Skip to main content
Log in

An Analytical Approach of One-Compartmental Pharmacokinetic Models with Sigmoidal Hill Elimination

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this study, we aim to develop the analytical solutions of one-compartment pharmacokinetic models with sigmoidal Hill elimination and quantitatively revisit some widely used pharmacokinetic indexes. For this purpose, we have first established the closed-form solutions of the model with intravenous bolus administration through introducing a transcendent H function, which is proved a generalized form of the Lambert W function. Then, in the case of a single dose, we have obtained the explicit formulas for several pharmacokinetic surrogates, such as the clearance, elimination half-life and partial/total drug exposure. All these surrogates are found concentration-dependent and sensitive to the Hill coefficient \(\alpha \). Meanwhile, in establishing the closed-form formulas for multiple repeated dosing regimens, we have discovered phase transitions for steady states with different ranges of \(\alpha \) in function of the lengths of dosing intervals. Further, our results are illustrated with two drug examples. To conclude, the present findings elucidate the intrinsic quantitative structural properties of pharmacokinetic models with Hill elimination and provide new knowledge for nonlinear pharmacokinetics and guidance for rational drug designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Notes

  1. \(C(t)=0\) for all \(t\ge T_1^*\) if \(0<\alpha <1\).

References

  • Ahmad YA, David JRF, Richard NU (2015) ADVAN-style analytical solutions for common pharmacokinetic models. J Pharmacol Toxicol Methods 73:42–48

    Article  Google Scholar 

  • Beal SL (1982) On the solution to the Michaelis–Menten equation. J Pharmacokinet Biopharm 10:109–119

    Article  Google Scholar 

  • Birrell GB, Zaikova TO, Rukavishnikov AV, Keana JF, Griffith OH (2003) Allosteric interactions within subsites of a monomeric enzyme: kinetics of fluorogenic substrates of PI-specific phospholipase C. Biophys J 84(5):3264–3275

    Article  Google Scholar 

  • Chitnis N, Hyman JM, Cushing JM (2008) Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bull Math Biol 70(5):1272–1296

    Article  MathSciNet  Google Scholar 

  • Corless RM, Gonnet GH, Hare DEG, Jeffrey DJ, Knuth DE (1996) On the Lambert W function. Adv Comput Math 5:329–359

    Article  MathSciNet  Google Scholar 

  • Fermín L, Lévy-Vehel J (2017) Variability and singularity arising from poor compliance in a pharmacokinetic model II: the multi-oral case. J Math Biol 74(4):809–841

    Article  MathSciNet  Google Scholar 

  • Goličnik M (2012) On the Lambert W function and its utility in biochemical kinetics. Biochem Eng J 63:116–123

    Article  Google Scholar 

  • Goličnik M (2011) Explicit reformulations of the Lambert W-omega function for calculations of the solutions to one-compartment pharmacokinetic models with Michaelis-Menten elimination kinetics. Eur J Drug Metab Pharmacokinet 36:121

    Article  Google Scholar 

  • Goyal N (2015) The role of drug exposure in clinical development: To what extent is pharmacokinetic assessment needed in a drug development programme? Clin Pharmacokinet 54:985–987

    Article  Google Scholar 

  • Houston JB, Kenworthy KE (2000) In vitro-in vivo scaling of CYP kinetic data not consistent with the classical Michaelis–Menten model. Drug Metab Dispos 28(3):246–254

    Google Scholar 

  • Konsil J, Dechasathian S, Mason DH Jr, Stevens RE (2002) Reanalysis of carbamazepine and carbamazepine-epoxide pharmacokinetics after multiple dosing of extended release formulation. J Pharm Pharm Sci 5(2):169–175

    Google Scholar 

  • Lammert C, Bjornsson E, Niklasson A, Chalasani N (2010) Oral medications with significant hepatic metabolism at higher risk for hepatic adverse events. Hepatology 51(2):615–620

    Article  Google Scholar 

  • Lesko LJ (1979) Dose-dependent elimination kinetics of theophylline. Clin Pharmacokinet 4(6):449–459

    Article  Google Scholar 

  • Lévy Véhel P, Lévy Véhel J (2013) Variability and singularity arising from poor compliance in a pharmacokinetic model I: the multi-IV case. J Pharmacokinet Pharmacodyn 40(1):15–39

    Article  Google Scholar 

  • Li J, Nekka F (2007) A pharmacokinetic formalism explicitly integrating the patient drug compliance. J Pharmacokinet Pharmacodyn 34(1):115–139

    Article  Google Scholar 

  • Popović JK, Dolićanin D, Rapaić MR, Popović SL, Pilipović S, Atanacković TM (2011) A nonlinear two compartmental fractional derivative model. Eur J Drug Metab Pharmacokinet 36(4):189–196

    Article  Google Scholar 

  • Shargel L, Yu ABC (2016) Applied biopharmaceutics & pharmacokinetics, 7e. McGraw-Hill

  • Shou M, Mei Q, Ettore MW Jr, Dai R, Baillie TA, Rushmore TH (1999) Sigmoidal kinetic model for two co-operative substrate-binding sites in a cytochrome P450 3A4 active site: an example of the metabolism of diazepam and its derivatives. Biochem J 340:845–853

    Article  Google Scholar 

  • Sopasakis P, Sarimveis H, Macheras P et al (2018) Fractional calculus in pharmacokinetics. J Pharmacokinet Pharmacodyn 45:107–125

    Article  Google Scholar 

  • Tang S, Xiao Y (2007) One-compartment model with Michaelis–Menten elimination kinetics and therapeutic window: an analytical approach. J Pharmacokinet Pharmacodyn 34:807–827

    Article  Google Scholar 

  • Turino LN, Mariano RN, Cabrera MI, Scándolo DE, Maciel MG, Grau RJ (2010) Pharmacokinetics of progesterone in lactating dairy cows: gaining some insights into the metabolism from kinetic modeling. J Dairy Sci 93(3):988–999

    Article  Google Scholar 

  • Wagner JG (1973) Properties of the Michaelis–Menten equation and its integrated form which are useful in pharmacokinetics. J Pharmacokinet Biopharm 1(2):103–121

    Article  Google Scholar 

  • Wilkinson PK, Sedman AJ, Sakmar E, Kay DR, Wagner JG (1977) Pharmacokinetics of ethanol after oral administration in the fasting state. J Pharmacokinet Biopharm 5(3):207–224

    Article  Google Scholar 

  • Wong H, Tong V, Riggs KW, Rurak DW, Abbott FS, Kumar S (2007) Kinetics of valproic acid glucuronidation: evidence for in vivo autoactivation. Drug Metab Dispos 35(8):1380–6

    Article  Google Scholar 

  • Wong H, Xia B, Tong V, Kumar S, Kenny J (2012) Atypical kinetics of valproic acid glucuronidation in vitro and in vivo in humans. Pharmaceutica Analytica Acta 1–5

  • Wu X, Li J, Nekka F (2015) Closed form solutions and dominant elimination pathways of simultaneous first-order and Michaelis–Menten kinetics. J Pharmacokinet Pharmacodyn 42:151–161

    Article  Google Scholar 

  • Wu X, Nekka F, Li J (2018) Mathematical analysis and drug exposure evaluation of pharmacokinetic models with endogenous production and simultaneous first-order and Michaelis–Menten elimination: the case of single dose. J Pharmacokinet Pharmacodyn 45(5):693–705

    Article  Google Scholar 

  • Wu X, Nekka F, Li J (2019) Analytical solution and exposure analysis of a pharmacokinetic model with simultaneous elimination pathways and endogenous production: the case of multiple dosing administration. Bull Math Biol 81:3436–3459

    Article  MathSciNet  Google Scholar 

  • Wu X, Chen M, Li J (2021) Constant infusion case of one compartment pharmacokinetic model with simultaneous first-order and Michaelis–Menten elimination: analytical solution and drug exposure formula. J Pharmacokinet Pharmacodyn 48(4):495–508

    Article  Google Scholar 

  • Yadav J, Korzekwa K, Nagar S (2021) Numerical methods for modeling enzyme kinetics. Methods Mol Biol 2342:147–168

    Article  Google Scholar 

Download references

Acknowledgements

X. Wu thanks the financial support from National Natural Science Foundation of China (Nos. 12271346, 12071300), and J. Li thanks the supports from Natural Sciences and Engineering Research Council of Canada (Grant No. RGPIN-2016-05058) and the Fonds de recherche du Québec—Nature et technologies (FRQNT). We would also like to thank two anonymous reviewers for their helpful and insightful comments which lead to the high improvement of the article’s quality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Remark 3

From Eq. (24), if \(0<\alpha <2\), \(\mathrm{AUC}_{0-\infty }\) can be rewritten as

$$\begin{aligned} \mathrm{AUC}_{0-\infty } = \frac{1}{V_{\mathrm{max}}}\left[ \frac{K^{\alpha }_D}{2-\alpha }e^{(2-\alpha )\ln \frac{D}{V_\mathrm{d}}}+\frac{1}{2}(\frac{D}{V_\mathrm{d}})^2\right] . \end{aligned}$$

Using the fact \(\ln (1+x)\approx x\) for x close to zero, we have \(\ln \frac{D}{V_\mathrm{d}}=\ln (1+(\frac{D}{V_\mathrm{d}}-1))\approx (\frac{D}{V_\mathrm{d}}-1)\) for a low enough D. Doing the Taylor series expansion on D, we have

$$\begin{aligned} \mathrm{AUC}_{0-\infty }\approx & {} \frac{1}{V_{\mathrm{max}}}\left[ \frac{K^{\alpha }_D}{2-\alpha }e^{(2-\alpha )(\frac{D}{V_\mathrm{d}}-1)}+\frac{1}{2}(\frac{D}{V_\mathrm{d}})^2\right] \\= & {} \frac{1}{V_{\mathrm{max}}}\left[ \frac{K^{\alpha }_D}{2-\alpha }(1+(2-\alpha )(\frac{D}{V_\mathrm{d}}-1)+o((2-\alpha )(\frac{D}{V_\mathrm{d}}-1))) + \frac{1}{2}(\frac{D}{V_\mathrm{d}})^2 \right] \\= & {} \frac{K_\mathrm{D}^{\alpha }}{V_{\mathrm{max}}(2-\alpha )}+\frac{1}{V_{\mathrm{max}}}(\frac{D}{V-d}-1)+\frac{1}{2V_{\mathrm{max}}}(\frac{D}{V_\mathrm{d}})^2+o(\frac{D}{V_{\mathrm{d}}}-1)\\\approx & {} \frac{K_\mathrm{D}^{\alpha }}{V_{\mathrm{max}}(2-\alpha )}. \end{aligned}$$

However, for a large enough D, we can deduce from Eq. (24) that \(\mathrm{AUC}_{0-\infty }\) is predominantly determined by the quadratic term w.r.t. D, namely \(\frac{1}{2V_{\mathrm{max}}}(\frac{D}{V_\mathrm{d}})^2\). When \(\alpha =1\), we have calculated \(\mathrm{AUC}_{0-\infty }=\frac{K_\mathrm{D}}{V_{\mathrm{max}}}\frac{D}{V_\mathrm{d}}+\frac{1}{2V_{\mathrm{max}}}(\frac{D}{V_\mathrm{d}})^2\), which is also predominantly determined by the latter term \(\frac{1}{2V_{\mathrm{max}}}(\frac{D}{V_\mathrm{d}})^2\) for a large enough dose D.

Appendix B: Sensitivity Indices Calculation

  1. (i)

    By Definition (27) and Eq. (5), the sensitivity index of C(t) to \(\alpha \) is \(\lambda ^{C(t)}_{\alpha }=\frac{\partial C(t)}{\partial \alpha }\frac{\alpha }{C(t)}\), and

    $$\begin{aligned} \frac{\partial C(t)}{\partial \alpha }= & {} \frac{K_\mathrm{D}^{\alpha }}{1-\alpha }\left[ \left( C_0^{1-\alpha }-C^{1-\alpha }(t)\right) \left( \frac{1}{1-\alpha }+\ln K_\mathrm{D}\right) \right. \nonumber \\&\quad \left. -\, \left( C_0^{1-\alpha }\ln C_0-C^{1-\alpha }(t)\ln C(t)\right) \right] . \end{aligned}$$
    (38)
  2. (ii)

    From Eq. (17), the sensitivity index of \(T_{1/2}\) to \(\alpha \) is \(\lambda ^{ T_{1/2}}_{\alpha }=\frac{\partial T_{1/2}}{\partial \alpha }\frac{\alpha }{ T_{1/2}}\), and

    $$\begin{aligned} \frac{\partial T_{1/2}}{\partial \alpha }&= \frac{K_\mathrm{D}}{(\alpha -1)V_{\max }}\left( \frac{K_\mathrm{D}}{C(t)}\right) ^{\alpha -1} \left[ 2^{\alpha -1}\ln 2-\frac{2^{\alpha -1}-1}{\alpha -1}+(2^{\alpha -1}-1)\ln \frac{K_\mathrm{D}}{C(t)}\right] \nonumber \\&\quad +\, \left[ \frac{1}{2V_{\max }}-\frac{2^{\alpha -1}-1}{V_{\max }}\left( \frac{K_\mathrm{D}}{C(t)}\right) ^{\alpha }\right] \frac{\partial C(t)}{\partial \alpha }. \end{aligned}$$
    (39)
  3. (iii)

    From Eq. (25), the sensitivity indices of \(\mathrm{AUC}_{0-\infty }\) to model parameters are

    $$\begin{aligned} \lambda _{\alpha }^{\mathrm{AUC}_{0-\infty }}&=\left( \frac{\alpha }{2-\alpha }+\alpha \ln \frac{K_\mathrm{D}}{C_0}\right) \Big /\left( 1+\frac{2-\alpha }{2}\left( \frac{C_0}{K_\mathrm{D}}\right) ^{\alpha }\right) , \end{aligned}$$
    (40)
    $$\begin{aligned} \lambda _{V_{\max }}^{\mathrm{AUC}_{0-\infty }}&=-1, \end{aligned}$$
    (41)
    $$\begin{aligned} \lambda _{K_\mathrm{D}}^{\mathrm{AUC}_{0-\infty }}&=\alpha \Big /\left( 1+\frac{2-\alpha }{2}\left( \frac{C_0}{K_\mathrm{D}}\right) ^{\alpha }\right) , \end{aligned}$$
    (42)
    $$\begin{aligned} \lambda _{V_\mathrm{d}}^{\mathrm{AUC}_{0-\infty }}&= (\alpha -2)\times \left( 1+\left( \frac{C_0}{K_\mathrm{D}}\right) ^{\alpha }\right) \Big /\left( 1+\frac{2-\alpha }{2}\left( \frac{C_0}{K_\mathrm{D}}\right) ^{\alpha }\right) . \end{aligned}$$
    (43)

Appendix C: Proof of Lemma 1

Proof

First, we assume Eq. (29) has a fixed point. As a sequence \(\{C_{\max ,n}\}_{n=1}^{\infty }\) is non decreasing, we denote \(C^{ss}_{\max }=\lim \limits _{n\rightarrow \infty }C_{\max ,n}>D/V_\mathrm{d}\). Following the definition of H(s) (Eq. (8)), we have

$$\begin{aligned} \frac{1}{1-\alpha }\left( \frac{C^{ss}_{\max }-D/V_\mathrm{d}}{K_\mathrm{D}}\right) ^{1-\alpha }+\frac{C^{ss}_{\max }-D/V_\mathrm{d}}{K_\mathrm{D}}=\frac{1}{1-\alpha }\left( \frac{C^{ss}_{\max }}{K_\mathrm{D}}\right) ^{1-\alpha }+\frac{C^{ss}_{\max }-V_{\max }T}{K_\mathrm{D}}, \end{aligned}$$

which can be simplified as

$$\begin{aligned} \left( C^{ss}_{\max }\right) ^{1-\alpha }-\left( C^{ss}_{\max }-\frac{D}{V_\mathrm{d}}\right) ^{1-\alpha }=\frac{V_{\max }(1-\alpha )}{K_\mathrm{D}^{\alpha }}\left( T-\frac{D}{V_\mathrm{d}V_{\max }}\right) . \end{aligned}$$
(44)

Consider the function \(g:[D/V_\mathrm{d},\infty ) \longrightarrow \mathbb {R}\); \(g(x)=x^{1-\alpha }-(x-D/V_\mathrm{d})^{1-\alpha }\), whose derivative is

$$\begin{aligned} g'(x)=(1-\alpha )\left( \frac{1}{x^{\alpha }}-\frac{1}{(x-D/V_\mathrm{d})^{\alpha }}\right) . \end{aligned}$$
(45)

We can notice that, for all positive \(\alpha \not =1\), \(\displaystyle \frac{1}{x^{\alpha }}<\frac{1}{(x-D/V_\mathrm{d})^{\alpha }}\) if \(x>D/V_\mathrm{d}\). So, on \([D/V_\mathrm{d},\infty )\), g(x) is monotonically decreasing for \(0<\alpha <1\) as \(g'(x)<0\), and monotonically increasing for \(\alpha >1\) as \(g'(x)>0\).

Now, we discuss the asymptotic property of \(C_{\max ,n}\).

  1. (i)

    \(0<\alpha <1\). In this case, \(g(D/V_\mathrm{d})=(D/V_\mathrm{d})^{1-\alpha }>0\) and \(\lim \nolimits _{x\rightarrow +\infty }g(x)=0\). It indicates that g(x) monotonically decreases from \((D/V_\mathrm{d})^{1-\alpha }\) to 0, which conversely implies that Eq. (29) has a unique fixed point \(C^{ss}_{\max }\) larger than \(D/V_\mathrm{d}\) if and only if

    $$\begin{aligned} 0<\frac{V_{\max }(1-\alpha )}{K_\mathrm{D}^{\alpha }}\left( T-\frac{D}{V_\mathrm{d}V_{\max }}\right) <\left( \frac{D}{V_\mathrm{d}}\right) ^{1-\alpha }, \end{aligned}$$
    (46)

    or

    $$\begin{aligned} T_0^*=\frac{D}{V_\mathrm{d}V_{\max }}<T<\frac{D}{V_\mathrm{d}V_{\max }}\left( 1+\frac{1}{1-\alpha }\left( \frac{K_\mathrm{D}}{D/V_\mathrm{d}}\right) ^{\alpha }\right) =T_1^*. \end{aligned}$$
    (47)

    Otherwise, \(C_{\max ,n}\) will continue to increase if \(T<T_0^*\), or \(C_{\min ,n}=0\) and \(C_{\max ,n}=D/V_\mathrm{d}\) for all n if \(T>T_1^*\). Particularly,

    $$\begin{aligned} \lim \limits _{\alpha \rightarrow 1^-}\frac{D}{V_\mathrm{d}V_{\max }}\left( 1+\frac{1}{1-\alpha }\left( \frac{K_\mathrm{D}}{D/V_\mathrm{d}}\right) ^{\alpha }\right) =+\infty \end{aligned}$$

    which is consistent with the condition of the existence of \(C^{ss}_{\max }\) for one-compartment pharmacokinetic model with a single Michaelis–Menten elimination pathway (Tang and Xiao 2007).

  2. (ii)

    \(\alpha >1\). In this case, we have \(\lim \nolimits _{t\rightarrow (D/V_\mathrm{d})^+}g(x)=-\infty \) and \(\lim \nolimits _{t\rightarrow +\infty }g(x)=0\). This indicates that g(x) monotonically increases from negative infinity to zero as x goes up from \(D/V_\mathrm{d}\) to \(+\infty \). Subsequently, Eq. (29) has a unique fixed point \(C^{ss}_{\max }\) which is greater than \(D/V_\mathrm{d}\) if and only if

    $$\begin{aligned} \frac{1-\alpha }{K_\mathrm{D}^{\alpha }}\left( V_{\max }T-\frac{D}{V_\mathrm{d}}\right) <0\Leftrightarrow T>\frac{D}{V_\mathrm{d}V_{\max }}=T_0^*. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Zhang, H. & Li, J. An Analytical Approach of One-Compartmental Pharmacokinetic Models with Sigmoidal Hill Elimination. Bull Math Biol 84, 117 (2022). https://doi.org/10.1007/s11538-022-01078-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11538-022-01078-4

Keywords

Mathematics Subject Classification

Navigation