmaki H, Farina NH, van Wijnen AJ, Stein JL, Hesse E, Stein GS, Lian JB (2016) Antagonizing mir-218-5p attenuates wnt signaling and reduces metastatic bone disease of triple negative breast cancer cells. Oncotarget 7(48):79032–79046

    Article  Google Scholar 

  • Tat SK, Padrines M, Theoleyre S, Couillaud-Battaglia S, Heymann D, Redini F, Fortun Y (2006) Opg/membranous-rankl complex is internalized via the clathrin pathway before a lysosomal and a proteasomal degradation. Bone 39(4):706–715

    Article  Google Scholar 

  • Tetsunaga T, Tetsunaga T, Nishida K, Tanaka M, Sugimoto Y, Takigawa T, Takei Y, Ozaki T (2017) Denosumab and alendronate treatment in patients with back pain due to fresh osteoporotic vertebral fractures. J Orthop Sci 22(2):230–236

    Article  Google Scholar 

  • Tiedemann K, Le Nihouannen D, Fong JE, Hussein O, Barralet JE, Komarova SV (2017) Regulation of osteoclast growth and fusion by mtor/raptor and mtor/rictor/akt. Front Cell Dev Biol 5:54

    Article  Google Scholar 

  • Tomoyasu A, Goto M, Fujise N, Mochizuki S, Yasuda H, Morinaga T, Tsuda E, Higashio K (1998) Characterization of monomeric and homodimeric forms of osteoclastogenesis inhibitory factor. Biochem Biophys Res Commun 245(2):382–387

    Article  Google Scholar 

  • van Furth R, Cohn ZA (1968) The origin and kinetics of mononuclear phagocytes. J Exp Med 128:415–435

    Article  Google Scholar 

  • Volk SW, Shah SR, Cohen AJ, Wang Y, Brisson BK, Vogel LK, Hankenson KKD, Adams SL (2014) Type iii collagen regulates osteoblastogenesis and the quantity of trabecular bone. Calcif Tissue Int 94(6):621–631

    Article  Google Scholar 

  • Wang Y, Pivonka P, Buenzli PR, Smith DW, Dunstan CR (2011) Computational modeling of interactions between multiple myeloma and the bone microenvironment. PLoS ONE 6(11):e27494

    Article  Google Scholar 

  • Wang S, Liu Z, Wang J, Ji X, Yao Z, Wang X (2020) mir-21 promotes osteoclastogenesis through activation of pi3k/akt signaling by targeting pten in raw264.7 cells. Mol Med Rep 21(3):1125–1132

    Google Scholar 

  • Warren JT, Zou W, Decker CE, Rohatgi N, Nelson CA, Fremont DH, Teitelbaum SL (2015) Correlating rank ligand/rank binding kinetics with osteoclast formation and function. J Cell Biochem 116(11):2476–2483

    Article  Google Scholar 

  • Wati KDK, Pratiwi ED, Dirgantara Y, Sartika CR, Dhamayanti M, Setiabudiawan B, Parwati I (2019) Life span of the chondrocytes from human umbilical cord derived-mesenchymal stem cell differentiation. Biomed Pharmacol J 12:1

    Google Scholar 

  • Wu J, Shen Z (2020) Exosomal mirnas as biomarkers for diagnostic and prognostic in lung cancer. Cancer Med 9(19):6909–6922

    Article  Google Scholar 

  • Yang X, Zhang Y, Zhang Y, Zhang S, Qiu L, Zhuang Z, Wei M, Deng X, Wang Z, Han J (2021) The key role of exosomes on the pre-metastatic niche formation in tumors. Front Mol Biosci 8:703640

    Article  Google Scholar 

  • Ye Y, Li SL, Ma YY, Diao YJ, Yang L, Su MQ, Li Z, Ji Y, Wang J, Lei L, Fan WX, Li LX, Xu Y, Hao XK (2017) Exosomal mir-141-3p regulates osteoblast activity to promote the osteoblastic metastasis of prostate cancer. Oncotarget 8(55):94834–94849

    Article  Google Scholar 

  • Yuan X, Qian N, Ling S, Li Y, Sun W, Li J, Du R, Zhong G, Liu C, Yu G, Cao D, Liu Z, Wang Y, Qi Z, Yao Y, Wang F, Liu J, Hao S, Jin X, Zhao Y, Xue J, Zhao D, Gao X, Liang S, Li Y, Song J, Yu S, Li Y (2021) Breast cancer exosomes contribute to pre-metastatic niche formation and promote bone metastasis of tumor cells. Theranostics 11(3):1429–1445

    Article  Google Scholar 

  • Zhang C, Song C (2021) Combination therapy of pth and antiresorptive drugs on osteoporosis: a review of treatment alternatives. Front Pharmacol 11:607017

    Article  Google Scholar 

  • Zhang J, Wu J (2021) The potential roles of exosomal mir-214 in bone metastasis of lung adenocarcinoma. Front Oncol 10:611054

    Article  Google Scholar 

  • Zhang H, Ricciardi BF, Yang X, Shi Y, Camacho NP, Bostrom MG (2008) Polymethylmethacrylate particles stimulate bone resorption of mature osteoclasts in vitro. Acta Octhop 79(2):281–288

    Article  Google Scholar 

  • Zhang W, Bado I, Wang H, Lo HC, Zhang XH (2019) Bone metastasis: find your niche and fit in. Trends Cancer 5(2):95–110

    Article  Google Scholar 

  • Zouani OF, Rami L, Lei Y, Durrieu MC (2013) Insights into the osteoblast precursor differentiation towards mature osteoblasts induced by continuous bmp-2 signaling. Biol Open 2(9):872–881

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Faculty Evaluation And Development (FEAD) Grant #15096 at Rochester Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nourridine Siewe.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Parameter Estimates With No miRNAs

1.1.1 Half-Saturation

We denote by \(Z^0\) the average density/concentration of species Z. In an expression of the form \(Y\dfrac{X}{K_X+X}\) where Y is activated by X and the parameter \(K_X\) is the half-saturation of X, we assume that

$$\begin{aligned}\dfrac{X^0}{K_X+X^0}\end{aligned}$$

to be not too close to 0 or to 1 and, for simplicity, take it to be 1/2, so that

$$\begin{aligned} K_X=X^0. \end{aligned}$$

1.1.2 Estimates for \(C^0,\ C_p^0,\ O^0\) and \(O_p^0\)

Osteoclasts are giant multinucleated cells with diameter in the range of 10–300 \(\mu \)m (Gardner 2007; Tiedemann et al. 2017); we take their average diameter to be 200 \(\mu \)m, which is about 10 times the diameter of human macrophages (\(\sim \)21 \(\mu \)m). Osteoblasts are morphologically diverse cylindrical cells, with a diameter of 20–50 \(\mu \)m (Qiu et al. 2019); we take their average diameter to be 40 \(\mu \)m, which is twice the diameter of human macrophages. By correlating the mass with volume, we estimate that the mass of one osteoclast and of one osteoblast are, respectively, \(10^2=100\) and \(2^2=4\) times that of a macrophage, so that, with a mass of macrophage estimated at \(5\times 10^{-10}\) g,

$$\begin{aligned} m_{\text {OC}}=&\ 100\times 5\times 10^{-10}=5\times 10^{-8}\ \text {g},\\ m_{\text {OB}}=&\ 4\times 5\times 10^{-10}=2\times 10^{-9}\ \text {g}. \end{aligned}$$

In mice experiments, Volk et al. (2014) found that the number of OCs in the bone is in the range 5–15 OCs per 1 mm bone surface. We take 10 OCs per 1 mm of bone surface, or equivalently 1,000 OCs per 1 cm of bone surface. Assuming that the bone matrix is a thick-less box, we get

$$\begin{aligned}C^0=K_C=1000^2\times m_{OC}=5\times 10^{-2}\ \text {g/cm}^3.\end{aligned}$$

A “suitable” OB/OC ratio for the study of static human co-culture system was found, in Jolly et al. (2018), to be 2:1, or OB \(=\) 2OC. Since \(O^0=K_O=m_{OB}O=m_{OB}\times 2C=(m_{OB}/m_{OC})\times 2C^0\), we get

$$\begin{aligned} O^0=K_O=2\times 1000^2\times m_{OB}=4\times 10^{-3}\ \text {g/cm}^3. \end{aligned}$$

Based on ex vivo experiment in bone resorption, it was found that the ratio in cell numbers, OC\(_p\)/OC \(=\) 3 (Zhang et al. 2008) (Fig. 1); assuming that the mass of one OC\(_p\) is \(5\times 10^{-8}\) g, we get, in terms of densities, that \(C_p/C=3\times (1/25)=0.12\), hence

$$\begin{aligned}C_p^0=6\times 10^{-3}\ \text {g/cm}^3.\end{aligned}$$

Based on in vivo experiments in bone formation, it was found that, in terms of cells numbers, OB\(_p\)/OB=2.5 (Zouani et al. 2013) (Fig. 4A) and that, in terms of volume, \(v_{\text {OB}}=26v_{\text {OB}_p}\) ( (Zouani et al. 2013) Abstract). Hence, in terms of densities, \(O_p/O=2.5\times (1/26)=0.096\), so that

$$\begin{aligned} O_p^0=3.84\times 10^{-4}\ \text {g/cm}^3. \end{aligned}$$

1.1.3 Estimate for \(T_\beta ^0\)

In Scheiner et al. (2013), the concentration of active TGF-\(\beta \) was measured as \(5.63\times 10^{-4}\) pM, where 1 pM\(=35.5\times 10^{-12}\) g/L; hence,

$$\begin{aligned} T_\beta ^0=K_{T_\beta }=2\times 10^{-17}\ \text {g/cm}^3. \end{aligned}$$

1.1.4 Estimates for \(\mu _C,\ \mu _O,\ \mu _{C_p}\) and \(\mu _{O_p}\)

The life span of OC is approximately 2 weeks, and the life span of active OB is 3 months (Manolagas 2000). We take \(t_{1/2}^C=7\) days and \(t_{1/2}^O=45\) days. Hence,

$$\begin{aligned} \mu _C=&\ \dfrac{\ln 2}{\text {7 d}}=0.1\ \text {d}^{-1},\\ \mu _O=&\ \dfrac{\ln 2}{\text {45 d}}=1.54\times 10^{-2}\ \text {d}^{-1}. \end{aligned}$$

Monocyte progenitors give rise to osteoclasts (Lösslein et al. 2021) and the main OC\(_p\) cells are the classical monocytes (Kylmäoja et al. 2018). The half-life of classical monocytes is 20–22 h (van Furth and Cohn 1968; Patel et al. 2017); we take \(t_{1/2}^{C_p}=0.88\) days (21 h). Hence,

$$\begin{aligned} \mu _{C_p}=\dfrac{\ln 2}{0.88\ \text {d}}=0.79\ \text {d}^{-1}. \end{aligned}$$

An intermediate stage in bone formation by OB cell differentiation, after mesenchymal cells condensing, is the formation of cartilage with chondrocytes cells (Aghajanian and Mohan 2018); we assume that the half-life of OB\(_p\) cells is the same as that of chondrocytes. The life span of chondrocytes ranges between 23 and 37 days (Wati et al. 2019); we take \(t_{1/2}^{O_p}=15\) days. Hence,

$$\begin{aligned} \mu _{O_p}=\dfrac{\ln 2}{15\ \text {d}}=4.6\times 10^{-2}\ \text {d}^{-1}. \end{aligned}$$

1.1.5 Estimate for \(\mu _G\)

The half-life of circulating OPG ranges between 10 and 20 minutes (Tomoyasu et al. 1998); we take \(t_{1/2}^G=15\) minutes (0.01 days). Hence,

$$\begin{aligned} \mu _G=\dfrac{\ln 2}{0.01\ \text {d}}=69.31\ \text {d}^{-1}. \end{aligned}$$

1.1.6 Estimates for \(M_s^0\) and \(M_p^0\)

The concentration of MSCs in bone is 0.001% (Brozovich et al. 2021), and the density of bone marrow is 1.05 g/cm\(^3\) (Rantalainen et al. 2013). Hence,

$$\begin{aligned}M_s^0=0.001\%\times 1.05=1.05\times 10^{-5}\ \text {g/cm}^3.\end{aligned}$$

MDSC (myeloid-derived suppressor cells) suppress PBMC (peripheral blood mononuclear cells) that protect from harmful invaders (e.g., lymphocytes, macrophages, dendritic cells). Experiments in Perico et al. (2022) show that as the ratio MDSC/MSC decreases, suppression of PBMC decreases and it becomes less than 20% when MDSC/MSC \(=0.5\). Assuming that this situation arises when MDSC form 20% of myeloid precursor cells, we get

$$\begin{aligned}\dfrac{M_p^0}{M_s^0}=5\times 0.5=2.5, \end{aligned}$$

so that

$$\begin{aligned} M_p^0=2.625\times 10^{-5}\ \text {g/cm}^3. \end{aligned}$$

1.1.7 Equation. (2.1): Estimates for \(\mu _{M_s},\ M_{s_0},\ \lambda _{M_sT_\beta },\ \lambda _{O_pO}\) and \(\lambda _{M_sO_p}\)

The half-life of MSCs is approximately 12 hours (0.5 days) (Eggenhofer et al. 2012; Hoogduijn and Lombardo 2019). Hence,

$$\begin{aligned} \mu _{M_s}=\dfrac{\ln 2}{0.5\ \text {d}}=1.4\ \text {d}^{-1}. \end{aligned}$$

We assume that \(M_{s0}\) is determined by the steady-state equation (with no TGF-\(\beta \) and no differentiation to OB\(_p\)), that is,

$$\begin{aligned} M_{s0}-\mu _{M_s}M_s^0=0. \end{aligned}$$

Hence,

$$\begin{aligned} M_{s0}=1.47\times 10^{-5}\ \text {g/cm}^3 \text {d}^{-1}. \end{aligned}$$

From the steady-state equations:

$$\begin{aligned} M_{s0}(1+\frac{\lambda _{M_sT_\beta }}{2})-\lambda _{M_sO_p}M_s-\mu _{M_s}M_s&=0\\ \lambda _{M_sO_p}M_s-\lambda _{O_pO}O_p-\mu _{O_p}O_p&=0\\ \lambda _{O_pO}O_p-\mu _OO&=0. \end{aligned}$$

We get,

$$\begin{aligned} \lambda _{M_sT_\beta }=10.78,\quad \lambda _{O_pO}=0.16\ \text {d}^{-1}\quad \text {and}\quad \lambda _{M_sO_p}=7.55\ \text {d}^{-1}. \end{aligned}$$

1.1.8 Equations. (2.4) and (2.5): Estimates for \(\lambda _{C_pC}\) and \(\lambda _{M_pC_p}\)

We solve simultaneously the following steady-state equations:

$$\begin{aligned} \lambda _{M_pC_p}M_p-\lambda _{C_pC}C_p(1/2)-\mu _{C_p}C_p=0\quad \text {and}\quad \lambda _{C_pC}C_p(1/2)-\mu _CC=0. \end{aligned}$$

Hence,

$$\begin{aligned} \lambda _{M_pC_p}=371.05\ \text {d}^{-1}\quad \text {and}\quad \lambda _{C_pC}=1.67\ \text {d}^{-1}. \end{aligned}$$

1.1.9 Equation. (2.6): Estimates for \(\lambda _{OB_f}\) and \(\lambda _{CB_r}\)

The bone formation rate, in normal control case, was found, in Heaney and Whedon (1958), to be 9.53 mg/Kg calcium per day. Hence,

$$\begin{aligned} \lambda _{OB_f}=9.53\times 10^{-6}\ \text {d}^{-1}. \end{aligned}$$

From the steady-state equation

$$\begin{aligned} \lambda _{OB_f}O=\lambda _{CB_r}C \end{aligned}$$

we get,

$$\begin{aligned} \lambda _{CB_r}=7.624\times 10^{-7}\ \text {d}^{-1}. \end{aligned}$$

1.1.10 Equation. (2.7): Estimate for \(\lambda _{CT_\beta }\)

From the steady-state equation

$$\begin{aligned} \lambda _{CT_\beta }C-\mu _{T_\beta }T_\beta /2=0, \end{aligned}$$

we find that

$$\begin{aligned} \lambda _{CT_\beta }=8\times 10^{-14}\ \text {d}^{-1}. \end{aligned}$$

1.1.11 Equations. (2.8) and (2.9): Estimates for \(\alpha _R,\ \alpha _G,\ \mu _{Q_R}\) and \(\mu _{Q_G}\)

The half-life of \(Q_R=\) RANK/RANKL is approximately 3.3 seconds (Warren et al. 2015) (Table 1), or equivalently \(t_{1/2}^{Q_R}=3.85\times 10^{-5}\) days. Hence,

$$\begin{aligned} \mu _{Q_R}=\dfrac{\ln 2}{t_{1/2}^{Q_R}}=1.8\times 10^4\ \text {d}^{-1}. \end{aligned}$$

In Warren et al. (2015) (Table 1), the dissociation constant of \(Q_R\) is 45 times that of \(Q_G=\) OPG/RANKL, which implies that \(t_{1/2}^{Q_G}=t_{1/2}^{Q_R}/45=8.56\times 10^{-7}\) days. It follows that

$$\begin{aligned} \mu _{Q_G}=8.1\times 10^5\ \text {d}^{-1}. \end{aligned}$$

Table 1 in Scheiner et al. (2013) gives the numerical values of \(\alpha _R=K_{a,\text {RANKL-RANK}}=3.4\times 10^{-2}\) pM\(^{-1}\)d\(^{-1}\), where 1 pM \(=3.55\times 10^{-14}\) g/cm\(^3\). Hence,

$$\begin{aligned} \alpha _R=9.6\times 10^{11}\ \text {cm}^3\text {/g d}^{-1}. \end{aligned}$$

Table 1 in Scheiner et al. (2013) gives the numerical value of \(\alpha _G=K_{a,\text {RANK-OPG}}=10^{-3}\) pM\(^{-1}\). Hence,

$$\begin{aligned} \alpha _G=2.82\times 10^{10}\ \text {cm}^3\text {/g d}^{-1}. \end{aligned}$$

1.1.12 Equations. (2.13) and (2.14): Estimates for \(\mu _A,\ \mu _D,\ \mu _{CA}\) and \(\mu _{R_LD}\)

Fosamax (alendronate) is administered as tablet of 70 mg weekly and has an elimination half-life of approximately 10 years [5]. Hence,

$$\begin{aligned} \mu _A=\dfrac{\ln 2}{10\times 365\ \text {d}}=1.9\times 10^{-4}\ \text {d}^{-1}. \end{aligned}$$

The half-life of Xgeva is 32 days (Narayanan 2013). Hence,

$$\begin{aligned} \mu _D=\dfrac{\ln 2}{32\ \text {d}}=2.17\times 10^{-2}\ \text {d}^{-1}. \end{aligned}$$

We assume that the depletion of A through blocking resorption (at \(C=C^0\)) is more than twice the degradation of A, taking

$$\begin{aligned} \mu _{CA}=8.4\times 10^{-3}\ \text {cm}^3\text {/g d}^{-1}; \end{aligned}$$

indeed, since \(C^0=5\times 10^{-2}\) g/cm\(^3\),

$$\begin{aligned} \mu _{CA}C^0=4.2\times 10^{-4}>1.9\times 10^{-4}=\mu _A. \end{aligned}$$

Simulations of the model in health (Fig. 2) yield an estimate of \(R_L\sim 9\times 10^{-11}\) g/cm\(^3\). Assuming, as above, that \(\mu _{R_LD}R_L\) is more than twice the degradation of D, we take

$$\begin{aligned} \mu _{R_LD}=3.38\times 10^8\ \text {cm}^3\text {/g d}^{-1}. \end{aligned}$$

1.2 Parameter Sensitivity Analysis

We performed sensitivity analysis with respect to the bone density B without the effect of miRNAs and with no drugs, for the production/activation parameters \(\lambda _{M_ST_\beta }\), \(\lambda _{M_sO_p}\), \(\lambda _{O_pO}\), \(\lambda _{M_pC_p}\), \(\lambda _{C_pC}\), \(\lambda _{OB_f}\), \(\lambda _{CB_r}\) and \(\lambda _{CT_\beta }\), and the binding rates \(\alpha _R\) and \(\alpha _G\).

Fig. 8
figure 8

Parameter sensitivity analysis for the bone density after 2 years. The p values are less than 0.01

The computations were done using Latin hypercube sampling/partial rank correlation coefficient (LHS/PRCC) with a MATLAB package by Kirschner (2007), Marino et al. (2008) (Fig. 8). The range for the parameters in the sensitivity analysis was between \(\pm 50\%\) of their baseline values in Table 2.

Expectedly, increasing any one of the osteoblastic-formation-prone parameters \(\lambda _{M_ST_\beta }\), \(\lambda _{M_sO_p}\), \(\lambda _{O_pO}\), \(\lambda _{OB_f}\) and \(\lambda _{CT_\beta }\) results in increased bone density; and increasing any one of the osteoclastic-resorption-prone parameters \(\lambda _{M_pC_p},\ \lambda _{C_pC}\) and \(\lambda _{CB_r}\) results in decreased bone density.

An increase in \(\alpha _R\) results in increased concentration of the complex \(Q_R=R\)-\(R_L\), and thus, in increased density C (Eq. (2.5)); and by increased resorption (Eq. (2.6)); as we see, \(\alpha _R\) is negatively correlated.

On the other hand, \(\alpha _G\) is positively correlated. Indeed, if \(\alpha _G\) increases then \(Q_G\) will increase, which means that more \(R_L\) will be captured by decoy receptor G. Hence, the number of \(R_L\) available to attach to R will decrease, which means that \(Q_R\) will decrease and bone density will increase.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siewe, N., Friedman, A. Breast Cancer Exosomal microRNAs Facilitate Pre-Metastatic Niche Formation in the Bone: A Mathematical Model. Bull Math Biol 85, 12 (2023). https://doi.org/10.1007/s11538-022-01117-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11538-022-01117-0

Keywords

Navigation