Skip to main content

Advertisement

Log in

Evaluating Strategies For Tuberculosis to Achieve the Goals of WHO in China: A Seasonal Age-Structured Model Study

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Although great progress has been made in the prevention and mitigation of TB in the past 20 years, China is still the third largest contributor to the global burden of new TB cases, accounting for 833,000 new cases in 2019. Improved mitigation strategies, such as vaccines, diagnostics, and treatment, are needed to meet goals of WHO. Given the huge variability in the prevalence of TB across age-groups in China, the vaccination, diagnostic techniques, and treatment for different age-groups may have different effects. Moreover, the statistics data of TB cases show significant seasonal fluctuations in China. In view of the above facts, we propose a non-autonomous differential equation model with age structure and seasonal transmission rate. We derive the basic reproduction number, \({\mathcal {R}}_{0}\), and prove that the unique disease-free periodic solution, \({\mathcal {P}}_{0}\) is globally asymptotically stable when \({\mathcal {R}}_{0}<1\), while the disease is uniformly persistent and at least one positive periodic solution exists when \({\mathcal {R}}_{0}>1\). We estimate that the basic reproduction number \({\mathcal {R}}_{0}=1.3935\) (\(95\%\text{ CI }:(1.3729, 1.4087)\)), which means that TB is uniformly persistent. Our results demonstrate that vaccinating susceptible individuals whose ages are over 65 and between 20 and 24 is much more effective in reducing the prevalence of TB, and each of the improved vaccination strategy, diagnostic strategy, and treatment strategy leads to substantial reductions in the prevalence of TB per 100,000 individuals compared with current approaches, and the combination of the three strategies is more effective. Scenario A (i.e., coverage rate \(85\%\), diagnosis rate \(5\theta _{k}\), relapse rate \(0.1\chi _{k}\)) is the best and can reduce the prevalence of TB per 100,000 individuals by \(98.91\%\) and \(99.07\%\) in 2035 and 2050, respectively. Although the improved strategies will significantly reduce the incidence rate of TB, it is challenging to achieve the goal of WHO in 2050. Our findings can provide guidance for public health authorities in projecting effective mitigation strategies of TB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abu-Raddad LJ, Sabatelli L, Achterberg JT, Sugimoto JD, Longini IM, Dye C, Halloran ME (2009) Epidemiological benefits of more-effective tuberculosis vaccines, drugs, and diagnostics. Proc Natl Acad Sci 106(33):13980–13985

    Article  Google Scholar 

  • Ainseba B, Feng Z, Iannelli M, Milner F (2017) Control strategies for TB epidemics. SIAM J Appl Math 77(1):82–107

    Article  MathSciNet  MATH  Google Scholar 

  • Anderson RM, May RM (1992) Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, UK

  • Bhunu C, Garira W, Mukandavire Z, Zimba M (2008) Tuberculosis transmission model with chemoprophylaxis and treatment. Bull Math Biol 70(4):1163–1191

    Article  MathSciNet  MATH  Google Scholar 

  • Brooks SP, Roberts GO (1998) Assessing convergence of Markov chain Monte Carlo algorithms. Stat Comput 8(4):319–335

    Article  Google Scholar 

  • Cai Y, Zhao S, Niu Y, Peng Z, Wang K, He D, Wang W (2021) Modelling the effects of the contaminated environments on tuberculosis in Jiangsu, China. J Theor Biol 508:110453

    Article  MathSciNet  MATH  Google Scholar 

  • Castillo-Chavez C, Feng Z (1998) Global stability of an age-structure model for tb and its applications to optimal vaccination strategies. Math Biosci 151(2):135–154

    Article  MATH  Google Scholar 

  • China Statistical Yearbook (2014) Age-specific Fertility Rate of Childbearing Women by Age of Mother and Birth Order. Available from: http://www.stats.gov.cn/tjsj/ndsj/2014/indexee.htm. Accessed 4 March 2021

  • Cintrón-Arias A, Banks HT, Capaldi A, Lloyd AL (2009) A sensitivity matrix based methodology for inverse problem formulation. J Inverse and Ill-posed Problem 17(6):1–20

    Article  MathSciNet  MATH  Google Scholar 

  • Cui X, Gao L, Cao B (2020) Management of latent tuberculosis infection in China: exploring solutions suitable for high-burden countries. Int J Infect Dis 92:S37–S40

    Article  Google Scholar 

  • Dye C, Williams BG (2008) Eliminating human tuberculosis in the twenty-first century. J R Soc Interface 5(23):653–662

    Article  Google Scholar 

  • Feng Z, Castillo-Chavez C, Capurro AF (2000) A model for tuberculosis with exogenous reinfection. Theor Popul Biol 57(3):235–247

    Article  MATH  Google Scholar 

  • Feng Z, Iannelli M, Milner F (2002) A two-strain tuberculosis model with age of infection. SIAM J Appl Math 62(5):1634–1656

    Article  MathSciNet  MATH  Google Scholar 

  • Feng Z, Feng Y, Glasser JW (2020) Influence of demographically-realistic mortality schedules on vaccination strategies in age-structured models. Theor Popul Biol 132:24–32

    Article  MATH  Google Scholar 

  • Gamerman D, Lopes HF, Salazar E (2008) Spatial dynamic factor analysis. Bayesian. Analysis 3(4):759–792

    MathSciNet  MATH  Google Scholar 

  • Grange J, Gandy M, Farmer P, Zumla A (2001) Historical declines in tuberculosis: nature, nurture and the biosocial model [counterpoint]. Int J Tuberc Lung Dis 5(3):208–212

    Google Scholar 

  • Guo ZK, Xiang H, Huo HF (2021) Analysis of an age-structured tuberculosis model with treatment and relapse. J Math Biol 82(5):1–37

    Article  MathSciNet  MATH  Google Scholar 

  • Haario H, Laine M, Mira A, Saksman E (2006) DRAM: Efficient adaptive MCMC. Stat Comput 16(4):339–354

    Article  MathSciNet  Google Scholar 

  • Harris RC, Sumner T, Knight GM, White RG (2016) Systematic review of mathematical models exploring the epidemiological impact of future TB vaccines. Human Vaccines & Immunotherapeutics 12(11):2813–2832

    Article  Google Scholar 

  • Harris RC, Sumner T, Knight GM, Evans T, Cardenas V, Chen C, White RG (2019) Age-targeted tuberculosis vaccination in China and implications for vaccine development: a modelling study. Lancet Glob Health 7(2):e209–e218

    Article  Google Scholar 

  • Harris RC, Sumner T, Knight GM, Zhang H, White RG (2020) Potential impact of tuberculosis vaccines in China, South Africa, and India. Sci Trans Med 12(564):eaax4607

    Article  Google Scholar 

  • Hethcote HW (2000) The mathematics of infectious diseases. SIAM Rev 42(4):599–653

    Article  MathSciNet  MATH  Google Scholar 

  • Houben RM, Menzies NA, Sumner T, Huynh GH, Arinaminpathy N, Goldhaber-Fiebert JD, Lin HH, Wu CY, Mandal S, Pandey S et al (2016) Feasibility of achieving the 2025 WHO global tuberculosis targets in South Africa, China, and India: a combined analysis of 11 mathematical models. Lancet Glob Health 4(11):e806–e815

    Article  Google Scholar 

  • Huynh GH, Klein DJ, Chin DP, Wagner BG, Eckhoff PA, Liu R, Wang L (2015) Tuberculosis control strategies to reach the 2035 global targets in China: the role of changing demographics and reactivation disease. BMC Med 13(1):1–17

    Article  Google Scholar 

  • Keeler E, Perkins MD, Small P, Hanson C, Reed S, Cunningham J, Aledort JE, Hillborne L, Rafael ME, Girosi F et al (2006) Reducing the global burden of tuberculosis: the contribution of improved diagnostics. Nature 444(1):49–57

    Article  Google Scholar 

  • Knight GM, Griffiths UK, Sumner T, Laurence YV, Gheorghe A, Vassall A, Glaziou P, White RG (2014) Impact and cost-effectiveness of new tuberculosis vaccines in low-and middle-income countries. Proc Natl Acad Sci 111(43):15520–15525

    Article  Google Scholar 

  • Lawn SD, Zumla AI (2011) Tuberculosis. The Lancet 378(9785):57–72

    Article  Google Scholar 

  • Lin HH, Wang L, Zhang H, Ruan Y, Chin DP, Dye C (2015) Tuberculosis control in China: use of modelling to develop targets and policies. Bull World Health Organ 93:790–798

    Article  Google Scholar 

  • Liu L, Zhao XQ, Zhou Y (2010) A Tuberculosis Model with Seasonality. Bull Math Biol 72(4):931–952

    Article  MathSciNet  MATH  Google Scholar 

  • Liu S, Li Y, Bi Y, Huang Q (2017) Mixed vaccination strategy for the control of tuberculosis: a case study in China. Math Biosci Eng 14(3):695

    Article  MathSciNet  MATH  Google Scholar 

  • Mangtani P, Abubakar I, Ariti C, Beynon R, Pimpin L, Fine PE, Rodrigues LC, Smith PG, Lipman M, Whiting PF et al (2014) Protection by BCG vaccine against tuberculosis: a systematic review of randomized controlled trials. Clin Infect Dis 58(4):470–480

    Article  Google Scholar 

  • Marino S, Hogue IB, Ray CJ, Kirschner DE (2008) A methodology for performing global uncertainty and sensitivity analysis in systems biology. J Theor Biol 254(1):178–196

    Article  MathSciNet  MATH  Google Scholar 

  • Meltzer MI, Gambhir M, Atkins CY, Swerdlow DL (2015) Standardizing scenarios to assess the need to respond to an influenza pandemic. Clin Infect Dis 60(suppl-1):S1–S8

  • Pollicott M, Wang H, Weiss H (2012) Extracting the time-dependent transmission rate from infection data via solution of an inverse ODE problem. J Biol Dyn 6(2):509–523

    Article  MathSciNet  MATH  Google Scholar 

  • Population Census Office of the State Council of the People’s Republic of China (2021) Tabulation on the 2010 population census of the People’s Republic of China. Available from: http://www.stats.gov.cn/tjsj/pcsj/rkpc/6rp/indexch.htm. Accessed 10 March 2021

  • Prem K, Cook AR, Jit M (2017) Projecting social contact matrices in 152 countries using contact surveys and demographic data. PLoS Comput Biol 13(9):e1005697

    Article  Google Scholar 

  • Ren T, Lu P, Deng G (2020) 2020 WHO tuberculosis report: key data for China and the whole world. Electron J Emerg Infect Dis 5(4):280–284

    Google Scholar 

  • Renardy M, Kirschner DE (2019) Evaluating vaccination strategies for tuberculosis in endemic and non-endemic settings. J Theor Biol 469:1–11

    Article  MathSciNet  MATH  Google Scholar 

  • Renardy M, Kirschner DE (2020) A framework for network-based epidemiological modeling of tuberculosis dynamics using synthetic datasets. Bull Math Biol 82(6):1–20

    Article  MathSciNet  MATH  Google Scholar 

  • Rios M, Garcia J, Sanchez J, Perez D (2000) A statistical analysis of the seasonality in pulmonary tuberculosis. Eur J Epidemiol 16(5):483–488

    Article  Google Scholar 

  • Roy A, Eisenhut M, Harris R, Rodrigues L, Sridhar S, Habermann S, Snell L, Mangtani P, Adetifa I, Lalvani A et al (2014) Effect of BCG vaccination against Mycobacterium tuberculosis infection in children: systematic review and meta-analysis. BMJ 349:g4643

    Article  Google Scholar 

  • Data-Center of China Public Health Science (2021) Data Directory. Available from: https://www.phsciencedata.cn/Share/en/index.jsp. Accessed 15 Mar 2021

  • Shen M, Zu J, Fairley CK, Pagán JA, An L, Du Z, Guo Y, Rong L, Xiao Y, Zhuang G, Li Y, Zhang L (2021) Projected COVID-19 epidemic in the united states in the context of the effectiveness of a potential vaccine and implications for social distancing and face mask use. Vaccine 39(16):2295–2302

    Article  Google Scholar 

  • Skeiky YA, Sadoff JC (2006) Advances in tuberculosis vaccine strategies. Nat Rev Microbiol 4(6):469–476

    Article  Google Scholar 

  • Smith HL, Waltman P (1995) The theory of the chemostat: dynamics of microbial competition, vol 13. Cambridge University Press, UK

  • Song B, Castillo-Chavez C, Aparicio JP (2002) Tuberculosis models with fast and slow dynamics: the role of close and casual contacts. Math Biosci 180(1–2):187–205

    Article  MathSciNet  MATH  Google Scholar 

  • Sreeramareddy CT, Panduru KV, Menten J, Van den Ende J (2009) Time delays in diagnosis of pulmonary tuberculosis: a systematic review of literature. BMC Infect Dis 9(1):1–10

    Article  Google Scholar 

  • National Bureau of Statistics (2021a) China Statistical Yearbook. Available from: http://www.stats.gov.cn/tjsj/ndsj/. Accessed 23 Mar 2021

  • National Bureau of Statistics (2021b) China Statistical Yearbook. Available from: http://www.stats.gov.cn/tjsj/ndsj/2020/indexch.htm. Accessed 18 Jan 2021

  • Su Q, Feng Z, Hao L, Ma C, Hagan JE, Grant GB, Wen N, Fan C, Yang H, Rodewald LE, Wang H, Glasser JW (2021) Assessing the burden of congenital rubella syndrome in China and evaluating mitigation strategies: a metapopulation modelling study. Lancet Infect Dis 21(7):1004–1013

    Article  Google Scholar 

  • Thieme HR (1992) Convergence results and a poincaré-bendixson trichotomy for asymptotically autonomous differential equations. J Math Biol 30(7):755–763

    Article  MathSciNet  MATH  Google Scholar 

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteor Soc 79(1):61–78

    Article  Google Scholar 

  • Wang L, Zhang H, Ruan Y, Chin DP, Xia Y, Cheng S, Chen M, Zhao Y, Jiang S, Du X et al (2014) Tuberculosis prevalence in China, 1990–2010; a longitudinal analysis of national survey data. The Lancet 383(9934):2057–2064

    Article  Google Scholar 

  • Wang W, Zhao XQ (2008) Threshold dynamics for compartmental epidemic models in periodic environments. J Dyn Diff Equat 20(3):699–717

    Article  MathSciNet  MATH  Google Scholar 

  • Wikipedia (2021) Tuberculosis. Available from: https://en.wikipedia.org/wiki/Tuberculosis. Accessed 13 Mar 2021

  • Wikipedia (2022) One in Ten Rule. Available from: https://en.wikipedia.org/wiki/One_in_ten_rule. Accessed 26 Mar 2022

  • World Health Organization (2021a) Global tuberculosis report 2020. Available from: https://www.who.int/publications/i/item/9789240013131. Accessed 21 January 2021

  • Xu K, Ding C, Mangan CJ, Li Y, Ren J, Yang S, Wang B, Ruan B, Sheng J, Li L (2017) Tuberculosis in China: A longitudinal predictive model of the general population and recommendations for achieving WHO goals. Respirology 22(7):1423–1429

    Article  Google Scholar 

  • Yang H, Jin Z (2021) A stochastic model explains the periodicity phenomenon of influenza on network. Sci Rep 11(1):1–16

    MathSciNet  Google Scholar 

  • World Health Organization (2021b) Tuberculosis. Available from: https://www.who.int/en/news-room/fact-sheets/detail/tuberculosis. Accessed 27 Jan 2021

  • Zhang F, Zhao XQ (2007) A periodic epidemic model in a patchy environment. J Math Anal Appl 325(1):496–516

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang J, Li Y, Zhang X (2015) Mathematical modeling of tuberculosis data of China. J Theor Biol 365:159–163

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang YD, Huo HF, Xiang H et al (2019) Dynamics of tuberculosis with fast and slow progression and media coverage. Mathematical Biosciences & Engineering 16(3):1150–1170

    Article  MathSciNet  Google Scholar 

  • Zhang Z, Lu Z, Xie H, Duan Q (2016) Seasonal variation and related influencing factors for tuberculosis. Zhonghua liu xing bing xue za zhi= Zhonghua liuxingbingxue zazhi 37(8):1183–1186

    Google Scholar 

  • Zhao XQ (2003) Dynam Syst Population Biol. Springer International Publishing, New York

  • Zhao Y, Li M, Yuan S (2017) Analysis of transmission and control of tuberculosis in Mainland China, 2005–2016, based on the age-structure mathematical model. Int J Environ Res Public Health 14(10):1192

    Article  Google Scholar 

  • Zhou Y, Khan K, Feng Z, Wu J (2008) Projection of tuberculosis incidence with increasing immigration trends. J Theor Biol 254(2):215–228

    Article  MathSciNet  MATH  Google Scholar 

  • Ziv E, Daley CL, Blower SM (2001) Early therapy for latent tuberculosis infection. Am J Epidemiol 153(4):381–385

    Article  Google Scholar 

Download references

Acknowledgements

LX is funded by the National Natural Science Foundation of China 12171116 and Fundamental Research Funds for the Central Universities of China 3072020CFT2402. SJ is funded by Fundamental Research Funds for the Central Universities of China 3072021CF2403. HW is partially supported by NSERC Individual Discovery Grant RGPIN-2020-03911 and NSERC Discovery Accelerator Supplement Award RGPAS-2020-00090.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Wang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A The Expressions of \(f_{ij}\), \(v_{ij}\) and the Existence of Periodic Solutions

$$\begin{aligned} f_{12}= & {} \left[ \begin{array}{cccc} (1-q_{1})\beta _{1}(t)c_{11}(s^{0}_{1}+\eta _{1}v^{0}_{1})&{} (1-q_{1})\beta _{1}(t)c_{12}(s^{0}_{1}+\eta _{1}v^{0}_{1})&{} \cdots &{}(1-q_{1})\beta _{1}(t)c_{1n}(s^{0}_{1}+\eta _{1}v^{0}_{1})\\ (1-q_{2})\beta _{2}(t)c_{21}(s^{0}_{2}+\eta _{2}v^{0}_{2})&{} (1-q_{2})\beta _{2}(t)c_{22}(s^{0}_{2}+\eta _{2}v^{0}_{2})&{} \cdots &{}(1-q_{2})\beta _{2}(t)c_{2n}(s^{0}_{2}+\eta _{2}v^{0}_{2})\\ \vdots &{}\vdots &{}\ddots &{}\vdots \\ (1-q_{n})\beta _{n}(t)c_{n1}(s^{0}_{n}+\eta _{n}v^{0}_{n})&{} (1-q_{n})\beta _{n}(t)c_{n2}(s^{0}_{n}+\eta _{n}v^{0}_{n})&{} \cdots &{}(1-q_{n})\beta _{n}(t)c_{nn}(s^{0}_{n}+\eta _{n}v^{0}_{n})\\ \end{array} \right] , \\ f_{13}= & {} \left[ \begin{array}{cccc} (1-q_{1})\beta _{1}(t)c_{11}\omega _{1}(s^{0}_{1}+\eta _{1}v^{0}_{1})&{} (1-q_{1})\beta _{1}(t)c_{12}\omega _{2}(s^{0}_{1}+\eta _{1}v^{0}_{1})&{} \cdots &{}(1-q_{1})\beta _{1}(t)c_{1n}\omega _{n}(s^{0}_{1}+\eta _{1}v^{0}_{1})\\ (1-q_{2})\beta _{2}(t)c_{21}\omega _{1}(s^{0}_{2}+\eta _{2}v^{0}_{2})&{} (1-q_{2})\beta _{2}(t)c_{22}\omega _{2}(s^{0}_{2}+\eta _{2}v^{0}_{2})&{} \cdots &{}(1-q_{2})\beta _{2}(t)c_{2n}\omega _{n}(s^{0}_{2}+\eta _{2}v^{0}_{2})\\ \vdots &{}\vdots &{}\ddots &{}\vdots \\ (1-q_{n})\beta _{n}(t)c_{n1}\omega _{1}(s^{0}_{n}+\eta _{n}v^{0}_{n})&{} (1-q_{n})\beta _{n}(t)c_{n2}\omega _{2}(s^{0}_{n}+\eta _{n}v^{0}_{n})&{} \cdots &{}(1-q_{n})\beta _{n}(t)c_{nn}\omega _{n}(s^{0}_{n}+\eta _{n}v^{0}_{n})\\ \end{array} \right] , \\ f_{22}= & {} \left[ \begin{array}{cccc} q_{1}\beta _{1}(t)c_{11}(s^{0}_{1}+\eta _{1}v^{0}_{1})&{} q_{1}\beta _{1}(t)c_{12}(s^{0}_{1}+\eta _{1}v^{0}_{1})&{} \cdots &{}q_{1}\beta _{1}(t)c_{1n}(s^{0}_{1}+\eta _{1}v^{0}_{1})\\ q_{2}\beta _{2}(t)c_{21}(s^{0}_{2}+\eta _{2}v^{0}_{2})&{} q_{2}\beta _{2}(t)c_{22}(s^{0}_{2}+\eta _{2}v^{0}_{2})&{} \cdots &{}q_{2}\beta _{2}(t)c_{2n}(s^{0}_{2}+\eta _{2}v^{0}_{2})\\ \vdots &{}\vdots &{}\ddots &{}\vdots \\ q_{n}\beta _{n}(t)c_{n1}(s^{0}_{n}+\eta _{n}v^{0}_{n})&{} q_{n}\beta _{n}(t)c_{n2}(s^{0}_{n}+\eta _{n}v^{0}_{n})&{} \cdots &{}q_{n}\beta _{n}(t)c_{nn}(s^{0}_{n}+\eta _{n}v^{0}_{n})\\ \end{array} \right] , \\ f_{23}= & {} \left[ \begin{array}{cccc} q_{1}\beta _{1}(t)c_{11}\omega _{1}(s^{0}_{1}+\eta _{1}v^{0}_{1})&{} q_{1}\beta _{1}(t)c_{12}\omega _{2}(s^{0}_{1}+\eta _{1}v^{0}_{1})&{} \cdots &{}q_{1}\beta _{1}(t)c_{1n}\omega _{n}(s^{0}_{1}+\eta _{1}v^{0}_{1})\\ q_{2}\beta _{2}(t)c_{21}\omega _{1}(s^{0}_{2}+\eta _{2}v^{0}_{2})&{} q_{2}\beta _{2}(t)c_{22}\omega _{2}(s^{0}_{2}+\eta _{2}v^{0}_{2})&{} \cdots &{}q_{2}\beta _{2}(t)c_{2n}\omega _{n}(s^{0}_{2}+\eta _{2}v^{0}_{2})\\ \vdots &{}\vdots &{}\ddots &{}\vdots \\ q_{n}\beta _{n}(t)c_{n1}\omega _{1}(s^{0}_{n}+\eta _{n}v^{0}_{n})&{} q_{n}\beta _{n}(t)c_{n2}\omega _{2}(s^{0}_{n}+\eta _{n}v^{0}_{n})&{} \cdots &{}q_{n}\beta _{n}(t)c_{nn}\omega _{n}(s^{0}_{n}+\eta _{n}v^{0}_{n})\\ \end{array} \right] , \\ v_{11}= & {} \left[ \begin{array}{ccccc} \sigma _{1}+u+d_{1}+\alpha _{1}&{}0&{}\cdots &{}0&{}0\\ -a_{(k-1)k}\alpha _{1}&{} \sigma _{2}+u+d_{2}+\alpha _{2}&{}\cdots &{}0&{}0\\ \vdots &{}\vdots &{}\ddots &{}\vdots &{}\vdots \\ 0&{}0&{}\cdots &{}-a_{(k-1)k}\alpha _{n-1}&{}\sigma _{n}+u+d_{n}+\alpha _{n}\\ \end{array} \right] , \\ v_{21}= & {} \left[ \begin{array}{ccccc} -\mu _{1}\sigma _{1}&{}0&{}\cdots &{}0\\ 0&{} -\mu _{2}\sigma _{2}&{}\cdots &{}0\\ \vdots &{}\vdots &{}\ddots &{}\vdots \\ 0&{}0&{}\cdots &{} -\mu _{n}\sigma _{n}\\ \end{array} \right] , \\ v_{22}= & {} \left[ \begin{array}{ccccc} \theta _{1}+u+d_{1}+\alpha _{1}&{}0&{}\cdots &{}0&{}0\\ -a_{(k-1)k}\alpha _{1}&{} \theta _{2}+u+d_{2}+\alpha _{2}&{}\cdots &{}0&{}0\\ \vdots &{}\vdots &{}\ddots &{}\vdots &{}\vdots \\ 0&{}0&{}\cdots &{}-a_{(k-1)k}\alpha _{n-1}&{} \theta _{n}+u+d_{n}+\alpha _{n}\\ \end{array} \right] , \\ v_{24}= & {} \left[ \begin{array}{ccccc} -\chi _{1}&{}0&{}\cdots &{}0\\ 0&{} -\chi _{2}&{}\cdots &{}0\\ \vdots &{}\vdots &{}\ddots &{}\vdots \\ 0&{}0&{}\cdots &{} -\chi _{n}\\ \end{array} \right] ,\;\; v_{32}=\left[ \begin{array}{ccccc} -\xi _{1}\theta _{1}&{}0&{}\cdots &{}0\\ 0&{} -\xi _{2}\theta _{2}&{}\cdots &{}0\\ \vdots &{}\vdots &{}\ddots &{}\vdots \\ 0&{}0&{}\cdots &{} -\xi _{n}\theta _{n}\\ \end{array} \right] , \\ v_{33}= & {} \left[ \begin{array}{ccccc} \gamma _{1}+u+d_{1}+\alpha _{1}&{}0&{}\cdots &{}0&{}0\\ -a_{(k-1)k}\alpha _{1}&{} \gamma _{2}+u+d_{2}+\alpha _{2}&{}\cdots &{}0&{}0\\ \vdots &{}\vdots &{}\ddots &{}\vdots &{}\vdots \\ 0&{}0&{}\cdots &{}-a_{(k-1)k}\alpha _{n-1}&{} \gamma _{n}+u+d_{n}+\alpha _{n}\\ \end{array} \right] , \\ v_{41}= & {} \left[ \begin{array}{ccccc} -(1-\mu _{1})\sigma _{1}&{}0&{}\cdots &{}0\\ 0&{} -(1-\mu _{2})\sigma _{2}&{}\cdots &{}0\\ \vdots &{}\vdots &{}\ddots &{}\vdots \\ 0&{}0&{}\cdots &{} -(1-\mu _{n})\sigma _{n}\\ \end{array} \right] , \\ v_{42}= & {} \left[ \begin{array}{ccccc} -(1-\xi _{1})\theta _{1}&{}0&{}\cdots &{}0\\ 0&{} -(1-\xi _{2})\theta _{2}&{}\cdots &{}0\\ \vdots &{}\vdots &{}\ddots &{}\vdots \\ 0&{}0&{}\cdots &{} -(1-\xi _{n})\theta _{n}\\ \end{array} \right] , \;\; v_{43}=\left[ \begin{array}{ccccc} -\rho _{1}\gamma _{1}&{}0&{}\cdots &{}0\\ 0&{}-\rho _{2}\gamma _{2}&{}\cdots &{}0\\ \vdots &{}\vdots &{}\ddots &{}\vdots \\ 0&{}0&{}\cdots &{} -\rho _{n}\gamma _{n}\\ \end{array} \right] , \\ v_{44}= & {} \left[ \begin{array}{ccccc} \chi _{1}+u+d_{1}+\alpha _{1}&{}0&{}\cdots &{}0&{}0\\ -a_{(k-1)k}\alpha _{1}&{} \chi _{2}+u+d_{2}+\alpha _{2}&{}\cdots &{}0&{}0\\ \vdots &{}\vdots &{}\ddots &{}\vdots &{}\vdots \\ 0&{}0&{}\cdots &{}-a_{(k-1)k}\alpha _{n-1}&{} \chi _{n}+u+d_{n}+\alpha _{n}\\ \end{array} \right] . \end{aligned}$$

We divide the population into two age-groups and provide some numerical simulations to support Remark 1. The parameters of System (2) are fixed as \(\beta _{1}(t)={\hat{\beta }}_{1}(1+0.99\sin (\frac{\pi }{6}t))\), \({\hat{\beta }}_{1}\in [0.03,0.08]\), \(\beta _{2}(t)={\hat{\beta }}_{2}(1+0.99\sin (\frac{\pi }{6}t))\), \({\hat{\beta }}_{2}\in [0.03,0.08]\), \(c_{11}=42\), \(c_{12}=18\), \(c_{21}=19\), \(c_{22}=186\), \(d_1=1/(100\times 12)\), \(d_2=1/(50\times 12)\), \(\alpha _1=1/(50\times 12)\), \(\alpha _2=0\), \(p_1=0.99\), \(\nu _2=0.4\), \(q_1=0.05\), \(q_2=0.05\), \(\sigma _1=1.5\times 10^{-4}\), \(\sigma _2=2.3\times 10^{-4}\), \(\theta _1=30/25\), \(\theta _2=30/25\), \(\gamma _1=1/6\), \(\gamma _2=1/6\), \(\rho _1=0.95\), \(\rho _2=0.95\), \(\mu _1=0.1545\), \(\mu _2=0.1545\), \(\xi _1=0.89\), \(\xi _2=0.89\), \(\omega _1=0.4387\), \(\omega _2=0.4387\), \(\eta _1=0.15\), \(\eta _2=0.15\), \(\tau _1=1/(10\times 12)\), \(\tau _2=1/(5\times 12)\), \(\delta _1=0.8\), \(\delta _2=0.8\), \(\varrho _1=0.8\), \(\varrho _2=0.8\), \(\chi _1=0.0075/12\), \(\chi _2=0.006/12\), \(a_{12}=1\), \(u=0\). The initial values of System (2) are \((s_{1}(0),s_{2}(0),v_{1}(0),v_{2}(0),e_{1}(0),e_{2}(0),i_{1}(0),i_{2}(0),f_{1}(0),f_{2}(0),r_{1}(0),r_{2}(0)) = (0.5,0.5,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1)\). According to numerical simulation results, when \({\mathcal {R}}_{0}<1\), System (2) has at least one stable positive periodic solution and one stable disease-free periodic solution. When \({\mathcal {R}}_{0}>1\), System (2) has at least one stable positive periodic solution and one unstable disease-free periodic solution, as shown in Fig. 8.

Fig. 8
figure 8

The existence of periodic solutions (Color figure online)

Appendix B Contact Matrix

Let \({\overline{A}}\) represent the known contact matrix, as shown in Table 4, and \({\bar{a}}_{ig},i,g=1,2,\cdots ,m\) represents the elements in the contact matrix, where ig refers to rows and columns, respectively, and m is the number of age-groups in the contact matrix. We use \(C=(c_{kj}),k,j=1,2,\cdots ,n\) to denote the modified contact matrix, then we let age-group \({\bar{u}}\) contain narrower age-groups \(i=l(k)\) to g(k), where n is the number of age-groups in the modified contact matrix.

Table 4 Contact matrix (Prem et al. 2017)
Table 5 Number of individuals in each age-group (Population Census Office of the State Council of the People’s Republic of China 2021)

The contact rate between an individual in age-group i and another individual in age-group g can be expressed as

$$\begin{aligned} {\bar{d}}_{ij}=\sum ^{{\bar{u}}(j)}_{g=l(j)}{\bar{a}}_{ig}. \end{aligned}$$

Let \(N_{i}\) denote the population in age-group i, as shown in Table 5, we can calculate the population weighted average of each element, \({\bar{d}}\), and derive the contact rate between age-group k and age-group j. For elements off-diagonal, we need to calculate the number of contacts between different age-groups. Therefore, the total number of contacts from k to j and j to k can be expressed as

$$\begin{aligned} {\bar{Y}}_{kj}=\sum ^{{\bar{u}}(k)}_{i=l(k)}N_{i}{\bar{d}}_{ij},\;{\bar{Y}}_{jk}=\sum ^{{\bar{u}}(j)}_{i=l(j)}N_{i}{\bar{d}}_{ik}. \end{aligned}$$

In order to ensure that \({\bar{Y}}_{kj}\) and \({\bar{Y}}_{jk}\) are equal, we averaged \({\bar{Y}}_{kj}\) and \({\bar{Y}}_{jk}\), namely

$$\begin{aligned} Z_{kj}=Z_{jk}=\frac{{\bar{Y}}_{kj}+{\bar{Y}}_{jk}}{2}. \end{aligned}$$

In summary, the modified contact matrix element can be expressed as

$$\begin{aligned} c_{kj}=\frac{Z_{kj}}{\sum ^{{\bar{u}}(k)}_{i=l(k)}N_{i}},\;c_{jk}=\frac{Z_{jk}}{\sum ^{{\bar{u}}(j)}_{i=l(j)}N_{i}}, \end{aligned}$$

where \(c_{kj}\) is the rate at which an individual in age-group k makes contacts with anyone in age-group j per day. The total contact rate on the diagonal is

$$\begin{aligned} c_{kk}=\frac{\sum ^{{\bar{u}}(k)}_{i=l(k)}N_{i}{\bar{d}}_{ik}}{\sum ^{{\bar{u}}(k)}_{i=l(k)}N_{i}}. \end{aligned}$$

Appendix C Data Collection and Wavelet Analysis

Table 6 Population data from 2005 to 2019 (National Bureau of Statistics 2021a)
Fig. 9
figure 9

Temporal periodicity analysis of monthly new TB cases for 14 age-groups from January 2005 to December 2017 in mainland China using the wavelet method. (A) The wavelet spectrum analysis corresponding to time series of monthly new TB cases. High power values are colored in red; orange and yellow denote intermediate power; cyan and blue denote low one. Note the black line is the 95% confidence level. (B) The average wavelet spectrum (blue line) and the corresponding 95% confidence contour (red line) (Color figure online)

Fig. 10
figure 10

3D graph of the fitting results of monthly TB prevalence per 100,000 individuals from January 2005 to December 2017. The 14 age-groups represent 0–4 years old 5–9 years old, 10–14 years old, 15–19 years old, 20–24 years old, 25–29 years old, 30–34 years old, 35–39 years old, 40–44 years old, 45–49 years old, 50–54 years old, 55–59 years old, 60–64 years old, and 65+ years old, respectively. The black circles represent the actual data (Color figure online)

Appendix D Parameter Estimation

Fig. 11
figure 11

The fitting results of TB prevalence per 100,000 individuals vary with age-groups. The solid red line represents the simulated curve of System (1). The black circles represent training data, and the green circles represent testing data. The \(95\%\) confidence and prediction intervals are shown as light red and light blue, respectively. The 14 age-groups represent 0–4 years old, 5–9 years old, 10–14 years old, 15–19 years old, 20–24 years old, 25–29 years old, 30–34 years old, 35–39 years old, 40–44 years old, 45–49 years old, 50–54 years old, 55–59 years old, 60–64 years old, and 65+ years old, respectively (Color figure online)

Fig. 12
figure 12

Trace plots of unknown parameters and initial values for System (1), estimated by Markov chain Monte Carlo (MCMC) methods. The blue lines represent the \(95\%\) confidence interval. The red line represents the mean value (Color figure online)

Table 7 The unknown parameters of System (1)
Table 8 The initial values of System (1)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, L., Jing, S. & Wang, H. Evaluating Strategies For Tuberculosis to Achieve the Goals of WHO in China: A Seasonal Age-Structured Model Study. Bull Math Biol 84, 61 (2022). https://doi.org/10.1007/s11538-022-01019-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11538-022-01019-1

Keywords

Navigation