Skip to main content
Log in

Global analysis of an age-structured tuberculosis model with an application to Jiangsu, China

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Diagnostic delay for TB infected individuals and the lack of TB vaccines for adults are the main challenges to achieve the goals of WHO by 2050. In order to evaluate the impacts of diagnostic delay and vaccination for adults on prevalence of TB, we propose an age-structured model with latent age and infection age, and we incorporate Mycobacterium TB in the environment and vaccination into the model. Diagnostic delay is indicated by the age of infection before receiving treatment. The threshold dynamics are established in terms of the basic reproduction number \({\mathcal {R}}_0\). When \({\mathcal {R}}_0<1\), the disease-free equilibrium is globally asymptotically stable, which means that TB epidemic will die out; When \({\mathcal {R}}_0=1\), the disease-free equilibrium is globally attractive; there exists a unique endemic equilibrium and the endemic equilibrium is globally attractive when \({\mathcal {R}}_0>1\). We estimate that the basic reproduction number \({\mathcal {R}}_{0}=0.5320\) (95% CI (0.3060, 0.7556)) in Jiangsu Province, which means that TB epidemic will die out. However, we find that the annual number of new TB cases by 2050 is 1,151 (95%CI: (138, 8,014)), which means that it is challenging to achieve the goal of WHO by 2050. To this end, we evaluate the possibility of achieving the goals of WHO if we start vaccinating adults and reduce diagnostic delay in 2025. Our results demonstrate that when the diagnostic delay is reduced from longer than four months to four months, or 20% adults are vaccinated, the goal of WHO in 2050 can be achieved, and 73,137 (95%CI: (23,906, 234,086)) and 54,828 (95%CI: (15,811, 206,468)) individuals will be prevented from being infected from 2025 to 2050, respectively. The modeling approaches and simulation results used in this work can help policymakers design control measures to reduce the prevalence of TB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abu-Raddad LJ, Sabatelli L, Achterberg JT, Sugimoto JD, Longini IM, Dye C, Halloran ME (2009) Epidemiological benefits of more-effective tuberculosis vaccines, drugs, and diagnostics. Proc Natl Acad Sci 106(33):13980–13985

    Google Scholar 

  • Ainseba B, Feng Z, Iannelli M, Milner F (2017) Control Strategies for TB Epidemics. SIAM J Appl Math 77(1):82–107

    MathSciNet  Google Scholar 

  • Aronson NE, Santosham M, Comstock GW, Howard RS, Moulton LH, Rhoades ER, Harrison LH (2004) Long-term efficacy of BCG vaccine in American Indians and Alaska Natives: a 60-year follow-up study. J Am Med Assoc 291(17):2086–2091

    Google Scholar 

  • Borgdorff MW, Sebek M, Geskus RB, Kremer K, Kalisvaart N, van Soolingen D (2011) The incubation period distribution of tuberculosis estimated with a molecular epidemiological approach. Int J Epidemiol 40(4):964–970

    Google Scholar 

  • Cai Y, Zhao S, Niu Y, Peng Z, Wang K, He D, Wang W (2021) Modelling the effects of the contaminated environments on tuberculosis in Jiangsu, China. J Theor Biol 508:110453

    MathSciNet  Google Scholar 

  • Castillo-Chavez C, Feng Z (1998) Global stability of an age-structure model for TB and its applications to optimal vaccination strategies. Math Biosci 151(2):135–154

    Google Scholar 

  • Català M, Prats C, López D, Cardona PJ, Alonso S (2020) A reaction-diffusion model to understand granulomas formation inside secondary lobule during tuberculosis infection. PLoS ONE 15(9):e0239289

    Google Scholar 

  • Champredon D, Dushoff J, Earn DJ (2018) Equivalence of the Erlang-distributed SEIR epidemic model and the renewal equation. SIAM J Appl Math 78(6):3258–3278

    MathSciNet  Google Scholar 

  • Chinese Center for Disease Control and Prevention (2022) Infectious Disease. Available from: https://www.chinacdc.cn/kpyd2018/kpydcrb/201704/t20170406_141920.html. Accessed 29 August 2023

  • Choi S, Jung E (2014) Optimal tuberculosis prevention and control strategy from a mathematical model based on real data. Bull Math Biol 76(7):1566–1589

    MathSciNet  Google Scholar 

  • Cui X, Gao L, Cao B (2020) Management of latent tuberculosis infection in China: exploring solutions suitable for high-burden countries. Int J Infect Dis 92:S37–S40

    Google Scholar 

  • D’Agata EM, Magal P, Ruan S, Webb G et al (2006) Asymptotic behavior in nosocomial epidemic models with antibiotic resistance. Differ Integral Equ 19(5):573–600

    MathSciNet  Google Scholar 

  • Diekmann O, Heesterbeek JAP, Metz JA (1990) On the definition and the computation of the basic reproduction ratio \({R}_{0}\) in models for infectious diseases in heterogeneous populations. J Math Biol 28(4):365–382

    MathSciNet  Google Scholar 

  • Dye C, Williams BG (2008) Eliminating human tuberculosis in the twenty-first century. J R Soc Interface 5(23):653–662

    Google Scholar 

  • Feng Z, Huang W, Castillo-Chavez C (2001) On the role of variable latent periods in mathematical models for tuberculosis. J Dyn Differ Equ 13(2):425–452

    MathSciNet  Google Scholar 

  • Feng Z, Iannelli M, Milner F (2002) A two-strain tuberculosis model with age of infection. SIAM J Appl Math 62(5):1634–1656

    MathSciNet  Google Scholar 

  • Feng Z, Xu D, Zhao H (2007) Epidemiological models with non-exponentially distributed disease stages and applications to disease control. Bull Math Biol 69(5):1511–1536

    MathSciNet  Google Scholar 

  • Guo ZK, Xiang H, Huo HF (2021) Analysis of an age-structured tuberculosis model with treatment and relapse. J Math Biol 82(5):1–37

    MathSciNet  Google Scholar 

  • Haario H, Laine M, Mira A, Saksman E (2006) Dram: efficient adaptive MCMC. Stat Comput 16(4):339–354

    MathSciNet  Google Scholar 

  • Hale JK, Waltman P (1989) Persistence in infinite-dimensional systems. SIAM J Math Anal 20(2):388–395

    MathSciNet  Google Scholar 

  • Harris RC, Sumner T, Knight GM, Evans T, Cardenas V, Chen C, White RG (2019) Age-targeted tuberculosis vaccination in China and implications for vaccine development: a modelling study. Lancet Glob Health 7(2):e209–e218

    Google Scholar 

  • Harris RC, Sumner T, Knight GM, Zhang H, White RG (2020) Potential impact of tuberculosis vaccines in China, South Africa, and India. Sci Transl Med 12(564):eaax4607

    Google Scholar 

  • Houben RM, Menzies NA, Sumner T, Huynh GH, Arinaminpathy N, Goldhaber-Fiebert JD, Lin HH, Wu CY, Mandal S, Pandey S et al (2016) Feasibility of achieving the 2025 WHO global tuberculosis targets in South Africa, China, and India: a combined analysis of 11 mathematical models. Lancet Glob Health 4(11):e806–e815

    Google Scholar 

  • Huo HF, Zou MX (2016) Modelling effects of treatment at home on tuberculosis transmission dynamics. Appl Math Model 40(21–22):9474–9484

    MathSciNet  Google Scholar 

  • Huynh GH, Klein DJ, Chin DP, Wagner BG, Eckhoff PA, Liu R, Wang L (2015) Tuberculosis control strategies to reach the 2035 global targets in China: the role of changing demographics and reactivation disease. BMC Med 13(1):1–17

    Google Scholar 

  • Iannelli M, Milner F (2017) The basic approach to age-structured population dynamics. Springer, Dordrecht

    Google Scholar 

  • Jiangsu Statistical Yearbook (2022) The population of Jiangsu Province. Available from: http://tj.jiangsu.gov.cn/2020/nj03.htm. Accessed 29 August 2023

  • Kenne C, Dorville R, Mophou G, Zongo P (2021) An age-structured model for tilapia lake virus transmission in freshwater with vertical and horizontal transmission. Bull Math Biol 83(8):1–35

    MathSciNet  Google Scholar 

  • Kong JD, Davis W, Li X, Wang H (2014) Stability and sensitivity analysis of the iSIR model for indirectly transmitted infectious diseases with immunological threshold. SIAM J Appl Math 74(5):1418–1441

    MathSciNet  Google Scholar 

  • Kong JD, Davis W, Wang H (2014) Dynamics of a cholera transmission model with immunological threshold and natural phage control in reservoir. Bull Math Biol 76(8):2025–2051

    MathSciNet  Google Scholar 

  • LaSalle J (1960) Some extensions of Liapunov’s second method. IRE Trans Circuit Theory 7(4):520–527

    MathSciNet  Google Scholar 

  • Li S, Eisenberg JN, Spicknall IH, Koopman JS (2009) Dynamics and control of infections transmitted from person to person through the environment. Am J Epidemiol 170(2):257–265

    Google Scholar 

  • Li XZ, Yang J, Martcheva M (2020) Age structured epidemic modeling, vol 52. Springer, Switzerland

    Google Scholar 

  • Lin HH, Wang L, Zhang H, Ruan Y, Chin DP, Dye C (2015) Tuberculosis control in China: use of modelling to develop targets and policies. Bull World Health Organ 93:790–798

    Google Scholar 

  • Liu L, Zhao XQ, Zhou Y (2010) A tuberculosis model with seasonality. Bull Math Biol 72(4):931–952

    MathSciNet  Google Scholar 

  • Liu L, Zhang J, Li Y, Ren X (2022) An age-structured tuberculosis model with information and immigration: stability and simulation study. Int J Biomath 16(02):2250076

    MathSciNet  Google Scholar 

  • Magal P, Zhao XQ (2005) Global attractors and steady states for uniformly persistent dynamical systems. SIAM J Math Anal 37(1):251–275

    MathSciNet  Google Scholar 

  • Magal P, McCluskey C, Webb G (2010) Lyapunov functional and global asymptotic stability for an infection-age model. Appl Anal 89(7):1109–1140

    MathSciNet  Google Scholar 

  • Marino S, Hogue IB, Ray CJ, Kirschner DE (2008) A methodology for performing global uncertainty and sensitivity analysis in systems biology. J Theor Biol 254(1):178–196

    MathSciNet  Google Scholar 

  • Martcheva M (2015) An introduction to mathematical epidemiology, vol 61. Springer, New York

    Google Scholar 

  • Miles PR (2019) pymcmcstat: a python package for Bayesian inference using delayed rejection adaptive metropolis. J Open Source Softw 4(38):1417

    Google Scholar 

  • Mu Y, Chan TL, Yuan HY, Lo WC (2022) Transmission dynamics of tuberculosis with age-specific disease progression. Bull Math Biol 84(7):1–26

    MathSciNet  Google Scholar 

  • National Bureau of Statistics of China (2022) Annual statistics of Jiangsu Province. Available from: http://data.stats.gov.cn/. Accessed 29 August 2023

  • NEWTON RC (1912) The present non-medical treatment of tuberculosis not new. J Am Med Assoc 58(19):1423–1427

    Google Scholar 

  • Okuonghae D (2015) A note on some qualitative properties of a tuberculosis differential equation model with a time delay. Differ Equ Dyn Syst 23(2):181–194

    MathSciNet  Google Scholar 

  • Posny D, Wang J (2014) Modelling cholera in periodic environments. J Biol Dyn 8(1):1–19

    MathSciNet  Google Scholar 

  • Qiu Z, Feng Z (2010) Transmission dynamics of an influenza model with age of infection and antiviral treatment. J Dyn Differ Equ 22(4):823–851

    MathSciNet  Google Scholar 

  • Riquelme-Miralles D, Palazón-Bru A, Sepehri A, Gil-Guillén VF (2019) A systematic review of non-pharmacological interventions to improve therapeutic adherence in tuberculosis. Heart Lung 48(5):452–461

    Google Scholar 

  • Roy A, Eisenhut M, Harris RJ, Rodrigues LC, Sridhar S, Habermann S, Snell L, Mangtani P, Adetifa I, Lalvani A, Abubakar I (2014) Effect of BCG vaccination against mycobacterium tuberculosis infection in children: systematic review and meta-analysis. BMJ 349:g4643

    Google Scholar 

  • Shen M, Xiao Y, Rong L, Meyers LA, Bellan SE (2017) Early antiretroviral therapy and potent second-line drugs could decrease HIV incidence of drug resistance. Proc R Soc B Biol Sci 284(1857):20170525

    Google Scholar 

  • Smith HL, Thieme HR (2011) Dynamical systems and population persistence, vol 118. American Mathematical Society, Providence

    Google Scholar 

  • Song B, Castillo-Chavez C, Aparicio JP (2002) Tuberculosis models with fast and slow dynamics: the role of close and casual contacts. Math Biosci 180(1–2):187–205

    MathSciNet  Google Scholar 

  • Sreeramareddy CT, Panduru KV, Menten J, Van den Ende J (2009) Time delays in diagnosis of pulmonary tuberculosis: a systematic review of literature. BMC Infect Dis 9(1):1–10

    Google Scholar 

  • Tang S, Yan Q, Shi W, Wang X, Sun X, Yu P, Wu J, Xiao Y (2018) Measuring the impact of air pollution on respiratory infection risk in China. Environ Pollut 232:477–486

    Google Scholar 

  • Van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180(1–2):29–48

    MathSciNet  Google Scholar 

  • Wang L, Zhang H, Ruan Y, Chin DP, Xia Y, Cheng S, Chen M, Zhao Y, Jiang S, Du X et al (2014) Tuberculosis prevalence in China, 1990–2010; a longitudinal analysis of national survey data. The Lancet 383(9934):2057–2064

    Google Scholar 

  • Wang J, Lang J, Chen Y (2017) Global threshold dynamics of an SVIR model with age-dependent infection and relapse. J Biol Dyn 11(sup2):427–454

    MathSciNet  Google Scholar 

  • Wang X, Liu Z, Wang L, Guo C (2022) A diffusive tuberculosis model with early and late latent infections: new Lyapunov function approach to global stability. Int J Biomath 15(08):2250057

    MathSciNet  Google Scholar 

  • Wikipedia (2022) Tuberculosis. Available from: https://en.wikipedia.org/wiki/Tuberculosis. Accessed 29 August 2023

  • World Health Organization (2022a) Global tuberculosis report 2020. Available from: https://www.who.int/publications/i/item/9789240013131. Accessed 29 August 2023

  • World Health Organization (2022b) Tuberculosis Fact Sheet. Available from: https://www.who.int/en/news-room/fact-sheets/detail/tuberculosis. Accessed 29 August 2023

  • Wu P, Zhao H (2021) Mathematical analysis of an age-structured HIV/AIDS epidemic model with HAART and spatial diffusion. Nonlinear Anal Real World Appl 60:103289

    MathSciNet  Google Scholar 

  • Xu K, Ding C, Mangan CJ, Li Y, Ren J, Yang S, Wang B, Ruan B, Sheng J, Li L (2017) Tuberculosis in China: a longitudinal predictive model of the general population and recommendations for achieving WHO goals. Respirology 22(7):1423–1429

    Google Scholar 

  • Xu R, Yang J, Tian X, Lin J (2019) Global dynamics of a tuberculosis model with fast and slow progression and age-dependent latency and infection. J Biol Dyn 13(1):675–705

    MathSciNet  Google Scholar 

  • Xue L, Jing S, Wang H (2022) Evaluating strategies for tuberculosis to achieve the goals of who in China: a seasonal age-structured model study. Bull Math Biol 84(6):1–50

    MathSciNet  Google Scholar 

  • Yan D, Cao H (2019) The global dynamics for an age-structured tuberculosis transmission model with the exponential progression rate. Appl Math Model 75:769–786

    MathSciNet  Google Scholar 

  • Yang P, Wang Y (2019) Hopf bifurcation of an infection-age structured eco-epidemiological model with saturation incidence. J Math Anal Appl 477(1):398–419

    MathSciNet  Google Scholar 

  • Yang JY, Wang XY, Li XZ, Zhang FQ (2011) Intrinsic transmission global dynamics of tuberculosis with age structure. Int J Biomath 4(03):329–346

    MathSciNet  Google Scholar 

  • Zhang X, Liu Z (2020) Hopf bifurcation for a susceptible-infective model with infection-age structure. J Nonlinear Sci 30(1):317–367

    MathSciNet  Google Scholar 

  • Zhang R, Liu L, Feng X, Jin Z (2021) Existence of traveling wave solutions for a diffusive tuberculosis model with fast and slow progression. Appl Math Lett 112:106848

    MathSciNet  Google Scholar 

  • Ziv E, Daley CL, Blower SM (2001) Early therapy for latent tuberculosis infection. Am J Epidemiol 153(4):381–385

    Google Scholar 

  • Zou L, Ruan S, Zhang W (2010) An age-structured model for the transmission dynamics of hepatitis B. SIAM J Appl Math 70(8):3121–3139

    MathSciNet  Google Scholar 

Download references

Acknowledgements

LX is funded by the National Natural Science Foundation of China 12171116 and Fundamental Research Funds for the Central Universities of China 3072020CFT2402. HW is partially supported by NSERC Individual Discovery Grant RGPIN-2020-03911 and NSERC Discovery Accelerator Supplement Award RGPAS-2020-00090.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ling Xue or Hao Wang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Theorem 1

Note that the total population size N(t) satisfies

$$\begin{aligned} \left. \begin{aligned} \frac{\text{ d }N(t)}{\text{ d }t}&=\frac{\text{ d }S(t)}{\text{ d }t} +\frac{\text{ d }V(t)}{\text{ d }t}+\frac{\text{ d }T(t)}{\text{ d }t}+ \frac{\text{ d }R(t)}{\text{ d }t}+\frac{\text{ d }}{\text{ d }t} \int ^{+\infty }_{0}e(t,b)\text{ d }b\\&\quad +\frac{\text{ d }}{\text{ d }t} \int ^{+\infty }_{0}i(t,a)\text{ d }a. \end{aligned} \right. \end{aligned}$$
(28)

According to Eq. (5), we have

$$\begin{aligned} \int ^{+\infty }_{0}e(t,b)\text{ d }b= & {} \int ^{t}_{0}e(t-b,0)k_{1}(b)\text{ d }b +\int ^{+\infty }_{t}e_{0}(b-t)\frac{k_{1}(b)}{k_{1}(b-t)}\text{ d }b\\= & {} \int ^{t}_{0}e(\tau _{1},0)k_{1}(t-\tau _{1})\text{ d }\tau _{1} +\int ^{+\infty }_{0}e_{0}(\tau _{2})\frac{k_{1}(t+\tau _{2})}{k_{1}(\tau _{2})}\text{ d }\tau _{2}. \end{aligned}$$

Then

$$\begin{aligned} \frac{\text{ d }}{\text{ d }t}\int ^{+\infty }_{0}e(t,b)\text{ d }b= & {} \frac{\text{ d }}{\text{ d }t}\int ^{t}_{0}e(\tau _{1},0)k_{1}(t-\tau _{1})\text{ d }\tau _{1}+ \frac{\text{ d }}{\text{ d }t}\int ^{+\infty }_{0}e_{0}(\tau _{2}) \frac{k_{1}(t+\tau _{2})}{k_{1}(\tau _{2})}\text{ d }\tau _{2}\\= & {} e(t,0)k_{1}(0)+\int ^{t}_{0}e(\tau _{1},0)\frac{\text{ d }}{\text{ d }t} k_{1}(t-\tau _{1})\text{ d }\tau _{1}\\{} & {} +\int ^{+\infty }_{0}\frac{e_{0} (\tau _{2})}{k_{1}(\tau _{2})}\frac{\text{ d }}{\text{ d }t}k_{1}(t+\tau _{2})\text{ d }\tau _{2}.\\ \end{aligned}$$

Note that \(k_{1}(0)=1\) and \(\frac{\text{ d }}{\text{ d }b}k_{1}(b)=-(\rho \sigma (b)+d)k_{1}(b)\) for almost all \(b\ge 0\). Thus, we have

$$\begin{aligned} \frac{\text{ d }}{\text{ d }t}\int ^{+\infty }_{0}e(t,b)\text{ d }b= & {} e(t,0)-\int ^{t}_{0}e(\tau _{1},0)(\rho \sigma (t-\tau _{1}) +d)k_{1}(t-\tau _{1})\text{ d }\tau _{1}\\{} & {} -\int ^{+\infty }_{0}\frac{e_{0}(\tau _{2})}{k_{1}(\tau _{2})} (\rho \sigma (t+\tau _{2})+d)k_{1}(t+\tau _{2})\text{ d }\tau _{2}\\= & {} e(t,0)-\int ^{+\infty }_{0}(\rho \sigma (b)+d)e(t,b)\text{ d }b. \end{aligned}$$

Similarly, we obtain

$$\begin{aligned} \begin{aligned} \frac{\text{ d }}{\text{ d }t}\int ^{+\infty }_{0}i(t,a)\text{ d }a=i(t,0) -\int ^{+\infty }_{0}(\theta (a)+d)i(t,a)\text{ d }a. \end{aligned} \end{aligned}$$

We deduce that N(t) satisfies the following equation

$$\begin{aligned} \begin{aligned} \frac{\text{ d }N(t)}{\text{ d }t}=\varLambda -dN(t). \end{aligned} \end{aligned}$$

Solving the above equation, we have \(N(t)=\frac{\varLambda }{d}-\text{ e}^{-dt}(\frac{\varLambda }{d}-N_{0})\) and \(\underset{t\rightarrow \infty }{\lim \sup }\;N(t)\le \frac{\varLambda }{d}\) for \(t\in {\mathbb {R}}_{+}\), where \(N_{0}\) represents the total population at time \(t = 0\).

Through the fifth equation of System (2), we obtain

$$\begin{aligned} \frac{\text{ d }W(t)}{\text{ d }t}=\int ^{+\infty }_{0}\xi _{1}(a)i(t,a) \text{ d }a+\xi _{2}T(t)-cW(t)\le \frac{\varLambda ({\bar{\xi }}_{1}+\xi _{2})}{d}-cW(t). \end{aligned}$$

Solving the above equation, we have that \(W(t)=\frac{\varLambda ({\bar{\xi }}_{1}+\xi _{2})}{dc}-\text{ e}^{-ct} \Big (\frac{\varLambda ({\bar{\xi }}_{1}+\xi _{2})}{dc}-W_{0}\Big )\) and \(\underset{t\rightarrow \infty }{\lim \sup }\;W(t)\le \frac{\varLambda ({\bar{\xi }}_{1}+\xi _{2})}{dc}\) for \(t\in {\mathbb {R}}_{+}\), where \(W_{0}\) indicates the density of Mycobacterium TB at time \(t=0\). This completes the proof. \(\square \)

Appendix B: Proof of Theorem 2

The characteristic equation corresponding to \({\mathcal {P}}^{0}\) is

$$\begin{aligned} \begin{aligned} G(\iota )&=\big (S^{0}+\eta V^{0}\big )\bigg \{{\mathcal {H}}_{2}(\iota ) +\frac{\beta _{2}{\mathcal {H}}_{3}(\iota )}{\iota +\gamma +d}+ \frac{\beta _{3}[(\iota +\gamma +d){\mathcal {H}}_{4}(\iota ) +\xi _{2}{\mathcal {H}}_{3}(\iota )]}{(\iota +c)(\iota +\gamma +d)}\bigg \}\\&\quad \big [q+\rho (1-q){\mathcal {H}}_{1}(\iota )\big ]-1. \end{aligned} \end{aligned}$$

When \(\iota \) is real, we can acquire some basic properties of \(G(\iota )\) as follows

$$\begin{aligned} \begin{aligned} G(0)={\mathcal {R}}_{0}-1,\;G'(\iota )<0,\;\underset{\iota \rightarrow - \infty }{\lim }G(\iota )=+\infty ,\;\underset{\iota \rightarrow +\infty }{\lim }G(\iota )=-1. \end{aligned} \end{aligned}$$

Hence, when \({\mathcal {R}}_{0}>1\), the characteristic equation \(G(\iota )=0\) has a real positive root. Then, the disease-free equilibrium is unstable. When \({\mathcal {R}}_{0}<1\), the characteristic equation \(G(\iota )=0\) does not have a solution with non-negative real part. Otherwise, \(G(\iota )=0\) has at least one root \(\iota _{0}=\alpha _{0}+i\beta _{0}\) satisfying \(\alpha _{0}\ge 0\). Then, we have

$$\begin{aligned} 0=|G(\iota _{0})|\le {\mathcal {R}}_{0}-1, \end{aligned}$$

which contradicts with \({\mathcal {R}}_{0}<1\). Hence, when \({\mathcal {R}}_{0}<1\), the disease-free equilibrium is locally asymptotically stable. This completes the proof. \(\square \)

Appendix C: Proof of Theorem 3

For \(t\ge 0\), let

$$\begin{aligned} \varPsi (t,x)=(S(t),V(t),T(t),R(t),W(t),{\tilde{e}}(t,\cdot ),{\tilde{i}}(t,\cdot )), \end{aligned}$$

and

$$\begin{aligned} \Theta (t,x)=(0,0,0,0,0,\varphi _{e}(t,\cdot ),\varphi _{i}(t,\cdot )), \end{aligned}$$

where

$$\begin{aligned} {\tilde{e}}(t,b)= & {} \left\{ \begin{array}{ll} e(t-b,0)k_{1}(b),&{}\quad 0\le b\le t,\\ 0,&{}\quad 0\le t\le b,\\ \end{array}\right. \quad {\tilde{i}}(t,a)=\left\{ \begin{array}{ll} i(t-a,0)k_{2}(a),&{}\quad 0\le a\le t,\\ 0,&{}\quad 0\le t\le a,\\ \end{array} \right. \\ \varphi _{e}(t,b)= & {} \left\{ \begin{array}{ll} 0,&{}\quad 0\le b\le t,\\ e_{0}(b-t)\frac{k_{1}(b)}{k_{1}(b-t)}, &{}\quad 0\le t\le b,\\ \end{array}\right. \quad \varphi _{i}(t,a)=\left\{ \begin{array}{ll} 0,&{}\quad 0\le a\le t,\\ i_{0}(a-t)\frac{k_{2}(a)}{k_{2}(a-t)},&{}\quad 0\le t\le a,\\ \end{array} \right. \end{aligned}$$

for \(x=(S(0),V(0),T(0),R(0),W(0),e_{0}(b),i_{0}(a))\). Clearly, we have \(\varPhi (t,x) =\Theta (t,x) + \varPsi (t,x)\). Let \({\mathcal {B}}\) be a bounded subset of \({\mathcal {Y}}\), \({\mathcal {M}}\) is constants greater than \(\max \Big \{N_{0},\frac{\varLambda }{d},W_{0},\frac{\varLambda ({\bar{\xi }}_{1}+\xi _{2})}{dc}\Big \}\), for each \(x\in {\mathcal {B}}\). Hence, we can derive

$$\begin{aligned} \Vert \Theta (t,x)\Vert _{{\mathcal {Y}}}= & {} \int ^{+\infty }_{t}e_{0}(b-t) \frac{k_{1}(b)}{k_{1}(b-t)}\text{ d }b+ \int ^{+\infty }_{t}i_{0}(a-t)\frac{k_{2}(a)}{k_{2}(a-t)}\text{ d }a\\= & {} \int ^{+\infty }_{0}e_{0}(\tau _{1})\frac{k_{1}(\tau _{1}+t)}{k_{1} (\tau _{1})}\text{ d }\tau _{1}+ \int ^{+\infty }_{0}i_{0}(\tau _{1})\frac{k_{2}(\tau _{1}+t)}{k_{2} (\tau _{1})}\text{ d }\tau _{1}\\= & {} \int ^{+\infty }_{0}e_{0}(\tau _{1})\text{ e}^{-\int ^{\tau _{1} +t}_{\tau _{1}}(\rho \sigma (s)+d)\text{ d }s}\text{ d }\tau _{1}+ \int ^{+\infty }_{0}i_{0}(\tau _{1})\text{ e}^{-\int ^{\tau _{1} +t}_{\tau _{1}}(\theta (s)+d)\text{ d }s}\text{ d }\tau _{1}\\\le & {} \text{ e}^{-dt}\bigg (\int ^{+\infty }_{0}e_{0}(\tau _{1}) \text{ d }\tau _{1}+\int ^{+\infty }_{0}i_{0}(\tau _{1})\text{ d } \tau _{1}\bigg )\le {\mathcal {M}}\text{ e}^{-dt}. \end{aligned}$$

This implies \(\underset{t\rightarrow \infty }{\lim }\;{\textrm{diam}}\;\Theta (t, {\mathcal {B}})= 0\). In the following, we will show that \(\varPsi (t,x)\) has a compact closure for each \(t\ge 0\). We know that S(t), V(t), T(t), R(t), and W(t) remain in the compact set \([0,{\mathcal {M}}]\) for all \(t\ge 0\). Thus, we only need to prove that \({\tilde{e}}(t,b)\) and \({\tilde{i}}(t,a)\) remain in a pre-compact subset of \(L^{1}_{+}(0,+\infty )\), which is independent of \(x\in {\mathcal {B}}\). According to

$$\begin{aligned} 0\le {\tilde{e}}(t,b)=\left\{ \begin{array}{ll} e(t-b,0)k_{1}(b),&{}\quad 0\le b\le t,\\ 0,&{}\quad 0\le t\le b,\\ \end{array} \right. \end{aligned}$$

and assumption (A2), it is easy to show that

$$\begin{aligned} 0\le {\tilde{e}}(t,b)\le (1-q)(1+\eta )({\bar{\beta }}_{1}+\beta _{2} +\beta _{3}){\mathcal {M}}^{2}\text{ e}^{-db}. \end{aligned}$$

Therefore, the conditions (i), (ii) and (iv) of Lemma 2 are satisfied. Next, we verify that condition (iii) of Lemma 2 is satisfied.

$$\begin{aligned} \begin{aligned} \int ^{+\infty }_{0}|{\tilde{e}}(t,b+h)-{\tilde{e}}(t,b)|\text{ d }b&=\int ^{t-h}_{0}|{\tilde{e}}(t,b+h)-{\tilde{e}}(t,b)|\text{ d }b +\int ^{t}_{t-h}|{\tilde{e}}(t,b)|\text{ d }b\\&\le \int ^{t-h}_{0}|e(t-b-h,0)||k_{1}(b+h)-k_{1}(b)|\text{ d }b\\&\quad +\int ^{t-h}_{0}|e(t-b-h,0)-e(t-b,0)||k_{1}(b)|\text{ d }b\\&\quad +(1-q)(1+\eta )({\bar{\beta }}_{1}+\beta _{2}+\beta _{3}){\mathcal {M}}^{2}h, \end{aligned} \end{aligned}$$

where

$$\begin{aligned}{} & {} \int ^{t-h}_{0}|e(t-b-h,0)||k_{1}(b+h)-k_{1}(b)|\text{ d }b\\{} & {} \quad \le (1-q)(1+\eta )({\bar{\beta }}_{1}+\beta _{2}+\beta _{3}){\mathcal {M}}^{2} \bigg (\int ^{t-h}_{0}k_{1}(b)\text{ d }b-\int ^{t-h}_{0}k_{1}(b+h)\text{ d }b\bigg )\\{} & {} \quad =(1-q)(1+\eta )({\bar{\beta }}_{1}+\beta _{2}+\beta _{3}){\mathcal {M}}^{2} \bigg (\int ^{h}_{0}k_{1}(b)\text{ d }b-\int ^{h}_{t-h}k_{1}(b)\text{ d }b -\int ^{t}_{h}k_{1}(s)\text{ d }s\bigg )\\{} & {} \quad =(1-q)(1+\eta )({\bar{\beta }}_{1}+\beta _{2}+\beta _{3}){\mathcal {M}}^{2} \bigg (\int ^{h}_{0}k_{1}(b)\text{ d }b-\int ^{t}_{t-h}k_{1}(s)\text{ d }s\bigg )\\{} & {} \quad \le (1-q)(1+\eta )({\bar{\beta }}_{1}+\beta _{2}+\beta _{3}){\mathcal {M}}^{2}h. \end{aligned}$$

According to System (2), the following inequalities,

$$\begin{aligned}{} & {} \Big |\frac{\text{ d }S(t)}{\text{ d }t}\Big |\le \varLambda +\big [\tau +\delta +\alpha +d+({\bar{\beta }}_{1}+\beta _{2} +\beta _{3}){\mathcal {M}}\big ]{\mathcal {M}},\\{} & {} \Big |\frac{\text{ d }V(t)}{\text{ d }t}\Big |\le \big [\alpha +\eta ({\bar{\beta }}_{1}+\beta _{2}+\beta _{3}){\mathcal {M}}+\tau +d\big ]{\mathcal {M}},\\{} & {} \Big |\frac{\text{ d }T(t)}{\text{ d }t}\Big |\le ({\bar{\theta }} +\gamma +d){\mathcal {M}},\\{} & {} \Big |\frac{\text{ d }R(t)}{\text{ d }t}\Big |\le (\gamma +\delta +d){\mathcal {M}},\\{} & {} \Big |\frac{\text{ d }W(t)}{\text{ d }t}\Big |\le ({\bar{\xi }}_{1}+\xi _{2}+c){\mathcal {M}}, \end{aligned}$$

can be obtained. Next, we prove that \(\int ^{+\infty }_{0}\beta _{1}(a)i(t,a)\text{ d }a\) is Lipschitz continuous.

$$\begin{aligned}{} & {} \bigg |\int ^{+\infty }_{0}\beta _{1}(a)i(t+h,a)\text{ d }a-\int ^{+\infty }_{0} \beta _{1}(a)i(t,a)\text{ d }a\bigg |\\{} & {} \quad =\bigg |\int ^{h}_{0}\beta _{1}(a)i(t+h,a)\text{ d }a +\int ^{+\infty }_{h}\beta _{1}(a)i(t+h,a)\text{ d }a-\int ^{+\infty }_{0} \beta _{1}(a)i(t,a)\text{ d }a\bigg |\\{} & {} \quad =\bigg |\int ^{h}_{0}\beta _{1}(a)i(t+h-a,0)k_{2}(a)\text{ d }a +\int ^{+\infty }_{h}\beta _{1}(a)i(t+h,a)\text{ d }a-\int ^{+\infty }_{0} \beta _{1}(a)i(t,a)\text{ d }a\bigg |\\{} & {} \quad \le \Big [q(1+\eta )({\bar{\beta }}_{1}+\beta _{2}+\beta _{3}) {\mathcal {M}}+\rho {\bar{\sigma }}\Big ]{\bar{\beta }}_{1}{\mathcal {M}}h\\{} & {} \qquad +\bigg |\int ^{+\infty }_{0}\beta _{1}(\tau _{1}+h)i(t+h, \tau _{1}+h)\text{ d }\tau _{1}-\int ^{+\infty }_{0}\beta _{1}(a)i(t,a)\text{ d }a\bigg |\\{} & {} \quad =\Big [q(1+\eta )({\bar{\beta }}_{1}+\beta _{2}+\beta _{3}) {\mathcal {M}}+\rho {\bar{\sigma }}\Big ]{\bar{\beta }}_{1}{\mathcal {M}}h\\{} & {} \qquad +\bigg |\int ^{+\infty }_{0}\beta _{1}(\tau _{1}+h)i(t, \tau _{1})\frac{k_{2}(\tau _{1}+h)}{k_{2}(\tau _{1})}\text{ d } \tau _{1}-\int ^{+\infty }_{0}\beta _{1}(a)i(t,a)\text{ d }a\bigg |. \end{aligned}$$

According to assumption (A3), we note that

$$\begin{aligned}{} & {} \bigg |\int ^{+\infty }_{0}\beta _{1}(a+h)i(t,a)\frac{k_{2}(a+h)}{k_{2}(a)} \text{ d }a-\int ^{+\infty }_{0}\beta _{1}(a)i(t,a)\text{ d }a\bigg |\\{} & {} \quad =\bigg |\int ^{+\infty }_{0}\Big (\beta _{1}(a+h)\frac{k_{2}(a+h)}{k_{2}(a)} -\beta _{1}(a)\Big )i(t,a)\text{ d }a\bigg |\\{} & {} \quad =\bigg |\int ^{+\infty }_{0}\beta _{1}(a+h)i(t,a)\Big (\frac{k_{2}(a +h)}{k_{2}(a)}-1\Big )\text{ d }a\\{} & {} \qquad +\int ^{+\infty }_{0}(\beta _{1}(a+h) -\beta _{1}(a))i(t,a)\text{ d }a\bigg |\\{} & {} \quad =\bigg |\int ^{+\infty }_{0}\beta _{1}(a+h)i(t,a)\Big (\text{ e}^{-\int ^{a +h}_{a}(\theta (s)+d)\text{ d }s}-1\Big )\text{ d }a\\{} & {} \qquad +\int ^{+\infty }_{0} (\beta _{1}(a+h)-\beta _{1}(a))i(t,a)\text{ d }a\bigg |\\{} & {} \quad \le {\bar{\beta }}_{1}({\bar{\theta }}+d){\mathcal {M}}h+\bigg |\int ^{ +\infty }_{0}(\beta _{1}(a+h)-\beta _{1}(a))i(t,a)\text{ d }a\bigg |\\{} & {} \quad \le {\bar{\beta }}_{1}({\bar{\theta }}+d){\mathcal {M}}h+\int ^{ +\infty }_{0}\big |\beta _{1}(a+h)-\beta _{1}(a)\big |\big |i(t,a)\big |\text{ d }a\\{} & {} \quad \le \big [{\bar{\beta }}_{1}({\bar{\theta }}+d)+M_{\beta _{1}}\big ]{\mathcal {M}}h. \end{aligned}$$

Hence, we obtain

$$\begin{aligned}{} & {} \bigg |\int ^{+\infty }_{0}\beta _{1}(a)i(t+h,a)\text{ d }a -\int ^{+\infty }_{0}\beta _{1}(a)i(t,a)\text{ d }a\bigg |\\{} & {} \quad \le \Big \{\Big [q(1+\eta )({\bar{\beta }}_{1}+\beta _{2}+\beta _{3}) {\mathcal {M}}+\rho {\bar{\sigma }}\Big ]{\bar{\beta }}_{1}+{\bar{\beta }}_{1} ({\bar{\theta }}+d)+M_{\beta _{1}}\Big \}{\mathcal {M}}h. \end{aligned}$$

According to the above inequality, we have

$$\begin{aligned}{} & {} \big |e(t-b-h,0)-e(t-b,0)\big |\\{} & {} \quad =(1-q)\big |\lambda (t-b-h)\big (S(t-b-h)+\eta V(t-b-h)\big )\\{} & {} \qquad -\lambda (t-b)\big (S(t-b)+\eta V(t-b)\big )\big |\\{} & {} \quad \le (1-q)\bigg (\Big |S(t-b-h)\int ^{+\infty }_{0}\beta _{1}(a)i (t-b-h,a)\text{ d }a\\{} & {} \qquad -S(t-b)\int ^{+\infty }_{0}\beta _{1}(a)i(t-b,a)\text{ d }a\Big |\\{} & {} \qquad +\beta _{2}\big |S(t-b-h)T(t-b-h)-S(t-b)T(t-b)\big |\\{} & {} \qquad +\beta _{3}\Big |S(t-b-h)W(t-b-h)-S(t-b)W(t-b)\Big |\\{} & {} \qquad +\eta \Big |V(t-b-h)\int ^{+\infty }_{0}\beta _{1}(a)i(t-b-h,a) \text{ d }a-V(t-b)\int ^{+\infty }_{0}\beta _{1}(a)i(t-b,a)\text{ d }a\Big |\\{} & {} \qquad +\eta \beta _{2}\big |V(t-b-h)T(t-b-h)-V(t-b)T(t-b)\big |\\{} & {} \qquad +\eta \beta _{3}\Big |V(t-b-h)W(t-b-h)-V(t-b)W(t-b)\Big |\bigg )\le \varUpsilon h, \end{aligned}$$

where

$$\begin{aligned} \varUpsilon= & {} (1-q){\mathcal {M}}^{2}\Big \{\Big [q(1+\eta )({\bar{\beta }}_{1} +\beta _{2}+\beta _{3}){\mathcal {M}}+\rho {\bar{\sigma }}\Big ]{\bar{\beta }}_{1} +{\bar{\beta }}_{1}({\bar{\theta }}+d)+M_{\beta _{1}}\Big \}\\{} & {} +(1-q){\bar{\beta }}_{1}{\mathcal {M}}\Big \{\varLambda +\big [\tau +\delta +\alpha +d+({\bar{\beta }}_{1}+\beta _{2}+\beta _{3}){\mathcal {M}}\big ]{\mathcal {M}}\Big \}\\{} & {} +(1-q)\beta _{2}{\mathcal {M}}\Big \{\varLambda +\big [{\bar{\theta }}+\gamma +d+\tau +\delta +\alpha +d+({\bar{\beta }}_{1}+\beta _{2}+\beta _{3}) {\mathcal {M}}\big ]{\mathcal {M}}\Big \}\\{} & {} +(1-q)\beta _{3}{\mathcal {M}}\bigg \{\varLambda +\big [{\bar{\xi }}_{1} +\xi _{2}+c+\tau +\delta +\alpha +d+({\bar{\beta }}_{1}+\beta _{2} +\beta _{3}){\mathcal {M}}\big ]{\mathcal {M}}\bigg \}\\{} & {} +(1-q)\eta {\mathcal {M}}^{2}\Big \{\Big [q(1+\eta )({\bar{\beta }}_{1} +\beta _{2}+\beta _{3}){\mathcal {M}}+\rho {\bar{\sigma }}\Big ]{\bar{\beta }}_{1} +{\bar{\beta }}_{1}({\bar{\theta }}+d)+M_{\beta _{1}}\Big \}\\{} & {} +(1-q)\eta {\bar{\beta }}_{1}{\mathcal {M}}^{2}\Big \{\alpha +\eta ({\bar{\beta }}_{1}+\beta _{2}+\beta _{3}){\mathcal {M}}+\tau +d\Big \}\\{} & {} +(1-q)\eta \beta _{2}{\mathcal {M}}^{2}\big \{{\bar{\theta }} +\gamma +d+\alpha +\eta ({\bar{\beta }}_{1}+\beta _{2}+\beta _{3}){\mathcal {M}}+\tau +d\big \}\\{} & {} +(1-q)\eta \beta _{3}{\mathcal {M}}^{2}\Big \{{\bar{\xi }}_{1} +\xi _{2}+c+\alpha +\eta ({\bar{\beta }}_{1}+\beta _{2}+\beta _{3}){\mathcal {M}}+\tau +d\Big \}. \end{aligned}$$

Then, we obtain

$$\begin{aligned} \begin{aligned} \int ^{t-h}_{0}|e(t-b-h,0)-e(t-b,0)||k_{1}(b)|\text{ d }b\le \varUpsilon h\int ^{t-h}_{0}e^{-db}\text{ d }b\le \frac{\varUpsilon h}{d}. \end{aligned} \end{aligned}$$

Hence,

$$\begin{aligned} \left. \begin{aligned} \int ^{+\infty }_{0}|{\tilde{e}}(t,b+h)-{\tilde{e}}(t,b)|\text{ d }b \le \Big [2(1-q)(1+\eta )({\bar{\beta }}_{1}+\beta _{2}+\beta _{3}) {\mathcal {M}}^{2}+\frac{\varUpsilon }{d}\Big ]h. \end{aligned} \right. \end{aligned}$$

We have verified that \({\tilde{e}}(t,b)\) satisfies the conditions of Lemma 2. In a similar way, \({\tilde{i}}(t,a)\) also satisfies the conditions of Lemma 2. As a result, \({\tilde{e}}(t,b)\) and \({\tilde{i}}(t,a)\) remain in pre-compact subsets \({\mathcal {A}}^{e}_{{\mathcal {M}}}\) and \({\mathcal {A}}^{i}_{{\mathcal {M}}}\) of \(L^{1}_{+}(0,+\infty )\), respectively. Therefore, \(\varPsi (t,{\mathcal {B}})\subseteq [0,{\mathcal {M}}]\times [0,{\mathcal {M}}]\times [0,{\mathcal {M}}]\times [0,{\mathcal {M}}]\times [0,{\mathcal {M}}]\times {\mathcal {A}}^{e}_{{\mathcal {M}}}\times {\mathcal {A}}^{i}_{{\mathcal {M}}}\), which has a compact closure in \({\mathcal {Y}}\). This implies that \(\varPsi (t,{\mathcal {B}})\) has a compact closure, satisfying the second condition of Lemma 1. Therefore, we conclude that \(\{\varPhi (t,\cdot )\}_{t\ge 0}\) is asymptotically smooth. This completes the proof. \(\square \)

Appendix D: Proof of Theorem 4

Let

$$\begin{aligned} J(t)=T(t)+W(t)+\int ^{+\infty }_{0}e(t,b)\text{ d }b +\int ^{+\infty }_{0}i(t,a)\text{ d }a. \end{aligned}$$
(29)

For any \(\varPhi (0,x_{0})\in {\mathcal {D}}_{0}\), we have

$$\begin{aligned} \frac{\text{ d }J(t)}{\text{ d }t}= & {} -(\gamma +d)T(t)+\int ^{+\infty }_{0} \xi _{1}(a)i(t,a)\text{ d }a+\xi _{2}T(t)-cW(t)\\{} & {} -d\int ^{+\infty }_{0}e(t,b)\text{ d }b+\lambda (t)\big (S(t)+\eta V(t) \big )-d\int ^{+\infty }_{0}i(t,a)\text{ d }a\\\ge & {} -(\gamma +d)T(t)-cW(t)-d\int ^{+\infty }_{0}e(t,b)\text{ d }b -d\int ^{+\infty }_{0}i(t,a)\text{ d }a\\\ge & {} -{\bar{a}}J(t), \end{aligned}$$

where \({\bar{a}}=\max \{\gamma +d,c\}\). Then, we obtain \(J(t)\ge J(0)\text{ e}^{-{\bar{a}}t}>0\). This implies that \(\varPhi (t,{\mathcal {D}}_{0})\in {\mathcal {D}}_{0}\), i.e., \({\mathcal {D}}_{0}\) is positively invariant under the semiflow \(\{\varPhi (t,\cdot )\}_{t\ge 0}\).

In addition, for any \(\varPhi (0,x_{0})\in \partial {\mathcal {D}}_{0}\), we consider the following system

$$\begin{aligned}{} & {} \frac{\text{ d }T(t)}{\text{ d }t}=\int ^{+\infty }_{0}\theta (a)i(t,a) \text{ d }a-(\gamma +d)T(t),\nonumber \\{} & {} \frac{\text{ d }W(t)}{\text{ d }t}=\int ^{+\infty }_{0}\xi _{1}(a)i(t,a) \text{ d }a+\xi _{2}T(t)-cW(t),\nonumber \\{} & {} \frac{\partial e(t,b)}{\partial t}+\frac{\partial e(t,b)}{\partial b} =-(\rho \sigma (b)+d)e(t,b),\nonumber \\{} & {} \frac{\partial i(t,a)}{\partial t}+\frac{\partial i(t,a)}{\partial a} =-(\theta (a)+d)i(t,a),\\{} & {} e(t,0)=(1-q)\lambda (t)\big (S(t)+\eta V(t)\big ),\nonumber \\{} & {} i(t,0)=q\lambda (t)\big (S(t)+\eta V(t)\big )+\rho \int ^{+\infty }_{0} \sigma (b)e(t,b)\text{ d }b,\nonumber \\{} & {} T(0)=0,W(0)=0,e(0,b)=e_{0}(b),i(0,a)=i_{0}(a),\nonumber \end{aligned}$$
(30)

where \(\lambda (t)\) is given by Eq. (1). Since \(S(t)+\eta V(t)\le \max \Big \{N_{0},\frac{\varLambda }{d}\Big \}:=\aleph \), then we set up the following comparison system

$$\begin{aligned}{} & {} \frac{\text{ d }{\overline{T}}(t)}{\text{ d }t}=\int ^{+\infty }_{0} \theta (a){\overline{i}}(t,a)\text{ d }a-(\gamma +d){\overline{T}}(t),\nonumber \\{} & {} \frac{\text{ d }{\overline{W}}(t)}{\text{ d }t}=\int ^{+\infty }_{0} \xi _{1}(a){\overline{i}}(t,a)\text{ d }a+\xi _{2}{\overline{T}}(t) -c{\overline{W}}(t),\nonumber \\{} & {} \frac{\partial {\overline{e}}(t,b)}{\partial t}+\frac{\partial {\overline{e}}(t,b)}{\partial b}=-(\rho \sigma (b)+d){\overline{e}}(t,b),\nonumber \\{} & {} \frac{\partial {\overline{i}}(t,a)}{\partial t}+\frac{\partial {\overline{i}}(t,a)}{\partial a}=-(\theta (a)+d){\overline{i}}(t,a),\\{} & {} {\overline{e}}(t,0)=(1-q){\overline{\lambda }}(t)\aleph ,\nonumber \\{} & {} {\overline{i}}(t,0)=q{\overline{\lambda }}(t)\aleph +\rho \int ^{+\infty }_{0} \sigma (b){\overline{e}}(t,b)\text{ d }b,\nonumber \\{} & {} {\overline{T}}(0)=0,{\overline{W}}(0)=0,{\overline{e}}(0,b) =e_{0}(b),{\overline{i}}(0,a)=i_{0}(a),\nonumber \end{aligned}$$
(31)

where \({\overline{\lambda }}(t)=\int ^{+\infty }_{0}\beta _{1}(a){\overline{i}}(t,a)\text{ d }a+\beta _{2}{\overline{T}}(t)+\beta _{3}{{\overline{W}}(t)}\).

Integrating the equations for \({\overline{e}}(t,b)\) and \({\overline{i}}(t,a)\) in System (31) along the characteristic lines, \(t-b=\text{ const }\) and \(t-a=\text{ const }\), respectively, we obtain

$$\begin{aligned} {\overline{e}}(t,b)=\left\{ \begin{array}{ll} {\overline{e}}(t-b,0)k_{1}(b),&{}\quad 0\le b\le t,\\ e_{0}(b-t)\frac{k_{1}(b)}{k_{1}(b-t)},&{}\quad 0\le t\le b,\\ \end{array}\right. \quad {\overline{i}}(t,a)=\left\{ \begin{array}{ll} {\overline{i}}(t-a,0)k_{2}(a),&{}\quad 0\le a\le t,\\ i_{0}(a-t)\frac{k_{2}(a)}{k_{2}(a-t)},&{}\quad 0\le t\le a.\\ \end{array} \right. \nonumber \\ \end{aligned}$$
(32)

Substituting Eq. (32) into System (31), we obtain

$$\begin{aligned}{} & {} \frac{\text{ d }{\overline{T}}(t)}{\text{ d }t} =\int ^{t}_{0}\theta (a){\overline{i}}(t-a,0)k_{2}(a)\text{ d }a +\int ^{+\infty }_{t}\theta (a)i_{0}(a-t)\frac{k_{2}(a)}{k_{2}(a -t)}\text{ d }a-(\gamma +d){\overline{T}}(t),\nonumber \\{} & {} \frac{\text{ d }{\overline{W}}(t)}{\text{ d }t} =\int ^{t}_{0}\xi _{1}(a){\overline{i}}(t-a,0)k_{2}(a)\text{ d }a +\int ^{+\infty }_{t}\xi _{1}(a)i_{0}(a-t)\frac{k_{2}(a)}{k_{2}(a -t)}\text{ d }a+\xi _{2}{\overline{T}}(t)-c{\overline{W}}(t),\nonumber \\{} & {} {\overline{T}}(0)=0,{\overline{W}}(0)=0. \end{aligned}$$
(33)

According to assumption (A2), one can obtain

$$\begin{aligned}{} & {} \int ^{+\infty }_{t}\theta (a)i_{0}(a-t)\frac{k_{2}(a)}{k_{2}(a-t)} \text{ d }a\le {\bar{\theta }}\int ^{+\infty }_{0}i_{0}(a)\text{ d }a,\\{} & {} \int ^{+\infty }_{t}\xi _{1}(a)i_{0}(a-t)\frac{k_{2}(a)}{k_{2}(a-t)} \text{ d }a\le {\bar{\xi }}_{1}\int ^{+\infty }_{0}i_{0}(a)\text{ d }a,\\{} & {} \int ^{+\infty }_{t}\sigma (b)e_{0}(b-t)\frac{k_{1}(b)}{k_{1}(b-t)} \text{ d }b\le {\bar{\sigma }}\int ^{+\infty }_{0}e_{0}(b)\text{ d }b,\\{} & {} \int ^{+\infty }_{t}\beta _{1}(a)i_{0}(a-t)\frac{k_{2}(a)}{k_{2}(a-t)} \text{ d }a\le {\bar{\beta }}_{1}\int ^{+\infty }_{0}i_{0}(a)\text{ d }a. \end{aligned}$$

For any \(\varPhi (0,x_{0})\in \partial {\mathcal {D}}_{0}\), we have

$$\begin{aligned}{} & {} \int ^{+\infty }_{t}\theta (a)i_{0}(a-t)\frac{k_{2}(a)}{k_{2}(a-t)}\text{ d }a=0, \quad \int ^{+\infty }_{t}\xi _{1}(a)i_{0}(a-t)\frac{k_{2}(a)}{k_{2}(a-t)}\text{ d }a=0,\\{} & {} \int ^{+\infty }_{t}\sigma (b)e_{0}(b-t)\frac{k_{1}(b)}{k_{1}(b-t)}\text{ d }b=0, \quad \int ^{+\infty }_{t}\beta _{1}(a)i_{0}(a-t)\frac{k_{2}(a)}{k_{2}(a-t)}\text{ d }a=0. \end{aligned}$$

Let

$$\begin{aligned}{} & {} \overline{L_{e}}(t)={\overline{e}}(t,0)=(1-q){\overline{\lambda }}(t)\aleph ,\\{} & {} \overline{L_{i}}(t)={\overline{i}}(t,0)=q{\overline{\lambda }}(t)\aleph +\rho \int ^{+\infty }_{0}\sigma (b){\overline{e}}(t,b)\text{ d }b, \end{aligned}$$

we have

$$\begin{aligned} \overline{L_{e}}(t)= & {} (1-q)\bigg [\int ^{t}_{0}\beta _{1}(a)\overline{L_{i}}(t-a) k_{2}(a)\text{ d }a+\beta _{2}{\overline{T}}(t)+\beta _{3}{{\overline{W}}(t)}\bigg ]\aleph ,\\ \overline{L_{i}}(t)= & {} q\bigg [\int ^{t}_{0}\beta _{1}(a)\overline{L_{i}}(t-a)k_{2} (a)\text{ d }a+\beta _{2}{\overline{T}}(t)+\beta _{3}{{\overline{W}}(t)}\bigg ] \aleph \\{} & {} +\rho \int ^{t}_{0}\sigma (b)\overline{L_{e}}(t-b)k_{1}(b)\text{ d }b. \end{aligned}$$

Then, System (33) can be rewritten as

$$\begin{aligned} \overline{L_{e}}(t)= & {} (1-q)\bigg [\int ^{t}_{0}\beta _{1}(a)\overline{L_{i}} (t-a)k_{2}(a)\text{ d }a+\beta _{2}{\overline{T}}(t)+\beta _{3}{{\overline{W}}(t)} \bigg ]\aleph ,\nonumber \\ \overline{L_{i}}(t)= & {} q\bigg [\int ^{t}_{0}\beta _{1}(a)\overline{L_{i}} (t-a)k_{2}(a)\text{ d }a+\beta _{2}{\overline{T}}(t)+\beta _{3}{{\overline{W}}(t)} \bigg ]\aleph \nonumber \\{} & {} +\rho \int ^{t}_{0}\sigma (b)\overline{L_{e}}(t-b)k_{1}(b)\text{ d }b,\nonumber \\ \frac{\text{ d }{\overline{T}}(t)}{\text{ d }t}= & {} \int ^{t}_{0}\theta (a) \overline{L_{i}}(t-a)k_{2}(a)\text{ d }a-(\gamma +d){\overline{T}}(t),\\ \frac{\text{ d }{\overline{W}}(t)}{\text{ d }t}= & {} \int ^{t}_{0}\xi _{1}(a) \overline{L_{i}}(t-a)k_{2}(a)\text{ d }a+\xi _{2}{\overline{T}}(t) -c{\overline{W}}(t),\nonumber \\ \overline{L_{e}}(0)= & {} 0,\overline{L_{i}}(0)=0,{\overline{T}}(0)=0, {\overline{W}}(0)=0.\nonumber \end{aligned}$$
(34)

It is easy to show that System (34) has a unique solution \(\overline{L_{e}}(t)=0\), \(\overline{L_{i}}(t)=0\), \({\overline{T}}(t)=0\), and \({\overline{W}}(t)=0\).

From System (31) and Eq. (32), we obtain that \({\overline{e}}(t,{\overline{t}})=0\) and \({\overline{i}}(t,{\overline{t}})=0\) for \(0\le {\overline{t}}\le t\). Hence,

$$\begin{aligned} \Vert {\overline{e}}(t,b)\Vert _{L^{1}_{+}}=\int ^{+\infty }_{t}e_{0}(b-t) \frac{k_{1}(b)}{k_{1}(b-t)}\text{ d }b\le \Vert e_{0}({\bar{t}})\Vert _{L^{1}_{+}}=0. \end{aligned}$$

Similarly, we can also obtain \(\Vert {\overline{i}}(t,a)\Vert _{L^{1}_{+}}=0\). Since \(T(t)\le {\overline{T}}(t)\), \(W(t)\le {\overline{W}}(t)\), \(e(t,b)\le {\overline{e}}(t,b)\), and \(i(t,a)\le {\overline{i}}(t,a)\), we have

$$\begin{aligned} T(t)=0,\; W(t)=0,\; \Vert e(t,b)\Vert _{L^{1}_{+}}=0,\; \Vert i(t,a)\Vert _{L^{1}_{+}}=0. \end{aligned}$$

This implies that \(\partial {\mathcal {D}}_{0}\) is positively invariant under the semiflow \(\{\varPhi (t,\cdot )\}_{t\ge 0}\).

Next, we prove that the disease-free equilibrium \({\mathcal {P}}^{0}\) of System (2) is globally asymptotically stable for the semiflow \(\{\varPhi (t,\cdot )\}_{t\ge 0}\) restricted to \(\partial {\mathcal {D}}_{0}\). Obviously, System (2) can be represented as

$$\begin{aligned}{} & {} \frac{\text{ d }S(t)}{\text{ d }t}=\varLambda +\tau V(t)+\delta R(t)-(\alpha +d)S(t),\nonumber \\{} & {} \frac{\text{ d }V(t)}{\text{ d }t}=\alpha S(t)-(\tau +d)V(t),\\{} & {} \frac{\text{ d }R(t)}{\text{ d }t}=-(\delta +d)R(t).\nonumber \end{aligned}$$
(35)

Obviously, the unique equilibrium \((S^{0},V^{0},0)\) of System (35) is locally asymptotically stable. By solving System (35), we obtain

$$\begin{aligned} S(t)= & {} -\frac{C_{3}\tau }{\alpha +\tau }\text{ e}^{-(d+\delta )t} +\frac{\varLambda (\tau +d)}{d(\alpha +\tau +d)}+\frac{\alpha \delta C_{3}}{(\alpha +\tau )(\alpha -\delta +\tau )}\text{ e}^{-(d+\delta )t}\\{} & {} -C_{1}\text{ e}^{-(\alpha +\tau +d)t}-\frac{\tau C_{1}}{\alpha }\text{ e}^{-dt},\\ V(t)= & {} C_{2}\text{ e}^{-dt}+C_{1}\text{ e}^{-(\alpha +\tau +d)t} -\frac{\alpha \delta }{(\alpha +\tau )(\alpha -\delta +\tau )}\text{ e}^{-(d+\delta )t}\\{} & {} -\frac{\alpha C_{3}}{\alpha +\tau }\text{ e}^{-(d+\delta )t} +\frac{\varLambda \alpha }{d(\alpha +\tau +d)},\\ R(t)= & {} C_{3}\text{ e}^{-(d+\delta )t}, \end{aligned}$$

where \(C_{1}, C_{2}, C_{3}\) are constants. Thus, \(\lim _{t\rightarrow \infty } S(t)=\frac{\varLambda (\tau +d)}{d(\alpha +\tau +d)}=S^{0}\), \(\lim _{t\rightarrow \infty } V(t)=\frac{\varLambda \alpha }{d(\alpha +\tau +d)}=V^{0}\), and \(\lim _{t\rightarrow \infty } R(t)=0\). Then, the disease-free equilibrium \({\mathcal {P}}^{0}\) is globally asymptotically stable restricted to \(\partial {\mathcal {D}}_{0}\). This completes the proof. \(\square \)

Appendix E: Proof of Theorem 5

We assume by contradiction that there exists \(x_{0}\in W^{s}({\mathcal {P}}^{0})\cap {\mathcal {D}}_{0}\). In this case, one can find a sequence \(\{x_{n}\}\in {\mathcal {D}}_{0}\) such that

$$\begin{aligned} \big \Vert \varPhi (t,x_{n})-{\mathcal {P}}^{0}\big \Vert _{{\mathcal {Y}}}<\frac{1}{n},\;t\ge 0. \end{aligned}$$

Here, \(\varPhi (t,x_{n}):=(S_{n}(t),V_{n}(t),T_{n}(t),R_{n}(t),W_{n}(t),e_{n}(t,\cdot ),i_{n}(t,\cdot ))\).

Now, we choose \(n>0\) large enough to ensure \(S^{0}-\frac{1}{n}>0\) and \(V^{0}-\frac{1}{n}>0\). For the above given \(n>0\), there exists a \(t_{1}>0\) such that for \(t>t_{1}\),

$$\begin{aligned} S^{0}-\frac{1}{n}<S_{n}(t)<S^{0}+\frac{1}{n},\;V^{0} -\frac{1}{n}<V_{n}(t)<V^{0}+\frac{1}{n}. \end{aligned}$$

Then, System (2) can be written as

$$\begin{aligned}{} & {} \frac{\text{ d }T(t)}{\text{ d }t}\ge \int ^{+\infty }_{0} \theta (a)i(t,a)\text{ d }a-(\gamma +d)T(t),\\{} & {} \frac{\text{ d }W(t)}{\text{ d }t}\ge \int ^{+\infty }_{0} \xi _{1}(a)i(t,a)\text{ d }a+\xi _{2}T(t)-cW(t),\\{} & {} \frac{\partial e(t,b)}{\partial t}+\frac{\partial e(t,b)}{\partial b}\ge -(\rho \sigma (b)+d)e(t,b),\\{} & {} \frac{\partial i(t,a)}{\partial t}+\frac{\partial i(t,a)}{\partial a}\ge -(\theta (a)+d)i(t,a),\\{} & {} e(t,0)\ge (1-q)\lambda (t)\bigg (S^{0}-\frac{1}{n}+\eta (V^{0} -\frac{1}{n})\bigg ),\\{} & {} i(t,0)\ge q\lambda (t)\bigg (S^{0}-\frac{1}{n}+\eta (V^{0}-\frac{1}{n})\bigg )+\rho \int ^{+\infty }_{0}\sigma (b)e(t,b)\text{ d }b,\\{} & {} T(0)=T_{0},W(0)=W_{0},e(0,b)=e_{0}(b),i(0,a)=i_{0}(a), \end{aligned}$$

where \(\lambda (t)\) is given by Eq. (1). We consider the following auxiliary system

$$\begin{aligned}{} & {} \frac{\text{ d }{\underline{T}}(t)}{\text{ d }t}=\int ^{+\infty }_{0} \theta (a){\underline{i}}(t,a)\text{ d }a-(\gamma +d){\underline{T}}(t),\nonumber \\{} & {} \frac{\text{ d }{\underline{W}}(t)}{\text{ d }t}=\int ^{+\infty }_{0} \xi _{1}(a){\underline{i}}(t,a)\text{ d }a+\xi _{2}{\underline{T}}(t) -c{\underline{W}}(t),\nonumber \\{} & {} \frac{\partial {\underline{e}}(t,b)}{\partial t}+\frac{\partial {\underline{e}}(t,b)}{\partial b}=-(\rho \sigma (b)+d){\underline{e}}(t,b),\nonumber \\{} & {} \frac{\partial {\underline{i}}(t,a)}{\partial t}+\frac{\partial {\underline{i}}(t,a)}{\partial a}=-(\theta (a)+d){\underline{i}}(t,a),\\{} & {} {\underline{e}}(t,0)=(1-q){\underline{\lambda }}(t)\bigg (S^{0} -\frac{1}{n}+\eta (V^{0}-\frac{1}{n})\bigg ),\nonumber \\{} & {} {\underline{i}}(t,0)= q{\underline{\lambda }}(t)\bigg (S^{0} -\frac{1}{n}+\eta (V^{0}-\frac{1}{n})\bigg )+\rho \int ^{+\infty }_{0} \sigma (b){\underline{e}}(t,b)\text{ d }b,\nonumber \\{} & {} {\underline{T}}(0)=T_{0},{\underline{W}}(0)=W_{0}, {\underline{e}}(0,b)=e_{0}(b),{\underline{i}}(0,a)=i_{0}(a),\nonumber \end{aligned}$$
(36)

where \({\underline{\lambda }}(t)=\int ^{+\infty }_{0}\beta _{1}(a){\underline{i}}(t,a)\text{ d }a+\beta _{2}{\underline{T}}(t)+\beta _{3}{{\underline{W}}(t)}\). By Volterra formulation (5), we have

$$\begin{aligned} {\underline{e}}(t,b)=\left\{ \begin{aligned} {\underline{e}}(t-b,0)k_{1}(b),&\quad 0\le b\le t,\\ e_{0}(b-t)\frac{k_{1}(b)}{k_{1}(b-t)},&\quad 0\le t\le b,\\ \end{aligned}\right. \quad {\underline{i}}(t,a)=\left\{ \begin{aligned} {\underline{i}}(t-a,0)k_{2}(a),&\quad 0\le a\le t,\\ i_{0}(a-t)\frac{k_{2}(a)}{k_{2}(a-t)},&\quad 0\le t\le a.\\ \end{aligned} \right. \nonumber \\ \end{aligned}$$
(37)

By direct calculation, the characteristic equation of System (36) at \({\mathcal {P}}^{0}\) is

$$\begin{aligned} \begin{aligned}&\bigg (S^{0}-\frac{1}{n}+\eta (V^{0}-\frac{1}{n})\bigg )\\&\quad \bigg \{{\mathcal {H}}_{2}(\iota )+\frac{\beta _{2}{\mathcal {H}}_{3}(\iota )}{\iota +\gamma +d}+ \frac{\beta _{3}[(\iota +\gamma +d){\mathcal {H}}_{4}(\iota ) +\xi _{2}{\mathcal {H}}_{3}(\iota )]}{(\iota +c)(\iota +\gamma +d)}\bigg \}\big [q+\rho (1-q){\mathcal {H}}_{1}(\iota )\big ]=1, \end{aligned} \end{aligned}$$

where \({\mathcal {H}}_{1}(\iota )\), \({\mathcal {H}}_{2}(\iota )\), \({\mathcal {H}}_{3}(\iota )\), and \({\mathcal {H}}_{4}(\iota )\) are given by Eq. (23). Let

$$\begin{aligned} \begin{aligned} {\underline{f}}(\iota )&=\bigg (S^{0}-\frac{1}{n}+\eta (V^{0} -\frac{1}{n})\bigg )\bigg \{{\mathcal {H}}_{2}(\iota ) +\frac{\beta _{2}{\mathcal {H}}_{3}(\iota )}{\iota +\gamma +d}+ \frac{\beta _{3}[(\iota +\gamma +d){\mathcal {H}}_{4}(\iota ) +\xi _{2}{\mathcal {H}}_{3}(\iota )]}{(\iota +c)(\iota +\gamma +d)}\bigg \}\\&\qquad \big [q+\rho (1-q){\mathcal {H}}_{1}(\iota )\big ]. \end{aligned} \end{aligned}$$

Clearly, we have \({\underline{f}}'(\iota )<0\) and \(\underset{\iota \rightarrow +\infty }{\lim }{\underline{f}}(\iota )=0\). Furthermore, we also have \({\underline{f}}(0)>1\) for sufficiently large n. Hence, when \({\mathcal {R}}_{0}>1\), the characteristic equation of System (36) has a real positive root. This implies that the solution \(({\underline{T}}(t),{\underline{W}}(t),{\underline{e}}(t,\cdot ),{\underline{i}}(t,\cdot ))\) of System (36) is unbounded. Since \(T(t)\ge {\underline{T}}(t)\), \(W(t)\ge {\underline{W}}(t)\), \(e(t,\cdot )\ge {\underline{e}}(t,\cdot )\), and \(i(t,\cdot )\ge {\underline{i}}(t,\cdot )\), by comparison principle, we obtain that \((T(t),W(t),e(t,\cdot ),i(t,\cdot ))\) is unbounded, which contradicts with Proposition 1. Therefore, \(W^{s}({\mathcal {P}}^{0})\cap {\mathcal {D}}_{0}=\emptyset \). By Theorem 4.2 in Hale and Waltman (1989), we conclude that semiflow \(\{\varPhi (t,\cdot )\}_{t\ge 0}\) generated by System (2) is uniformly persistent. This completes the proof. \(\square \)

Appendix F: Proof of Theorem 6

Define a Lyapunov function

$$\begin{aligned} \begin{aligned} {\mathcal {L}}(t)={\mathcal {L}}_{s}(t)+{\mathcal {L}}_{v}(t) +{\mathcal {L}}_{e}(t)+{\mathcal {L}}_{i}(t)+{\mathcal {L}}_{t}(t)+{\mathcal {L}}_{w}(t) \end{aligned} \end{aligned}$$
(38)

where

$$\begin{aligned} {\mathcal {L}}_{s}(t)= & {} \frac{1}{2S^{0}}(S(t)-S^{0})^{2},\;\;{\mathcal {L}}_{v}(t) =\frac{1}{2V^{0}}(V(t)-V^{0})^{2},\\ {\mathcal {L}}_{e}(t)= & {} {\mathcal {F}}_{b}\int ^{+\infty }_{0}{\mathcal {F}}_{e}(b) e(t,b)\text{ d }b,\;\;{\mathcal {L}}_{i}(t)=\big (S^{0}+\eta V^{0}\big ) \int ^{+\infty }_{0}{\mathcal {F}}_{i}(a)i(t,a)\text{ d }a,\\ {\mathcal {L}}_{t}(t)= & {} \big (S^{0}+\eta V^{0}\big )\Bigg (\frac{\beta _{2}}{\gamma +d}+\frac{\beta _{3}\xi _{2}}{c(\gamma +d)}\Bigg )T(t),\;\;{\mathcal {L}}_{w}(t)=\big (S^{0}+\eta V^{0}\big )\frac{\beta _{3}}{c}W(t). \end{aligned}$$

The nonnegative function \({\mathcal {L}}(t)\) is defined with respect to the disease-free equilibrium \({\mathcal {P}}^{0}\), which is a global minimum. We choose

$$\begin{aligned} {\mathcal {F}}_{b}= & {} \big (S^{0}+\eta V^{0}\big )\Bigg ({\mathcal {K}}_{2} +\frac{\beta _{2}{\mathcal {K}}_{3}}{\gamma +d} +\frac{\beta _{3}{\mathcal {K}}_{4}}{c}+\frac{\beta _{3}\xi _{2} {\mathcal {K}}_{3}}{c(\gamma +d)}\Bigg ),\\ {\mathcal {F}}_{e}(b)= & {} \int ^{+\infty }_{b}\rho \sigma (\upsilon ) \text{ e}^{-\int ^{\upsilon }_{b}(\rho \sigma (\varrho )+d)\text{ d }\varrho }\text{ d }\upsilon ,\\ {\mathcal {F}}_{i}(a)= & {} \int ^{+\infty }_{a}\Bigg (\beta _{1}(\upsilon ) +\frac{\beta _{2}\theta (\upsilon )}{\gamma +d}+ \frac{\beta _{3}\xi _{1}(\upsilon )}{c}+\frac{\beta _{3}\xi _{2} \theta (\upsilon )}{c(\gamma +d)}\Bigg )\text{ e}^{-\int ^{\upsilon }_{a} (\theta (\varrho )+d)\text{ d }\varrho }\text{ d }\upsilon . \end{aligned}$$

By direct calculations, one obtains that

$$\begin{aligned} {\mathcal {F}}_{e}(0)= & {} \int ^{+\infty }_{0}\rho \sigma (\upsilon ) \text{ e}^{-\int ^{\upsilon }_{0}(\rho \sigma (\varrho )+d)\text{ d }\varrho } \text{ d }\upsilon =\rho {\mathcal {K}}_{1},\\ {\mathcal {F}}_{i}(0)= & {} \int ^{+\infty }_{0}\Bigg (\beta _{1}(\upsilon ) +\frac{\beta _{2}\theta (\upsilon )}{\gamma +d}+ \frac{\beta _{3}\xi _{1}(\upsilon )}{c}+\frac{\beta _{3}\xi _{2} \theta (\upsilon )}{c(\gamma +d)}\Bigg )\text{ e}^{-\int ^{\upsilon }_{0} (\theta (\varrho )+d)\text{ d }\varrho }\text{ d }\upsilon \\= & {} {\mathcal {K}}_{2}+\frac{\beta _{2}{\mathcal {K}}_{3}}{\gamma +d} +\frac{\beta _{3}{\mathcal {K}}_{4}}{c}+\frac{\beta _{3}\xi _{2} {\mathcal {K}}_{3}}{c(\gamma +d)},\\ \frac{\text{ d }{\mathcal {F}}_{e}(b)}{\text{ d }b}= & {} -\rho \sigma (b) +(\rho \sigma (b)+d){\mathcal {F}}_{e}(b),\\ \frac{\text{ d }{\mathcal {F}}_{i}(a)}{\text{ d }a}= & {} -\Bigg (\beta _{1}(a) +\frac{\beta _{2}\theta (a)}{\gamma +d}+ \frac{\beta _{3}\xi _{1}(a)}{c}+\frac{\beta _{3}\xi _{2}\theta (a)}{c(\gamma +d)}\Bigg )+(\theta (a)+d){\mathcal {F}}_{i}(a). \end{aligned}$$

Calculating the derivative of \({\mathcal {L}}_{s}(t)\), \({\mathcal {L}}_{v}(t)\), \({\mathcal {L}}_{e}(t)\), \({\mathcal {L}}_{i}(t)\), \({\mathcal {L}}_{t}(t)\), and \({\mathcal {L}}_{w}(t)\) along solutions of System (2), respectively. We can obtain

$$\begin{aligned} \frac{\text{ d }{\mathcal {L}}_{s}(t)}{\text{ d }t}= & {} \frac{1}{S^{0}}(S(t) -S^{0})\frac{\text{ d }S(t)}{\text{ d }t}=\frac{1}{S^{0}}(S(t)-S^{0}) \Big (\varLambda +\tau V(t)-\lambda (t)S(t)-(\alpha +d)S(t)\Big )\\= & {} \frac{1}{S^{0}}(S(t)-S^{0})\Big [-(\alpha +d)(S(t)-S^{0})+\tau (V(t) -V^{0})-\lambda (t)(S(t)-S^{0})-\lambda (t)S^{0}\Big ]\\= & {} -\frac{\alpha +d}{S^{0}}(S(t)-S^{0})^{2}+\frac{\tau }{S^{0}}(S(t) -S^{0})(V(t)-V^{0})\\{} & {} -\frac{1}{S^{0}}\lambda (t)(S(t)-S^{0})^{2}-\lambda (t)S(t)+\lambda (t)S^{0}, \end{aligned}$$

where \(\lambda (t)\) is given by Eq. (1).

$$\begin{aligned} \frac{\text{ d }{\mathcal {L}}_{v}(t)}{\text{ d }t}= & {} \frac{1}{V^{0}}(V(t) -V^{0})\frac{\text{ d }V(t)}{\text{ d }t} =\frac{1}{V^{0}}(V(t)-V^{0})\big (\alpha S(t)-\eta \lambda (t)V(t)-(\tau +d)V(t)\big )\\= & {} \frac{1}{V^{0}}(V(t)-V^{0})\Big [\alpha (S(t)-S^{0}) -(\tau +d)(V(t)-V^{0})\\{} & {} -\eta \lambda (t)(V(t)-V^{0})-\eta \lambda (t)V^{0}\Big ]\\= & {} \frac{\alpha }{V^{0}}(S(t)-S^{0})(V(t)-V^{0})-\frac{\tau +d}{V^{0}}(V(t) -V^{0})^{2}-\frac{\eta }{V^{0}}\lambda (t)(V(t)-V^{0})^{2}\\{} & {} -\eta \lambda (t)V(t)+\eta \lambda (t)V^{0},\\ \frac{\text{ d }{\mathcal {L}}_{e}(t)}{\text{ d }t}= & {} {\mathcal {F}}_{b} \int ^{+\infty }_{0}{\mathcal {F}}_{e}(b)\frac{\text{ d }e(t,b)}{\text{ d }t}\text{ d }b=-{\mathcal {F}}_{b}\int ^{+\infty }_{0} {\mathcal {F}}_{e}(b)\bigg [(\rho \sigma (b)+d)e(t,b)+\frac{\partial e(t,b)}{\partial b}\bigg ]\text{ d }b\\= & {} {\mathcal {F}}_{b}\bigg (-\int ^{+\infty }_{0}{\mathcal {F}}_{e}(b) (\rho \sigma (b)+d)e(t,b)\text{ d }b-\int ^{+\infty }_{0}{\mathcal {F}}_{e}(b)\text{ d }e(t,b)\bigg )\\= & {} {\mathcal {F}}_{b}\bigg (-\int ^{+\infty }_{0}{\mathcal {F}}_{e}(b) (\rho \sigma (b)+d)e(t,b)\text{ d }b-{\mathcal {F}}_{e}(b)e(t,b) \Big |^{+\infty }_{0}+\int ^{+\infty }_{0}e(t,b)\text{ d }{\mathcal {F}}_{e}(b)\bigg )\\= & {} {\mathcal {F}}_{b}\bigg (-\int ^{+\infty }_{0}{\mathcal {F}}_{e}(b) (\rho \sigma (b)+d)e(t,b)\text{ d }b+{\mathcal {F}}_{e}(0)e(t,0)\\{} & {} +\int ^{+\infty }_{0}e(t,b)\big [-\rho \sigma (b)+(\rho \sigma (b) +d){\mathcal {F}}_{e}(b)\big ]\text{ d }b\bigg )\\= & {} {\mathcal {F}}_{b}\bigg ({\mathcal {F}}_{e}(0)e(t,0)-\int ^{ +\infty }_{0}\rho \sigma (b)e(t,b)\text{ d }b\bigg )\\= & {} {\mathcal {F}}_{b}\bigg (\rho {\mathcal {K}}_{1}e(t,0)-\rho \int ^{+\infty }_{0}\sigma (b)e(t,b)\text{ d }b\bigg )\\= & {} {\mathcal {F}}_{b}\bigg (\rho {\mathcal {K}}_{1}(1-q)(S(t) +\eta V(t))\lambda (t)-\rho \int ^{+\infty }_{0}\sigma (b)e(t,b)\text{ d }b\bigg ),\\ \end{aligned}$$
$$\begin{aligned}= & {} \big (S^{0}+\eta V^{0}\big )\Bigg ({\mathcal {K}}_{2} +\frac{\beta _{2}{\mathcal {K}}_{3}}{\gamma +d} +\frac{\beta _{3}{\mathcal {K}}_{4}}{c}+\frac{\beta _{3}\xi _{2} {\mathcal {K}}_{3}}{c(\gamma +d)}\Bigg )\rho {\mathcal {K}}_{1}(1-q)(S(t)+\eta V(t))\lambda (t)\\{} & {} -\big (S^{0}+\eta V^{0}\big )\Bigg ({\mathcal {K}}_{2} +\frac{\beta _{2}{\mathcal {K}}_{3}}{\gamma +d} +\frac{\beta _{3}{\mathcal {K}}_{4}}{c}+\frac{\beta _{3}\xi _{2}{\mathcal {K}}_{3}}{c(\gamma +d)}\Bigg ) \rho \int ^{+\infty }_{0}\sigma (b)e(t,b)\text{ d }b,\\ \frac{\text{ d }{\mathcal {L}}_{i}(t)}{\text{ d }t}= & {} \big (S^{0} +\eta V^{0}\big )\int ^{+\infty }_{0}{\mathcal {F}}_{i}(a) \frac{\text{ d }i(t,a)}{\text{ d }t}\text{ d }a\\= & {} -\big (S^{0}+\eta V^{0}\big )\int ^{+\infty }_{0}{\mathcal {F}}_{i}(a) \bigg [(\theta (a)+d)i(t,a)+\frac{\partial i(t,a)}{\partial a}\bigg ]\text{ d }a\\= & {} \big (S^{0}+\eta V^{0}\big )\bigg (-\int ^{+\infty }_{0} {\mathcal {F}}_{i}(a)(\theta (a)+d)i(t,a)\text{ d }a-\int ^{+\infty }_{0} {\mathcal {F}}_{i}(a)\text{ d }i(t,a)\bigg )\\= & {} \big (S^{0}+\eta V^{0}\big )\bigg (-\int ^{+\infty }_{0} {\mathcal {F}}_{i}(a)(\theta (a)+d)i(t,a)\text{ d }b-{\mathcal {F}}_{i} (a)i(t,a)\Big |^{+\infty }_{0}\\{} & {} +\int ^{+\infty }_{0}i(t,a)\text{ d }{\mathcal {F}}_{i}(a)\bigg )\\= & {} \big (S^{0}+\eta V^{0}\big )\Bigg \{-\int ^{+\infty }_{0} {\mathcal {F}}_{i}(a)(\theta (a)+d)i(t,a)\text{ d }b+{\mathcal {F}}_{i}(0)i(t,0)\\{} & {} +\int ^{+\infty }_{0}i(t,a)\Bigg [-\Bigg (\beta _{1}(a) +\frac{\beta _{2}\theta (a)}{\gamma +d}+ \frac{\beta _{3}\xi _{1}(a)}{c}+\frac{\beta _{3}\xi _{2} \theta (a)}{c(\gamma +d)}\Bigg )\\{} & {} +(\theta (a)+d){\mathcal {F}}_{i}(a)\Bigg ]\text{ d }a\Bigg \}\\= & {} \big (S^{0}+\eta V^{0}\big )\bigg ({\mathcal {F}}_{i}(0)i(t,0) -\int ^{+\infty }_{0}\beta _{1}(a)i(t,a)\text{ d }a- \frac{\beta _{2}}{\gamma +d}\int ^{+\infty }_{0}\theta (a)i(t,a)\text{ d }a\\{} & {} -\frac{\beta _{3}}{c}\int ^{+\infty }_{0}\xi _{1}(a)i(t,a) \text{ d }a-\frac{\beta _{3}\xi _{2}}{c(\gamma +d)}\int ^{+\infty }_{0}\theta (a)i(t,a)\text{ d }a\bigg )\\ \end{aligned}$$
$$\begin{aligned}= & {} \big (S^{0}+\eta V^{0}\big )\Bigg ({\mathcal {K}}_{2} +\frac{\beta _{2}{\mathcal {K}}_{3}}{\gamma +d} +\frac{\beta _{3}{\mathcal {K}}_{4}}{c}+\frac{\beta _{3}\xi _{2} {\mathcal {K}}_{3}}{c(\gamma +d)}\Bigg )q(S(t)+\eta V(t))\lambda (t)\\{} & {} +\big (S^{0}+\eta V^{0}\big )\Bigg ({\mathcal {K}}_{2} +\frac{\beta _{2}{\mathcal {K}}_{3}}{\gamma +d} +\frac{\beta _{3}{\mathcal {K}}_{4}}{c}+\frac{\beta _{3}\xi _{2} {\mathcal {K}}_{3}}{c(\gamma +d)}\Bigg )\rho \int ^{+\infty }_{0}\sigma (b)e(t,b)\text{ d }b\\{} & {} -\big (S^{0}+\eta V^{0}\big )\bigg (\int ^{+\infty }_{0} \beta _{1}(a)i(t,a)\text{ d }a+ \frac{\beta _{2}}{\gamma +d}\int ^{+\infty }_{0}\theta (a)i(t,a)\text{ d }a\\{} & {} +\frac{\beta _{3}}{c}\int ^{+\infty }_{0}\xi _{1}(a)i(t,a) \text{ d }a+\frac{\beta _{3}\xi _{2}}{c(\gamma +d)}\int ^{+\infty }_{0} \theta (a)i(t,a)\text{ d }a\bigg ),\\ \frac{\text{ d }{\mathcal {L}}_{t}(t)}{\text{ d }t}= & {} \big (S^{0}+\eta V^{0}\big )\Bigg (\frac{\beta _{2}}{\gamma +d}+\frac{\beta _{3} \xi _{2}}{c(\gamma +d)}\Bigg )\frac{\text{ d }T(t)}{\text{ d }t}\\= & {} \big (S^{0}+\eta V^{0}\big )\Bigg (\frac{\beta _{2}}{\gamma +d} +\frac{\beta _{3}\xi _{2}}{c(\gamma +d)}\Bigg )\bigg (\int ^{+\infty }_{0} \theta (a)i(t,a)\text{ d }a-(\gamma +d)T(t)\bigg )\\= & {} \big (S^{0}+\eta V^{0}\big )\Bigg (\frac{\beta _{2}}{\gamma +d} +\frac{\beta _{3}\xi _{2}}{c(\gamma +d)}\Bigg )\int ^{+\infty }_{0} \theta (a)i(t,a)\text{ d }a\\{} & {} -\big (S^{0}+\eta V^{0}\big )\Bigg (\beta _{2} T(t)+\frac{\beta _{3}\xi _{2}}{c}T(t)\Bigg ),\\ \frac{\text{ d }{\mathcal {L}}_{w}(t)}{\text{ d }t}= & {} \big (S^{0}+\eta V^{0} \big )\frac{\beta _{3}}{c}\frac{\text{ d }W(t)}{\text{ d }t}\\= & {} \big (S^{0}+\eta V^{0}\big )\frac{\beta _{3}}{c} \bigg (\int ^{+\infty }_{0}\xi _{1}(a)i(t,a)\text{ d }a+\xi _{2}T(t)-cW(t)\bigg )\\= & {} \big (S^{0}+\eta V^{0}\big )\frac{\beta _{3}}{c} \int ^{+\infty }_{0}\xi _{1}(a)i(t,a)\text{ d }a+\big (S^{0} +\eta V^{0}\big )\frac{\beta _{3}\xi _{2}}{c}T(t)-\big (S^{0}+\eta V^{0}\big ){\beta _{3}}W(t). \end{aligned}$$

Therefore,

$$\begin{aligned} \frac{\text{ d }{\mathcal {L}}(t)}{\text{ d }t}= & {} -\frac{\alpha +d}{S^{0}}(S(t)-S^{0})^{2}+\bigg (\frac{\tau }{S^{0}} +\frac{\alpha }{V^{0}}\bigg )(S(t)-S^{0})(V(t)-V^{0})\\{} & {} -\frac{\tau +d}{V^{0}}(V(t)-V^{0})^{2}-\frac{1}{S^{0}}\lambda (t) (S(t)-S^{0})^{2}-\frac{\eta }{V^{0}}\lambda (t)(V(t)-V^{0})^{2}\\{} & {} -\lambda (t)(S(t)+\eta V(t))+\lambda (t)(S^{0}+\eta V^{0} )+{\mathcal {R}}_{0}\lambda (t)(S(t)+\eta V(t))-\lambda (t)(S^{0}+\eta V^{0}), \end{aligned}$$

where \(\lambda (t)\) is given by Eq. (1). To confirm that \(\frac{\text{ d }{\mathcal {L}}(t)}{\text{ d }t}\) is a negative semidefinite function, we obtain

$$\begin{aligned}{} & {} -\frac{\alpha +d}{S^{0}}(S(t)-S^{0})^{2}+\bigg (\frac{\tau }{S^{0}} +\frac{\alpha }{V^{0}}\bigg )(S(t)-S^{0})(V(t)-V^{0})-\frac{\tau +d}{V^{0}}(V(t)-V^{0})^{2}\nonumber \\{} & {} \quad =-\frac{\alpha +d}{S^{0}}\bigg [(S(t)-S^{0})^{2}-\frac{\tau V^{0} +\alpha S^{0}}{(\alpha +d)V^{0}}(S(t)-S^{0})(V(t)-V^{0})\nonumber \\{} & {} \qquad +\frac{(\tau +d)S^{0}}{(\alpha +d)V^{0}}(V(t)-V^{0})^{2}\bigg ]\nonumber \\{} & {} \quad =-\frac{\alpha +d}{S^{0}}\Bigg \{(S(t)-S^{0})^{2}-\frac{\tau V^{0} +\alpha S^{0}}{(\alpha +d)V^{0}}(S(t)-S^{0})(V(t)-V^{0})\nonumber \\{} & {} \qquad +\frac{(\tau V^{0}+\alpha S^{0})^{2}}{4(\alpha +d)^{2}(V^{0} )^{2}}(V(t)-V^{0})^{2}-\frac{(\tau V^{0}+\alpha S^{0})^{2}}{4 (\alpha +d)^{2}(V^{0})^{2}}(V(t)-V^{0})^{2}\nonumber \\{} & {} \qquad +\frac{(\tau +d)S^{0}}{(\alpha +d)V^{0}}(V(t)-V^{0})^{2}\Bigg \}\nonumber \\{} & {} \quad =-\frac{\alpha +d}{S^{0}}\Bigg \{\bigg [(S(t)-S^{0})^{2} -\frac{\tau V^{0}+\alpha S^{0}}{2(\alpha +d)V^{0}}(V(t)-V^{0})\bigg ]^{2}\nonumber \\{} & {} \qquad +\frac{4(\tau +d)(\alpha +d)S^{0}V^{0}-(\tau V^{0} +\alpha S^{0})^{2}}{4(\alpha +d)^{2}(V^{0})^{2}}(V(t)-V^{0})^{2}\Bigg \}. \end{aligned}$$
(39)

Substituting \(S^{0}=\frac{\tau +d}{\alpha }V^{0}\) into Eq. (39), we have

$$\begin{aligned}{} & {} -\frac{\alpha +d}{S^{0}}\bigg \{\bigg [(S(t)-S^{0})^{2}-\frac{\tau V^{0} +\alpha S^{0}}{2(\alpha +d)V^{0}}(V(t)-V^{0})\bigg ]^{2}\\{} & {} \quad +\frac{4(\tau +d)(\alpha +d)S^{0}V^{0}-(\tau V^{0} +\alpha S^{0})^{2}}{4(\alpha +d)^{2}(V^{0})^{2}}(V(t)-V^{0})^{2}\bigg \}\\{} & {} \quad =-\frac{\alpha +d}{S^{0}}\bigg \{\bigg [(S(t)-S^{0})^{2} -\frac{\tau V^{0}+\alpha S^{0}}{2(\alpha +d)V^{0}}(V(t)-V^{0})\bigg ]^{2}\\{} & {} \qquad +\frac{\alpha d(4\tau +3d)+4d(\tau +d)^{2}}{4 \alpha (\alpha +d)^{2}}(V(t)-V^{0})^{2}\bigg \}\le 0. \end{aligned}$$

Hence, we obtain

$$\begin{aligned} \frac{\text{ d }{\mathcal {L}}(t)}{\text{ d }t}= & {} -\frac{\alpha +d}{S^{0}} \bigg \{\bigg [(S(t)-S^{0})^{2}-\frac{\tau V^{0}+\alpha S^{0}}{2( \alpha +d)V^{0}}(V(t)-V^{0})\bigg ]^{2}\\{} & {} +\frac{\alpha d(4\tau +3d) +4d(\tau +d)^{2}}{4\alpha (\alpha +d)^{2}}(V(t)-V^{0})^{2}\bigg \}\\{} & {} -\frac{1}{S^{0}}\lambda (t)(S(t)-S^{0})^{2}-\frac{\eta }{V^{0}} \lambda (t)(V(t)-V^{0})^{2}+({\mathcal {R}}_{0}-1)(S(t)+\eta V(t))\lambda (t), \end{aligned}$$

where \(\lambda (t)\) is given by Eq. (1). Notice that if \({\mathcal {R}}_{0} \le 1\), then \(\frac{\text{ d }{\mathcal {L}}(t)}{\text{ d }t}\le 0\), and the equality holds only for \(S(t)=S^0\), \(V(t)=V^0\), \(e(t,b)=0\), \(i(t,a)=0\), \(T(t)=0\), \(R(t)=0\), and \(W(t)=0\). LaSalle’s Invariance Principle (LaSalle 1960) implies that the bounded solutions of System (2) converges to the largest compact invariant set of \(\big \{(S(t),V(t),T(t),R(t),W(t),e(t,b),i(t,a))\in {\mathcal {D}}:\;{\text{ d }{\mathcal {L}}(t)}/{\text{ d }t}=0\big \}\). Since the disease-free equilibrium \({\mathcal {P}}^{0}\) is the only invariant set of System (2) contained entirely in \(\big \{(S(t),V(t),T(t),R(t),W(t),e(t,b),i(t,a))\in {\mathcal {D}}:\;{\text{ d }{\mathcal {L}}(t)}/{\text{ d }t}=0\big \}\). Hence, the disease-free equilibrium \({\mathcal {P}}^{0}\) is globally attractive. By Theorem 2, we obtain that the disease-free equilibrium \({\mathcal {P}}^{0}\) is globally asymptotically stable when \({\mathcal {R}}_{0}<1\), and the disease-free equilibrium \({\mathcal {P}}^{0}\) is globally attractive when \({\mathcal {R}}_{0}=1\). This completes the proof. \(\square \)

Appendix G: Proof of Theorem 7

Let \({\textbf{p}}(x)=x-1-\ln x\), note that \({\textbf{p}}(x)\) is non-negative and continuous in \((0,+\infty )\) with a unique root at \(x = 1\). Define a Lyapunov function

$$\begin{aligned} \begin{aligned} {\mathcal {G}}(t)={\mathcal {G}}_{s}(t)+{\mathcal {G}}_{v}(t)+ {\mathcal {G}}_{e}(t)+{\mathcal {G}}_{i}(t)+{\mathcal {G}}_{t}(t) +{\mathcal {G}}_{w}(t), \end{aligned} \end{aligned}$$
(40)

where

$$\begin{aligned} {\mathcal {G}}_{s}(t)= & {} S^{*}{\textbf{p}}\bigg (\frac{S(t)}{S^{*}}\bigg ), \;\;{\mathcal {G}}_{v}(t)=V^{*}{\textbf{p}}\bigg (\frac{V(t)}{V^{*}}\bigg ),\\ {\mathcal {G}}_{e}(t)= & {} \big (S^{*}+\eta V^{*}\big ){\mathcal {F}}_{a} \int ^{+\infty }_{0}{\mathcal {F}}_{e}(b)e^{*}(b){\textbf{p}} \bigg (\frac{e(t,b)}{e^{*}(b)}\bigg )\text{ d }b,\\ {\mathcal {G}}_{i}(t)= & {} \big (S^{*}+\eta V^{*}\big )\int ^{+\infty }_{0} {\mathcal {F}}_{i}(a)i^{*}(a){\textbf{p}}\bigg (\frac{i(t,a)}{i^{*}(a)} \bigg )\text{ d }a,\\ {\mathcal {G}}_{t}(t)= & {} \big (S^{*}+\eta V^{*}\big ) \Bigg (\frac{\beta _{2}}{\gamma +d}+\frac{\beta _{3}\xi _{2}}{c(\gamma +d)}\Bigg )T^{*}{\textbf{p}}\bigg (\frac{T(t)}{T^{*}}\bigg ),\\ {\mathcal {G}}_{w}(t)= & {} \big (S^{*}+\eta V^{*}\big ) \frac{\beta _{3}}{c}W^{*}{\textbf{p}}\bigg (\frac{W(t)}{W^{*}}\bigg ). \end{aligned}$$

The nonnegative function \({\mathcal {G}}(t)\) is defined with respect to the endemic equilibrium \({\mathcal {P}}^{*}\), which is a global minimum. We choose

$$\begin{aligned} {\mathcal {F}}_{a}= & {} {\mathcal {K}}_{2}+\frac{\beta _{2}{\mathcal {K}}_{3}}{\gamma +d} +\frac{\beta _{3}{\mathcal {K}}_{4}}{c}+\frac{\beta _{3}\xi _{2}{\mathcal {K}}_{3}}{c(\gamma +d)},\\ {\mathcal {F}}_{e}(b)= & {} \int ^{+\infty }_{b}\rho \sigma (\upsilon )\text{ e}^{-\int ^{\upsilon }_{b}(\rho \sigma (\varrho )+d)\text{ d }\varrho }\text{ d }\upsilon ,\\ {\mathcal {F}}_{i}(a)= & {} \int ^{+\infty }_{a}\Bigg (\beta _{1}(\upsilon )+\frac{\beta _{2}\theta (\upsilon )}{\gamma +d}+ \frac{\beta _{3}\xi _{1}(\upsilon )}{c}+\frac{\beta _{3}\xi _{2}\theta (\upsilon )}{c(\gamma +d)}\Bigg )\text{ e}^{-\int ^{\upsilon }_{a}(\theta (\varrho )+d)\text{ d }\varrho }\text{ d }\upsilon . \end{aligned}$$

Calculating the derivative of \({\mathcal {G}}_{s}(t)\), \({\mathcal {G}}_{v}(t)\), \({\mathcal {G}}_{e}(t)\), \({\mathcal {G}}_{i}(t)\), \({\mathcal {G}}_{t}(t)\), and \({\mathcal {G}}_{w}(t)\) along solutions of System (2), respectively, we can obtain

$$\begin{aligned} \frac{\text{ d }{\mathcal {G}}_{s}(t)}{\text{ d }t}= & {} \bigg (1-\frac{S^{*}}{S(t)}\bigg )\frac{\text{ d }S(t)}{\text{ d }t}\nonumber \\= & {} \varLambda \bigg (2-\frac{S(t)}{S^{*}}-\frac{S^{*}}{S(t)}\bigg )+\tau \bigg (V(t)-\frac{V(t)S^{*}}{S(t)}-\frac{V^{*}S(t)}{S^{*}}+V^{*}\bigg )\nonumber \\{} & {} -\int ^{+\infty }_{0}\beta _{1}(a)\Big (S(t)i(t,a)-S^{*}i(t,a)-S(t)i^{*}(a)+S^{*}i^{*}(a)\Big )\text{ d }a\nonumber \\{} & {} -\beta _{2}\big (T(t)S(t)-T(t)S^{*}-T^{*}S(t)+T^{*}S^{*}\big )\nonumber \\{} & {} -\beta _{3}\big (W(t)S(t)-W(t)S^{*}-W^{*}S(t)+W^{*}S^{*}\big ).\end{aligned}$$
(41)
$$\begin{aligned} \frac{\text{ d }{\mathcal {G}}_{v}(t)}{\text{ d }t}= & {} \bigg (1-\frac{V^{*}}{V(t)}\bigg )\frac{\text{ d }V(t)}{\text{ d }t}\nonumber =\alpha \bigg (S(t)-\frac{S(t)V^{*}}{V(t)}-\frac{S^{*}V(t)}{V^{*}}+S^{*}\bigg )\nonumber \\{} & {} -\eta \int ^{+\infty }_{0}\beta _{1}(a)\Big (V(t)i(t,a)-V^{*}i(t,a)-V(t)i^{*}(a)+V^{*}i^{*}(a)\Big )\text{ d }a\nonumber \\{} & {} -\eta \beta _{2}\big (T(t)V(t)-T(t)V^{*}-T^{*}V(t)+T^{*}V^{*}\big )\nonumber \\{} & {} -\eta \beta _{3}\big (W(t)V(t)-W(t)V^{*}-W^{*}V(t)+W^{*}V^{*}\big ). \end{aligned}$$
(42)

We note that

$$\begin{aligned}{} & {} \frac{\partial }{\partial b}{\textbf{p}}\bigg (\frac{e(t,b)}{e^{*}(b)}\bigg ) =\frac{1}{e^{*}(b)}\bigg (1-\frac{e^{*}(b)}{e(t,b)}\bigg )\bigg (\frac{\partial e(t,b)}{\partial b}+(\rho \sigma (b)+d)e(t,b)\bigg ),\\{} & {} \frac{\partial }{\partial a}{\textbf{p}}\bigg (\frac{i(t,a)}{i^{*}(a)}\bigg ) =\frac{1}{i^{*}(a)}\bigg (1-\frac{i^{*}(a)}{i(t,a)}\bigg )\bigg (\frac{\partial i(t,a)}{\partial a}+(\theta (a)+d)i(t,a)\bigg ). \end{aligned}$$

Thus, we obtain

$$\begin{aligned} \frac{\text{ d }{\mathcal {G}}_{e}(t)}{\text{ d }t}= & {} \big (S^{*}+\eta V^{*}\big ) {\mathcal {F}}_{a}\int ^{+\infty }_{0}{\mathcal {F}}_{e}(b)\bigg (1 -\frac{e^{*}(b)}{e(t,b)}\bigg )\frac{\partial e(t,b)}{\partial t}\text{ d }b\\= & {} -\big (S^{*}+\eta V^{*}\big ){\mathcal {F}}_{a}\int ^{+\infty }_{0} {\mathcal {F}}_{e}(b)\bigg (1-\frac{e^{*}(b)}{e(t,b)}\bigg ) \bigg (\frac{\partial e(t,b)}{\partial b}+(\rho \sigma (b)+d)e(t,b)\bigg )\text{ d }b\\= & {} -\big (S^{*}+\eta V^{*}\big ){\mathcal {F}}_{a}\int ^{+\infty }_{0} {\mathcal {F}}_{e}(b)e^{*}(b)\frac{\partial }{\partial b}{\textbf{p}} \bigg (\frac{e(t,b)}{e^{*}(b)}\bigg )\text{ d }b\\= & {} \big (S^{*}+\eta V^{*}\big ){\mathcal {F}}_{a}\bigg [{\mathcal {F}}_{e} (0)e^{*}(0){\textbf{p}}\bigg (\frac{e(t,0)}{e^{*}(0)}\bigg ) -\rho \int ^{+\infty }_{0}\sigma (b)e^{*}(b){\textbf{p}}\bigg (\frac{e(t, b)}{e^{*}(b)}\bigg )\text{ d }b\bigg ]\\= & {} \big (S^{*}+\eta V^{*}\big ){\mathcal {F}}_{a}\rho {\mathcal {K}}_{1} \bigg [(1-q)(S(t)+\eta V(t))\bigg (\int ^{+\infty }_{0}\beta _{1}(a)i(t,a) \text{ d }a+\beta _{2}T(t)\\{} & {} +\beta _{3}W(t)\bigg )-(1-q)(S^{*}+\eta V^{*})\bigg (\int ^{+\infty }_{0} \beta _{1}(a)i^{*}(a)\text{ d }a+\beta _{2}T^{*}+\beta _{3}W^{*}\bigg )\\{} & {} -(1-q)(S^{*}+\eta V^{*})\bigg (\int ^{+\infty }_{0}\beta _{1}(a)i^{*}(a) \text{ d }a+\beta _{2}T^{*}+\beta _{3}W^{*}\bigg )\ln \bigg (\frac{e(t,0)}{e^{*}(0)}\bigg )\bigg ]\\{} & {} -\big (S^{*}+\eta V^{*}\big ){\mathcal {F}}_{a}\rho \int ^{+\infty }_{0} \sigma (b)e^{*}(b){\textbf{p}}\bigg (\frac{e(t,b)}{e^{*}(b)}\bigg )\text{ d }b.\\ \frac{\text{ d }{\mathcal {G}}_{i}(t)}{\text{ d }t}= & {} \big (S^{*}+\eta V^{*}\big ) \int ^{+\infty }_{0}{\mathcal {F}}_{i}(a)\bigg (1-\frac{i^{*}(a)}{i(t,a)} \bigg )\frac{\partial i(t,a)}{\partial t}\text{ d }a\\= & {} -\big (S^{*}+\eta V^{*}\big )\int ^{+\infty }_{0}{\mathcal {F}}_{i}(a) \bigg (1-\frac{i^{*}(a)}{i(t,a)}\bigg )\bigg (\frac{\partial i(t,a)}{\partial a}+(\theta (a)+d)i(t,a)\bigg )\text{ d }a\\ \end{aligned}$$
$$\begin{aligned}= & {} -\big (S^{*}+\eta V^{*}\big )\int ^{+\infty }_{0}{\mathcal {F}}_{i} (a)i^{*}(a)\frac{\partial }{\partial a}{\textbf{p}}\bigg (\frac{i(t, a)}{i^{*}(a)}\bigg )\text{ d }a\\= & {} \big (S^{*}+\eta V^{*}\big )\bigg [{\mathcal {F}}_{i}(0)i^{*}(0) {\textbf{p}}\bigg (\frac{i(t,0)}{i^{*}(0)}\bigg ) -\int ^{+\infty }_{0}\beta _{1}(a)i^{*}(a){\textbf{p}}\bigg (\frac{i(t, a)}{i^{*}(a)}\bigg )\text{ d }a\\{} & {} -\bigg (\frac{\beta _{2}}{\gamma +d}+\frac{\beta _{3}\xi _{2}}{c(\gamma +d)}\bigg )\int ^{+\infty }_{0}\theta (a)i^{*}(a){\textbf{p}}\bigg (\frac{i(t,a)}{i^{*}(a)}\bigg )\text{ d }a\\{} & {} -\frac{\beta _{3}}{c}\int ^{+\infty }_{0} \xi _{1}(a)i^{*}(a){\textbf{p}}\bigg (\frac{i(t,a)}{i^{*}(a)}\bigg )\text{ d }a\bigg ]\\= & {} \big (S^{*}+\eta V^{*}\big ){\mathcal {F}}_{a}\bigg \{q(S(t)+\eta V(t))\bigg (\int ^{+\infty }_{0}\beta _{1}(a)i(t,a)\text{ d }a+\beta _{2}T(t) +\beta _{3}W(t)\bigg )\\{} & {} +\rho \int ^{+\infty }_{0}\sigma (b)e(t,b)\text{ d }b-\bigg [q(S^{*} +\eta V^{*})\bigg (\int ^{+\infty }_{0}\beta _{1}(a)i^{*}(a)\text{ d }a+\beta _{2}T^{*}+\beta _{3}W^{*}\bigg )\\{} & {} +\rho \int ^{+\infty }_{0}\sigma (b)e^{*}(b)\text{ d }b\bigg ]-\bigg [q(S^{*}+\eta V^{*})\bigg (\int ^{+\infty }_{0}\beta _{1}(a)i^{*}(a)\text{ d }a+\beta _{2}T^{*}+\beta _{3}W^{*}\bigg )\\{} & {} +\rho \int ^{+\infty }_{0}\sigma (b)e^{*}(b)\text{ d }b\bigg ]\ln \bigg (\frac{i(t,0)}{i^{*}(0)}\bigg )\bigg \}\\{} & {} -\big (S^{*}+\eta V^{*}\big )\bigg [\int ^{+\infty }_{0}\beta _{1}(a)i^{*}(a){\textbf{p}}\bigg (\frac{i(t,a)}{i^{*}(a)}\bigg )\text{ d }a\\{} & {} +\bigg (\frac{\beta _{2}}{\gamma +d}+\frac{\beta _{3}\xi _{2}}{c(\gamma +d)}\bigg )\int ^{+\infty }_{0}\theta (a)i^{*}(a){\textbf{p}}\bigg (\frac{i(t,a)}{i^{*}(a)}\bigg )\text{ d }a\\{} & {} +\frac{\beta _{3}}{c}\int ^{+\infty }_{0}\xi _{1}(a)i^{*}(a){\textbf{p}}\bigg (\frac{i(t,a)}{i^{*}(a)}\bigg )\text{ d }a\bigg ],\\ \frac{\text{ d }{\mathcal {G}}_{t}(t)}{\text{ d }t}= & {} \big (S^{*}+\eta V^{*}\big )\Bigg (\frac{\beta _{2}}{\gamma +d}+\frac{\beta _{3}\xi _{2}}{c(\gamma +d)}\Bigg )\bigg (1-\frac{T^{*}}{T(t)}\bigg )\frac{\text{ d }T(t)}{\text{ d }t}\\= & {} \big (S^{*}+\eta V^{*}\big )\Bigg (\frac{\beta _{2}}{\gamma +d}+\frac{\beta _{3}\xi _{2}}{c(\gamma +d)}\Bigg )\int ^{+\infty }_{0}\theta (a)i^{*}(a)\\{} & {} \bigg [\frac{i(t,a)}{i^{*}(a)}-\frac{T(t)}{T^{*}}-\frac{T^{*}i(t,a)}{T(t)i^{*}(a)}+1\bigg ]\text{ d }a\\= & {} \big (S^{*}+\eta V^{*}\big )\Bigg (\frac{\beta _{2}}{\gamma +d}+\frac{\beta _{3}\xi _{2}}{c(\gamma +d)}\Bigg )\int ^{+\infty }_{0}\theta (a)i^{*}(a)\\{} & {} \bigg [{\textbf{p}}\bigg (\frac{i(t,a)}{i^{*}(a)}\bigg )-{\textbf{p}}\bigg (\frac{T^{*}i(t,a)}{T(t)i^{*}(a)}\bigg )\bigg ]\text{ d }a\\ \end{aligned}$$
$$\begin{aligned}{} & {} -\big (S^{*}+\eta V^{*}\big )\beta _{2}T^{*}{\textbf{p}}\bigg (\frac{T(t)}{T^{*}}\bigg )-\big (S^{*}+\eta V^{*}\big )\frac{\beta _{3}\xi _{2}}{c}T^{*}{\textbf{p}}\bigg (\frac{T(t)}{T^{*}}\bigg ),\\ \frac{\text{ d }{\mathcal {G}}_{w}(t)}{\text{ d }t}= & {} \big (S^{*}+\eta V^{*}\big )\frac{\beta _{3}}{c}\bigg (1-\frac{W^{*}}{W(t)}\bigg )\frac{\text{ d }W(t)}{\text{ d }t}\\= & {} \big (S^{*}+\eta V^{*}\big )\frac{\beta _{3}}{c}\int ^{+\infty }_{0}\xi _{1}(a)i^{*}(a) \bigg [\frac{i(t,a)}{i^{*}(a)}-\frac{W(t)}{W^{*}}-\frac{W^{*}i(t,a)}{W(t)i^{*}(a)}+1\bigg ]\text{ d }a\\{} & {} +\big (S^{*}+\eta V^{*}\big )\frac{\beta _{3}\xi _{2}}{c}\bigg [\frac{T(t)}{T^{*}}-\frac{W(t)}{W^{*}}-\frac{W^{*}T(t)}{W(t)T^{*}}+1\bigg ]\\= & {} \big (S^{*}+\eta V^{*}\big )\frac{\beta _{3}}{c}\int ^{+\infty }_{0}\xi _{1}(a)i^{*}(a) \bigg [{\textbf{p}}\bigg (\frac{i(t,a)}{i^{*}(a)}\bigg )-{\textbf{p}}\bigg (\frac{W^{*}i(t,a)}{W(t)i^{*}(a)}\bigg )\bigg ]\text{ d }a\\{} & {} +\big (S^{*}+\eta V^{*}\big )\frac{\beta _{3}\xi _{2}}{c}T^{*}\bigg [{\textbf{p}}\bigg (\frac{T(t)}{T^{*}}\bigg )-{\textbf{p}}\bigg (\frac{W^{*}T(t)}{W(t)T^{*}}\bigg )\bigg ]-\big (S^{*}+\eta V^{*}\big )\beta _{3}W^{*}{\textbf{p}}\bigg (\frac{W(t)}{W^{*}}\bigg ). \end{aligned}$$

From the first two equations of System (2) and Eq. (16), we obtain

$$\begin{aligned}{} & {} \big (S^{*}+\eta V^{*}\big ){\mathcal {F}}_{a}[q+\rho (1-q){\mathcal {K}}_{1}]=1,\\{} & {} \varLambda =(S^{*}+\eta V^{*})\bigg (\int ^{+\infty }_{0}\beta _{1}(a)i^{*}(a)\text{ d }a+\beta _{2}T^{*}+\beta _{3}W^{*}\bigg )+dS^{*}+dV^{*},\\{} & {} \alpha =\frac{\eta V^{*}\Big (\int ^{+\infty }_{0}\beta _{1}(a)i^{*}(a)\text{ d }a+\beta _{2}T^{*}+\beta _{3}W^{*}\Big )+(\tau +d)V^{*}}{S^{*}}. \end{aligned}$$

Substituting the expressions of \(\varLambda \) and \(\alpha \) into Eqs. (41) and (42), respectively, we have

$$\begin{aligned} \frac{\text{ d }{\mathcal {G}}(t)}{\text{ d }t}= & {} \frac{\text{ d }{\mathcal {G}}_{s}(t)}{\text{ d }t}+\frac{\text{ d }{\mathcal {G}}_{v}(t)}{\text{ d }t} +\frac{\text{ d }{\mathcal {G}}_{e}(t)}{\text{ d }t}+\frac{\text{ d } {\mathcal {G}}_{i}(t)}{\text{ d }t} +\frac{\text{ d }{\mathcal {G}}_{t}(t)}{\text{ d }t}+\frac{\text{ d } {\mathcal {G}}_{w}(t)}{\text{ d }t}\\= & {} \tau V^{*}\bigg (2-\frac{S^{*}V(t)}{S(t)V^{*}}-\frac{S(t)V^{*}}{S^{*}V(t)}\bigg )+d V^{*}\bigg (3-\frac{S^{*}}{S(t)}-\frac{V(t)}{V^{*}} -\frac{S(t)V^{*}}{S^{*}V(t)}\bigg )\\{} & {} +dS^{*}\bigg (2-\frac{S(t)}{S^{*}}-\frac{S^{*}}{S(t)}\bigg )+(S^{*} +\eta V^{*})\bigg (\int ^{+\infty }_{0}\beta _{1}(a)i(t,a)\text{ d }a +\beta _{2}T(t)+\beta _{3}W(t)\bigg )\\{} & {} -\bigg (\frac{S^{*}S^{*}}{S(t)}+\eta \frac{S^{*}V^{*}}{S(t)}\bigg ) \bigg (\int ^{+\infty }_{0}\beta _{1}(a)i^{*}(a)\text{ d }a+\beta _{2}T^{*}+\beta _{3}W^{*}\bigg )\\{} & {} +\eta \bigg (V^{*}-\frac{S(t)V^{*}V^{*}}{S^{*}V(t)}\bigg ) \bigg (\int ^{+\infty }_{0}\beta _{1}(a)i^{*}(a)\text{ d }a+\beta _{2}T^{*}+\beta _{3}W^{*}\bigg )\\{} & {} -(S^{*}+\eta V^{*})\bigg [{\mathcal {F}}_{a}\rho {\mathcal {K}}_{1}(1 -q)\ln \bigg (\frac{e(t,0)}{e^{*}(0)}\bigg )+{\mathcal {F}}_{a}q\ln \bigg (\frac{i(t,0)}{i^{*}(0)}\bigg )\bigg ]\\{} & {} \times (S^{*}+\eta V^{*})\bigg (\int ^{+\infty }_{0}\beta _{1}(a)i^{*}(a) \text{ d }a+\beta _{2}T^{*}+\beta _{3}W^{*}\bigg )\\{} & {} -\big (S^{*}+\eta V^{*}\big ){\mathcal {F}}_{a}\rho \int ^{+\infty }_{0} \sigma (b)e^{*}(b){\textbf{p}}\bigg (\frac{e(t,b)}{e^{*}(b)}\bigg )\text{ d }b +\big (S^{*}+\eta V^{*}\big ){\mathcal {F}}_{a}\rho \\{} & {} \times \bigg [\int ^{+\infty }_{0}\sigma (b)e(t,b)\text{ d }b -\int ^{+\infty }_{0}\sigma (b)e^{*}(b)\text{ d }b -\int ^{+\infty }_{0}\sigma (b)e^{*}(b)\text{ d }b\ln \bigg (\frac{i(t,0)}{i^{*}(0)}\bigg )\bigg ]\\{} & {} -\big (S^{*}+\eta V^{*}\big )\bigg [\int ^{+\infty }_{0} \beta _{1}(a)i^{*}(a){\textbf{p}}\bigg (\frac{i(t,a)}{i^{*}(a)}\bigg )\text{ d }a +\frac{\beta _{3}}{c}\int ^{+\infty }_{0}\xi _{1}(a)i^{*}(a) {\textbf{p}}\bigg (\frac{i(t,a)}{i^{*}(a)}\bigg )\text{ d }a\\{} & {} +\bigg (\frac{\beta _{2}}{\gamma +d}+\frac{\beta _{3}\xi _{2}}{c(\gamma +d)}\bigg )\int ^{+\infty }_{0}\theta (a)i^{*}(a){\textbf{p}} \bigg (\frac{i(t,a)}{i^{*}(a)}\bigg )\text{ d }a\bigg ]\\{} & {} +\big (S^{*}+\eta V^{*}\big )\Bigg (\frac{\beta _{2}}{\gamma +d} +\frac{\beta _{3}\xi _{2}}{c(\gamma +d)}\Bigg )\int ^{+\infty }_{0}\theta (a)i^{*}(a)\\{} & {} \bigg [{\textbf{p}}\bigg (\frac{i(t,a)}{i^{*}(a)}\bigg ) -{\textbf{p}}\bigg (\frac{T^{*}i(t,a)}{T(t)i^{*}(a)}\bigg )\bigg ]\text{ d }a\\{} & {} -\big (S^{*}+\eta V^{*}\big )\beta _{2}T^{*}{\textbf{p}} \bigg (\frac{T(t)}{T^{*}}\bigg )-\big (S^{*}+\eta V^{*}\big ) \frac{\beta _{3}\xi _{2}}{c}T^{*}{\textbf{p}}\bigg (\frac{T(t)}{T^{*}}\bigg )\\{} & {} +\big (S^{*}+\eta V^{*}\big )\frac{\beta _{3}}{c}\int ^{+\infty }_{0}\xi _{1}(a)i^{*}(a) \bigg [{\textbf{p}}\bigg (\frac{i(t,a)}{i^{*}(a)}\bigg )-{\textbf{p}} \bigg (\frac{W^{*}i(t,a)}{W(t)i^{*}(a)}\bigg )\bigg ]\text{ d }a\\{} & {} +\big (S^{*}+\eta V^{*}\big )\frac{\beta _{3}\xi _{2}}{c}T^{*} \bigg [{\textbf{p}}\bigg (\frac{T(t)}{T^{*}}\bigg )-{\textbf{p}} \bigg (\frac{W^{*}T(t)}{W(t)T^{*}}\bigg )\bigg ]-\big (S^{*}+\eta V^{*}\big ) \beta _{3}W^{*}{\textbf{p}}\bigg (\frac{W(t)}{W^{*}}\bigg ). \end{aligned}$$

For simplicity, we let

$$\begin{aligned} \frac{\text{ d }{\mathcal {G}}(t)}{\text{ d }t}= & {} \frac{\text{ d }{\mathcal {G}}_{s}(t )}{\text{ d }t}+\frac{\text{ d }{\mathcal {G}}_{v}(t)}{\text{ d }t}+ \frac{\text{ d }{\mathcal {G}}_{e}(t)}{\text{ d }t}+\frac{\text{ d }{\mathcal {G} }_{i}(t)}{\text{ d }t}+\frac{\text{ d }{\mathcal {G}}_{t}(t)}{\text{ d }t} +\frac{\text{ d }{\mathcal {G}}_{w}(t)}{\text{ d }t}\\= & {} {\mathcal {G}}_{1}+{\mathcal {G}}_{2}+{\mathcal {G}}_{3}+{\mathcal {G}}_{4} +{\mathcal {G}}_{5}+{\mathcal {G}}_{6}, \end{aligned}$$

where

$$\begin{aligned} {\mathcal {G}}_{1}= & {} \tau V^{*}\bigg (2-\frac{S^{*}V(t)}{S(t)V^{*}} -\frac{S(t)V^{*}}{S^{*}V(t)}\bigg )+dV^{*}\bigg (3-\frac{S^{*}}{S(t)} -\frac{V(t)}{V^{*}}-\frac{S(t)V^{*}}{S^{*}V(t)}\bigg )\\{} & {} +dS^{*}\bigg (2-\frac{S(t)}{S^{*}}-\frac{S^{*}}{S(t)}\bigg )\le 0,\\ {\mathcal {G}}_{2}= & {} (S^{*}+\eta V^{*}){\mathcal {F}}_{a}q \Bigg \{\int ^{+\infty }_{0}\beta _{1}(a)S^{*}i^{*}(a)\bigg [\frac{i(t,a)}{i^{*}(a)} -\frac{S^{*}}{S(t)}-\ln \bigg (\frac{i(t,0)}{i^{*}(0)}\bigg )\bigg ]\text{ d }a\\{} & {} +\beta _{2}S^{*}T^{*}\bigg [\frac{T(t)}{T^{*}} -\frac{S^{*}}{S(t)}-\ln \bigg (\frac{i(t,0)}{i^{*}(0)}\bigg )\bigg ] +\beta _{3}S^{*}W^{*}\bigg [\frac{W(t)}{W^{*}} -\frac{S^{*}}{S(t)}-\ln \bigg (\frac{i(t,0)}{i^{*}(0)}\bigg )\bigg ]\\{} & {} +\eta \int ^{+\infty }_{0}\beta _{1}(a)V^{*}i^{*}(a)\bigg [\frac{i(t,a)}{i^{*}(a)} -\frac{V^{*}}{V(t)}-\ln \bigg (\frac{i(t,0)}{i^{*}(0)}\bigg )\bigg ]\text{ d }a\\{} & {} +\eta \beta _{2}V^{*}T^{*}\bigg [\frac{T(t)}{T^{*}} -\frac{V^{*}}{V(t)}-\ln \bigg (\frac{i(t,0)}{i^{*}(0)}\bigg )\bigg ] +\eta \beta _{3}V^{*}W^{*}\bigg [\frac{W(t)}{W^{*}} -\frac{V^{*}}{V(t)}-\ln \bigg (\frac{i(t,0)}{i^{*}(0)}\bigg )\bigg ]\Bigg \}\\= & {} (S^{*}+\eta V^{*}){\mathcal {F}}_{a}q\Bigg \{\int ^{+\infty }_{0} \beta _{1}(a)S^{*}i^{*}(a)\bigg [{\textbf{p}}\bigg (\frac{i(t,a)}{i^{*}(a)}\bigg ) -{\textbf{p}}\bigg (\frac{S^{*}}{S(t)}\bigg )\\{} & {} -{\textbf{p}}\bigg (\frac{S(t)i(t,a)i^{*}(0)}{S^{*}i^{*}(a)i(t,0)}\bigg )\bigg ]\text{ d }a\\{} & {} +\beta _{2}S^{*}T^{*}\bigg [{\textbf{p}}\bigg (\frac{T(t)}{T^{*}}\bigg ) -{\textbf{p}}\bigg (\frac{S^{*}}{S(t)}\bigg )-{\textbf{p}} \bigg (\frac{S(t)T(t)i^{*}(0)}{S^{*}T^{*}i(t,0)}\bigg )\bigg ]\\ \end{aligned}$$
$$\begin{aligned}{} & {} +\beta _{3}S^{*}W^{*}\bigg [{\textbf{p}}\bigg (\frac{W(t)}{W^{*}}\bigg ) -{\textbf{p}}\bigg (\frac{S^{*}}{S(t)}\bigg )-{\textbf{p}} \bigg (\frac{S(t)W(t)i^{*}(0)}{S^{*}W^{*}i(t,0)}\bigg )\bigg ]\\{} & {} +\eta \int ^{+\infty }_{0}\beta _{1}(a)V^{*}i^{*}(a) \bigg [{\textbf{p}}\bigg (\frac{i(t,a)}{i^{*}(a)}\bigg ) -{\textbf{p}}\bigg (\frac{V^{*}}{V(t)}\bigg )-{\textbf{p}} \bigg (\frac{V(t)i(t,a)i^{*}(0)}{V^{*}i^{*}(a)i(t,0)}\bigg )\bigg ]\text{ d }a\\{} & {} +\eta \beta _{2}V^{*}T^{*}\bigg [{\textbf{p}}\bigg (\frac{T(t)}{T^{*}}\bigg ) -{\textbf{p}}\bigg (\frac{V^{*}}{V(t)}\bigg )-{\textbf{p}} \bigg (\frac{V(t)T(t)i^{*}(0)}{V^{*}T^{*}i(t,0)}\bigg )\bigg ]\\{} & {} +\eta \beta _{3}V^{*}W^{*}\bigg [{\textbf{p}}\bigg (\frac{W(t)}{W^{*}}\bigg ) -{\textbf{p}}\bigg (\frac{V^{*}}{V(t)}\bigg )-{\textbf{p}} \bigg (\frac{V(t)W(t)i^{*}(0)}{V^{*}W^{*}i(t,0)}\bigg )\bigg ]\Bigg \}\\{} & {} +(S^{*}+\eta V^{*}){\mathcal {F}}_{a}\rho \int ^{+\infty }_{0} \sigma (b)e^{*}(b)\text{ d }b-(S^{*}+\eta V^{*}){\mathcal {F}}_{a} \rho \frac{i^{*}(0)}{i(t,0)}\int ^{+\infty }_{0}\sigma (b)e(t,b)\text{ d }b,\\ {\mathcal {G}}_{3}= & {} (S^{*}+\eta V^{*}){\mathcal {F}}_{a}\rho (1-q){\mathcal {K}}_{1}\Bigg \{\int ^{+\infty }_{0}\beta _{1}(a)S^{*}i^{*}(a)\bigg [\frac{i(t,a)}{i^{*}(a)} -\frac{S^{*}}{S(t)}-\ln \bigg (\frac{e(t,0)}{e^{*}(0)}\bigg )\bigg ]\text{ d }a\\{} & {} +\beta _{2}S^{*}T^{*}\bigg [\frac{T(t)}{T^{*}} -\frac{S^{*}}{S(t)}-\ln \bigg (\frac{e(t,0)}{e^{*}(0)}\bigg )\bigg ] +\beta _{3}S^{*}W^{*}\bigg [\frac{W(t)}{W^{*}} -\frac{S^{*}}{S(t)}-\ln \bigg (\frac{e(t,0)}{e^{*}(0)}\bigg )\bigg ]\\{} & {} +\eta \int ^{+\infty }_{0}\beta _{1}(a)V^{*}i^{*}(a)\bigg [\frac{i(t,a)}{i^{*}(a)} -\frac{V^{*}}{V(t)}-\ln \bigg (\frac{e(t,0)}{e^{*}(0)}\bigg )\bigg ]\text{ d }a\\{} & {} +\eta \beta _{2}V^{*}T^{*}\bigg [\frac{T(t)}{T^{*}} -\frac{V^{*}}{V(t)}-\ln \bigg (\frac{e(t,0)}{e^{*}(0)}\bigg )\bigg ]\\{} & {} +\eta \beta _{3}V^{*}W^{*}\bigg [\frac{W(t)}{W^{*}} -\frac{V^{*}}{V(t)}-\ln \bigg (\frac{e(t,0)}{e^{*}(0)}\bigg )\bigg ]\Bigg \}\\= & {} (S^{*}+\eta V^{*}){\mathcal {F}}_{a}\rho (1-q){\mathcal {K}}_{1} \Bigg \{\int ^{+\infty }_{0}\beta _{1}(a)S^{*}i^{*}(a)\bigg [{\textbf{p}} \bigg (\frac{i(t,a)}{i^{*}(a)}\bigg ) -{\textbf{p}}\bigg (\frac{S^{*}}{S(t)}\bigg )\\{} & {} -{\textbf{p}}\bigg (\frac{S(t)i(t,a)e^{*}(0)}{S^{*}i^{*}(a)e(t,0)} \bigg )\bigg ]\text{ d }a+\beta _{2}S^{*}T^{*}\bigg [{\textbf{p}}\bigg (\frac{T(t)}{T^{*}}\bigg ) -{\textbf{p}}\bigg (\frac{S^{*}}{S(t)}\bigg )-{\textbf{p}} \bigg (\frac{S(t)T(t)e^{*}(0)}{S^{*}T^{*}e(t,0)}\bigg )\bigg ]\\{} & {} +\beta _{3}S^{*}W^{*}\bigg [{\textbf{p}}\bigg (\frac{W(t)}{W^{*}}\bigg ) -{\textbf{p}}\bigg (\frac{S^{*}}{S(t)}\bigg )-{\textbf{p}} \bigg (\frac{S(t)W(t)e^{*}(0)}{S^{*}W^{*}e(t,0)}\bigg )\bigg ]\\{} & {} +\eta \int ^{+\infty }_{0}\beta _{1}(a)V^{*}i^{*}(a)\bigg [{\textbf{p}} \bigg (\frac{i(t,a)}{i^{*}(a)}\bigg ) -{\textbf{p}}\bigg (\frac{V^{*}}{V(t)}\bigg )-{\textbf{p}} \bigg (\frac{V(t)i(t,a)e^{*}(0)}{V^{*}i^{*}(a)e(t,0)}\bigg )\bigg ]\text{ d }a\\ \end{aligned}$$
$$\begin{aligned}{} & {} +\eta \beta _{2}V^{*}T^{*}\bigg [{\textbf{p}}\bigg (\frac{T(t)}{T^{*}}\bigg ) -{\textbf{p}}\bigg (\frac{V^{*}}{V(t)}\bigg )-{\textbf{p}} \bigg (\frac{V(t)T(t)e^{*}(0)}{V^{*}T^{*}e(t,0)}\bigg )\bigg ]\\{} & {} +\eta \beta _{3}V^{*}W^{*}\bigg [{\textbf{p}}\bigg (\frac{W(t)}{W^{*}}\bigg ) -{\textbf{p}}\bigg (\frac{V^{*}}{V(t)}\bigg )-{\textbf{p}} \bigg (\frac{V(t)W(t)e^{*}(0)}{V^{*}W^{*}e(t,0)}\bigg )\bigg ]\Bigg \},\\ {\mathcal {G}}_{4}= & {} \eta \bigg (1+\frac{V^{*}}{V(t)}-\frac{S^{*}}{S(t)} -\frac{S(t)V^{*}}{S^{*}V(t)}\bigg ) \bigg (\int ^{+\infty }_{0}\beta _{1}(a)V^{*}i^{*}(a)\text{ d }a +\beta _{2}V^{*}T^{*}+\beta _{3}V^{*}W^{*}\bigg )\\= & {} \eta \bigg [{\textbf{p}}\bigg (\frac{V^{*}}{V(t)}\bigg ) -{\textbf{p}}\bigg (\frac{S^{*}}{S(t)}\bigg ) -{\textbf{p}}\bigg (\frac{S(t)V^{*}}{S^{*}V(t)}\bigg )\bigg ]\\{} & {} \bigg (\int ^{+\infty }_{0}\beta _{1}(a)V^{*}i^{*}(a)\text{ d }a +\beta _{2}V^{*}T^{*}+\beta _{3}V^{*}W^{*}\bigg ),\\ {\mathcal {G}}_{5}= & {} \big (S^{*}+\eta V^{*}\big ){\mathcal {F}}_{a}\rho \bigg [\int ^{+\infty }_{0}\sigma (b)e(t,b)\text{ d }b-\int ^{+\infty }_{0} \sigma (b)e^{*}(b){\textbf{p}}\bigg (\frac{e(t,b)}{e^{*}(b)}\bigg )\text{ d }b\\{} & {} -\int ^{+\infty }_{0}\sigma (b)e^{*}(b)\text{ d }b-\int ^{+\infty }_{0} \sigma (b)e^{*}(b)\text{ d }b\ln \bigg (\frac{i(t,0)}{i^{*}(0)}\bigg )\bigg ]\\{} & {} -\big (S^{*}+\eta V^{*}\big )\bigg [\int ^{+\infty }_{0}\beta _{1}(a)i^{*} (a){\textbf{p}}\bigg (\frac{i(t,a)}{i^{*}(a)}\bigg )\text{ d }a +\frac{\beta _{3}}{c}\int ^{+\infty }_{0}\xi _{1}(a)i^{*}(a){\textbf{p}} \bigg (\frac{i(t,a)}{i^{*}(a)}\bigg )\text{ d }a\\{} & {} +\bigg (\frac{\beta _{2}}{\gamma +d}+\frac{\beta _{3}\xi _{2}}{c(\gamma +d)}\bigg )\int ^{+\infty }_{0}\theta (a)i^{*}(a){\textbf{p}} \bigg (\frac{i(t,a)}{i^{*}(a)}\bigg )\text{ d }a\bigg ],\\ {\mathcal {G}}_{6}= & {} \big (S^{*}+\eta V^{*}\big )\Bigg (\frac{\beta _{2}}{\gamma +d}+\frac{\beta _{3}\xi _{2}}{c(\gamma +d)}\Bigg )\int ^{+\infty }_{0}\theta (a)i^{*}(a) \bigg [{\textbf{p}}\bigg (\frac{i(t,a)}{i^{*}(a)}\bigg )-{\textbf{p}} \bigg (\frac{T^{*}i(t,a)}{T(t)i^{*}(a)}\bigg )\bigg ]\text{ d }a\\{} & {} -\big (S^{*}+\eta V^{*}\big )\beta _{2}T^{*}{\textbf{p}}\bigg (\frac{T(t)}{T^{*}}\bigg )-\big (S^{*}+\eta V^{*}\big )\frac{\beta _{3}\xi _{2}}{c} T^{*}{\textbf{p}}\bigg (\frac{T(t)}{T^{*}}\bigg )\\{} & {} +\big (S^{*}+\eta V^{*}\big )\frac{\beta _{3}}{c}\int ^{+\infty }_{0} \xi _{1}(a)i^{*}(a) \bigg [{\textbf{p}}\bigg (\frac{i(t,a)}{i^{*}(a)}\bigg )-{\textbf{p} }\bigg (\frac{W^{*}i(t,a)}{W(t)i^{*}(a)}\bigg )\bigg ]\text{ d }a\\{} & {} +\big (S^{*}+\eta V^{*}\big )\frac{\beta _{3}\xi _{2}}{c}T^{*} \bigg [{\textbf{p}}\bigg (\frac{T(t)}{T^{*}}\bigg )-{\textbf{p}} \bigg (\frac{W^{*}T(t)}{W(t)T^{*}}\bigg )\bigg ]-\big (S^{*}+\eta V^{*}\big )\beta _{3}W^{*}{\textbf{p}}\bigg (\frac{W(t)}{W^{*}}\bigg ). \end{aligned}$$

Note that

$$\begin{aligned}{} & {} \big (S^{*}+\eta V^{*}\big ){\mathcal {F}}_{a}\rho \bigg [\int ^{+\infty }_{0}\sigma (b)e(t,b)\text{ d }b-\int ^{+\infty }_{0}\sigma (b)e^{*}(b){\textbf{p}}\bigg (\frac{e(t,b)}{e^{*}(b)}\bigg )\text{ d }b\\{} & {} \quad -\int ^{+\infty }_{0}\sigma (b)e^{*}(b)\text{ d }b-\int ^{+\infty }_{0}\sigma (b)e^{*}(b)\text{ d }b\ln \bigg (\frac{i(t,0)}{i^{*}(0)}\bigg )\\{} & {} \quad +\int ^{+\infty }_{0}\sigma (b)e^{*}(b)\text{ d }b-\frac{i^{*}(0)}{i(t,0)}\int ^{+\infty }_{0}\sigma (b)e(t,b)\text{ d }b\bigg ]\\{} & {} \quad =\big (S^{*}+\eta V^{*}\big ){\mathcal {F}}_{a}\rho \int ^{+\infty }_{0}\sigma (b)e^{*}(b)\bigg [-\frac{i^{*}(0)e(t,b)}{i(t,0)e^{*}(b)}+1+\ln \bigg (\frac{i^{*}(0)e(t,b)}{i(t,0)e^{*}(b)}\bigg )\bigg ]\text{ d }b\\{} & {} \quad =-\big (S^{*}+\eta V^{*}\big ){\mathcal {F}}_{a}\rho \int ^{+\infty }_{0}\sigma (b)e^{*}(b){\textbf{p}}\bigg (\frac{i^{*}(0)e(t,b)}{i(t,0)e^{*}(b)}\bigg )\text{ d }b. \end{aligned}$$

Hence, we have

$$\begin{aligned} \sum ^{6}_{i=2}{\mathcal {G}}_{i}= & {} -(S^{*}+\eta V^{*}){\mathcal {F}}_{a}q\Bigg [\int ^{+\infty }_{0}\beta _{1}(a)S^{*}i^{*}(a) {\textbf{p}}\bigg (\frac{S(t)i(t,a)i^{*}(0)}{S^{*}i^{*}(a)i(t,0)}\bigg )\text{ d }a\nonumber \\{} & {} +\beta _{2}S^{*}T^{*}{\textbf{p}}\bigg (\frac{S(t)T(t)i^{*}(0)}{S^{*}T^{*}i(t,0)}\bigg ) +\beta _{3}S^{*}W^{*}{\textbf{p}}\bigg (\frac{S(t)W(t)i^{*}(0)}{S^{*}W^{*}i(t,0)}\bigg )\nonumber \\{} & {} +\eta \int ^{+\infty }_{0}\beta _{1}(a)V^{*}i^{*}(a){\textbf{p}}\bigg (\frac{V(t)i(t,a)i^{*}(0)}{V^{*}i^{*}(a)i(t,0)}\bigg )\text{ d }a +\eta \beta _{2}V^{*}T^{*}{\textbf{p}}\bigg (\frac{V(t)T(t)i^{*}(0)}{V^{*}T^{*}i(t,0)}\bigg )\nonumber \\{} & {} +\eta \beta _{3}V^{*}W^{*}{\textbf{p}}\bigg (\frac{V(t)W(t)i^{*}(0)}{V^{*}W^{*}i(t,0)}\bigg )\Bigg ]-(S^{*}+\eta V^{*}){\mathcal {F}}_{a}\rho (1-q){\mathcal {K}}_{1}\nonumber \\{} & {} \times \Bigg [\int ^{+\infty }_{0}\beta _{1}(a)S^{*}i^{*}(a){\textbf{p}}\bigg (\frac{S(t)i(t,a)e^{*}(0)}{S^{*}i^{*}(a)e(t,0)}\bigg )\text{ d }a+\beta _{2}S^{*}T^{*}{\textbf{p}}\bigg (\frac{S(t)T(t)e^{*}(0)}{S^{*}T^{*}e(t,0)}\bigg )\nonumber \\{} & {} +\beta _{3}S^{*}W^{*}{\textbf{p}}\bigg (\frac{S(t)W(t)e^{*}(0)}{S^{*}W^{*}e(t,0)}\bigg ) +\eta \int ^{+\infty }_{0}\beta _{1}(a)V^{*}i^{*}(a){\textbf{p}}\bigg (\frac{V(t)i(t,a)e^{*}(0)}{V^{*}i^{*}(a)e(t,0)}\bigg )\text{ d }a\nonumber \\{} & {} +\eta \beta _{2}V^{*}T^{*}{\textbf{p}}\bigg (\frac{V(t)T(t)e^{*}(0)}{V^{*}T^{*}e(t,0)}\bigg ) +\eta \beta _{3}V^{*}W^{*}{\textbf{p}}\bigg (\frac{V(t)W(t)e^{*}(0)}{V^{*}W^{*}e(t,0)}\bigg )\Bigg ]\\{} & {} -S^{*}{\textbf{p}}\bigg (\frac{S^{*}}{S(t)}\bigg )\bigg (\int ^{+\infty }_{0}\beta _{1}(a)i^{*}(a)\text{ d }a +\beta _{2}T^{*}+\beta _{3}W^{*}\bigg )\nonumber \\{} & {} -\eta V^{*}\bigg [{\textbf{p}}\bigg (\frac{S^{*}}{S(t)}\bigg ) +{\textbf{p}}\bigg (\frac{S(t)V^{*}}{S^{*}V(t)}\bigg )\bigg ] \bigg (\int ^{+\infty }_{0}\beta _{1}(a)i^{*}(a)\text{ d }a +\beta _{2}T^{*}+\beta _{3}W^{*}\bigg )\nonumber \\{} & {} -\big (S^{*}+\eta V^{*}\big )\Bigg [{\mathcal {F}}_{a}\rho \int ^{+\infty }_{0}\sigma (b)e^{*}(b){\textbf{p}}\bigg (\frac{i^{*}(0)e(t,b)}{i(t,0)e^{*}(b)}\bigg )\text{ d }b\nonumber \\{} & {} +\Bigg (\frac{\beta _{2}}{\gamma +d}+\frac{\beta _{3}\xi _{2}}{c(\gamma +d)}\Bigg )\int ^{+\infty }_{0}\theta (a)i^{*}(a) {\textbf{p}}\bigg (\frac{T^{*}i(t,a)}{T(t)i^{*}(a)}\bigg )\text{ d }a\nonumber \\{} & {} +\frac{\beta _{3}}{c}\int ^{+\infty }_{0}\xi _{1}(a)i^{*}(a) {\textbf{p}}\bigg (\frac{W^{*}i(t,a)}{W(t)i^{*}(a)}\bigg )\text{ d }a +\frac{\beta _{3}\xi _{2}}{c}T^{*}{\textbf{p}}\bigg (\frac{W^{*}T(t)}{W(t)T^{*}}\bigg )\Bigg ].\nonumber \end{aligned}$$
(43)

We find that all terms in Eq. (43) have the property of the function \({\textbf{p}}(x)=x-1-\ln x\). This means that positive-definite function \({\mathcal {G}}(t)\) has negative derivative \(\text{ d }{\mathcal {G}}(t)/\text{d }t\). Furthermore, the equality \(\text{ d }{\mathcal {G}}(t)/\text{d }t=0\) holds if and only if \(S(t)=S^{*}\), \(V(t)=V^{*}\), \(e(t,b)=e^{*}(b)\), \(i(t,a)=i^{*}(a)\), \(T(t)=T^{*}\), \(R(t)=R^{*}\), and \(W(t)=W^{*}\). LaSalle’s Invariance Principle (LaSalle 1960) implies that the bounded solutions of System (2) converge to the largest compact invariant set of \(\big \{(S(t),V(t),T(t),R(t),W(t),e(t,b),i(t,a))\in {\mathcal {D}}:\;{\text{ d }{\mathcal {G}}(t)}/{\text{ d }t}=0\big \}\). Since the endemic equilibrium \({\mathcal {P}}^{*}\) is the only invariant set of System (2) contained entirely in \(\big \{(S(t),V(t),T(t),R(t),W(t),e(t,b),i(t,a))\in {\mathcal {D}}:\;{\text{ d }{\mathcal {G}}(t)}/{\text{ d }t}=0\big \}\). Hence, every solution of System (2) in set \({\mathcal {D}}\backslash \{{\mathcal {P}}^{0}\}\) tends to the endemic equilibrium \({\mathcal {P}}^{*}\), which is globally attractive when it exists. This completes the proof. \(\square \)

Appendix H: Numerical method for System (2)

To compute the numerical solution, we use the forward/backward finite difference method for time and age to discretize System (2) (Kenne et al. 2021; Martcheva 2015). We define the finite domain with respect to time and age as follows

$$\begin{aligned} \overline{{\textbf{D}}}=\Big \{(t,a,b):0\le t\le {\mathbb {T}},\;0\le a\le {\mathbb {K}}_{a},\;0\le b\le {\mathbb {K}}_{b}\Big \}. \end{aligned}$$

To discretize the model, we divide the time interval \((0,{\mathbb {T}})\) into \({\mathcal {T}}\) subintervals \((t_{n}, t_{n+1})\) with a time step \(\varDelta t=t_{n+1}-t_{n}\), for \(n = 0, 1, 2,\cdots , {\mathcal {T}}-1\). Similarly, we also divide the latent age interval \((0,{\mathbb {K}}_{b})\) and the infected age interval \((0,{\mathbb {K}}_{a})\) into \(K_{b}\) subintervals \((b_{k},b_{k+1})\) with a time step \(\varDelta b=b_{k+1}-b_{k}\) and \(K_{a}\) subintervals \((a_{j},a_{j+1})\) with a time step \(\varDelta a=a_{j+1}-a_{j}\), respectively, for \(k=0, 1, 2, \cdots , K_{b}-1\), \(j=0, 1, 2, \cdots , K_{a}-1\). We define the symbol substitution rules as follows

$$\begin{aligned}{} & {} S_{n}=S(t_{n}),\;V_{n}=V(t_{n}),\;T_{n}=T(t_{n}),\;R_{n}=R(t_{n}), \;W_{n}=W(t_{n}),\;i^{j}_{n}=i(t_{n},a_{j}),\\{} & {} e^{k}_{n}=e(t_{n},b_{k}),\;\beta ^{j}_{1}=\beta _{1}(a_{j}), \;\theta ^{j}=\theta (a_{j}),\;\xi ^{j}_{1}=\xi _{1}(a_{j}),\; \sigma ^{k}=\sigma (b_{k}). \end{aligned}$$

Next, we use the trapezoidal rule to approximate several integral expressions in System (2), that is,

$$\begin{aligned}{} & {} \int ^{+\infty }_{0}\beta _{1}(a)i(t,a)\text{ d }a\approx \varDelta a\bigg (\frac{\beta ^{0}_{1}i(t,a_{0})+\beta ^{K_{a}-1}_{1}i(t,a_{K_{a}-1})}{2}\bigg )+\varDelta a\sum ^{K_{a}-2}_{j=1}\beta ^{j}_{1}i(t,a_{j}),\\{} & {} \int ^{+\infty }_{0}\theta (a)i(t,a)\text{ d }a\approx \varDelta a\bigg (\frac{\theta ^{0}i(t,a_{0})+\theta ^{K_{a}-1}i(t,a_{K_{a}-1})}{2}\bigg )+\varDelta a\sum ^{K_{a}-2}_{j=1}\theta ^{j}i(t,a_{j}),\\{} & {} \int ^{+\infty }_{0}\xi _{1}(a)i(t,a)\text{ d }a\approx \varDelta a\bigg (\frac{{\xi ^{0}_{1}}i(t,a_{0})+{\xi ^{K_{a}-1}_{1}}i(t,a_{K_{a}-1})}{2}\bigg )+\varDelta a\sum ^{K_{a}-2}_{j=1}{\xi ^{j}_{1}}i(t,a_{j}),\\{} & {} \int ^{+\infty }_{0}\sigma (b)e(t,b)\text{ d }b\approx \varDelta b\bigg (\frac{{\sigma }^{0}e(t,b_{0})+{\sigma }^{K_{b}-1}e(t,b_{K_{b}-1})}{2}\bigg )+\varDelta b\sum ^{K_{b}-2}_{k=1}{\sigma }^{k}e(t,b_{k}). \end{aligned}$$

Hence, the discrete form of System (2) can be expressed as

$$\begin{aligned}{} & {} \frac{S_{n+1}-S_{n}}{\varDelta t}=\varLambda +\tau V_{n}+\delta R_{n}-\lambda _{n}S_{n}-(\alpha +d)S_{n},\nonumber \\{} & {} \frac{V_{n+1}-V_{n}}{\varDelta t}=\alpha S_{n}-\eta \lambda _{n}V_{n}-(\tau +d)V_{n},\nonumber \\{} & {} \frac{T_{n+1}-T_{n}}{\varDelta t}=\varDelta a\bigg (\frac{\theta ^{0}i^{0}_{n}+\theta ^{K_{a}-1}i^{K_{a}-1}_{n}}{2}\bigg )+\varDelta a\sum ^{K_{a}-2}_{j=1}\theta ^{j}i^{j}_{n}-(\gamma +d)T_{n},\nonumber \\{} & {} \frac{R_{n+1}-R_{n}}{\varDelta t}=\gamma T_{n}-(\delta +d)R_{n},\nonumber \\{} & {} \frac{W_{n+1}-W_{n}}{\varDelta t}=\varDelta a\bigg (\frac{{\xi ^{0}_{1}}i^{0}_{n}+{\xi ^{K_{a}-1}_{1}}i^{K_{a}-1}_{n}}{2}\bigg )+\varDelta a\sum ^{K_{a}-2}_{j=1}{\xi ^{j}_{1}}i^{j}_{n}+\xi _{2}T_{n}-cW_{n},\nonumber \\{} & {} \frac{e^{k}_{n+1}-e^{k}_{n}}{\varDelta t}+\frac{e^{k}_{n}-e^{k-1}_{n}}{\varDelta b}=-(\rho \sigma ^{k}+d)e^{k}_{n},\nonumber \\{} & {} \frac{i^{j}_{n+1}-i^{j}_{n}}{\varDelta t}+\frac{i^{j}_{n}-i^{j-1}_{n}}{\varDelta a}=-(\theta ^{j}+d)i^{j}_{n},\nonumber \\{} & {} e^{0}_{n}=(1-q)\lambda _{n}\big (S_{n}+\eta V_{n}\big ),\nonumber \\{} & {} i^{0}_{n}=q\lambda _{n}\big (S_{n}+\eta V_{n}\big )+\rho \varDelta b\bigg (\frac{{\sigma }^{0}e^{0}_{n}+{\sigma }^{K_{b}-1}e^{K_{b}-1}_{n}}{2}\bigg )+\rho \varDelta b\sum ^{K_{b}-2}_{k=1}{\sigma }^{k}e^{k}_{n},\nonumber \\{} & {} e^{k}_{0}=e_{0}(b_{k}),i^{j}_{0}=i_{0}(a_{j}), \end{aligned}$$
(44)

where \(\lambda _{n}=\varDelta a\Big (\frac{\beta ^{0}_{1}i^{0}_{n}+\beta ^{K_{a}-1}_{1}i^{K_{a}-1}_{n}}{2}\Big )+\varDelta a\sum ^{K_{a}-2}_{j=1}\beta ^{j}_{1}i^{j}_{n}+\beta _{2}T_{n}+\beta _{3}W_{n}\). After some algebraic manipulation, the first seven equations of System (44) can be rewritten as

$$\begin{aligned}{} & {} S_{n+1}=S_{n}+\varDelta t\big [\varLambda +\tau V_{n}+\delta R_{n}-\lambda _{n}S_{n}-(\alpha +d)S_{n}\big ],\\{} & {} V_{n+1}=V_{n}+\varDelta t\big [\alpha S_{n}-\eta \lambda _{n}V_{n}-(\tau +d)V_{n}\big ],\\{} & {} T_{n+1}=T_{n}+\varDelta t\bigg [\varDelta a\bigg (\frac{\theta ^{0}i^{0}_{n}+\theta ^{K_{a}-1}i^{K_{a}-1}_{n}}{2}\bigg )+\varDelta a\sum ^{K_{a}-2}_{j=1}\theta ^{j}i^{j}_{n}-(\gamma +d)T_{n}\bigg ],\\{} & {} R_{n+1}=R_{n}+\varDelta t\big [\gamma T_{n}-(\delta +d)R_{n}\big ],\\{} & {} W_{n+1}=W_{n}+\varDelta t\bigg [\varDelta a\bigg (\frac{{\xi ^{0}_{1}}i^{0}_{n}+{\xi ^{K_{a}-1}_{1}}i^{K_{a}-1}_{n}}{2}\bigg )+\varDelta a\sum ^{K_{a}-2}_{j=1}{\xi ^{j}_{1}}i^{j}_{n}+\xi _{2}T_{n}-cW_{n}\bigg ],\\{} & {} e^{k}_{n+1}=\bigg [1-\frac{\varDelta t}{\varDelta b}-\varDelta t(\rho \sigma ^{k}+d)\bigg ]e^{k}_{n}+\frac{\varDelta t}{\varDelta b}e^{k-1}_{n},\\{} & {} i^{j}_{n+1}=\bigg [1-\frac{\varDelta t}{\varDelta a}-\varDelta t(\theta ^{j}+d)\bigg ]i^{j}_{n}+\frac{\varDelta t}{\varDelta a}i^{j-1}_{n},\\{} & {} i^{0}_{n}=q\lambda _{n}\big (S_{n}+\eta V_{n}\big )+\rho \varDelta b\bigg (\frac{{\sigma }^{0}e^{0}_{n}+{\sigma }^{K_{b}-1}e^{K_{b}-1}_{n}}{2}\bigg )+\rho \varDelta b\sum ^{K_{b}-2}_{k=1}{\sigma }^{k}e^{k}_{n},\\{} & {} e^{0}_{n}=(1-q)\lambda _{n}\big (S_{n}+\eta V_{n}\big ). \end{aligned}$$

The explicit expressions for \(i^{0}_{n}\) and \(e^{0}_{n}\) are as follows

$$\begin{aligned} i^{0}_{n}=\frac{\left( \begin{aligned}&\Bigg [\frac{\rho \varDelta b\sigma ^{0}(1-q)(S_{n}+\eta V_{n})}{2}+q(S_{n}+\eta V_{n})\Bigg ]\Bigg (\varDelta a\frac{\beta ^{K_{a}-1}_{1}i^{K_{a}-1}_{n}}{2}+\varDelta a\sum ^{K_{a}-2}_{j=1}\beta ^{j}_{1}i^{j}_{n}+\beta _{2}T_{n}+\beta _{3}W_{n}\Bigg )\\&+\rho \varDelta b\Bigg (\frac{{\sigma }^{K_{b}-1}e^{K_{b}-1}_{n}}{2}+\sum ^{K_{b}-2}_{k=1}{\sigma }^{k}e^{k}_{n}\Bigg ) \end{aligned}\right) }{1-\frac{q(S_{n}+\eta V_{n})\varDelta a\beta ^{0}_{1}}{2}-\frac{\rho \sigma ^{0}(1-q)(S_{n}+\eta V_{n})\varDelta a\varDelta b\beta ^{0}_{1}}{4}}, \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} e^{0}_{n}=(1-q)(S_{n}+\eta V_{n})\Bigg (\varDelta a\frac{\beta ^{0}_{1}i^{0}_{n} +\beta ^{K_{a}-1}_{1}i^{K_{a}-1}_{n}}{2}+\varDelta a\sum ^{K_{a}-2}_{j=1}\beta ^{j}_{1} i^{j}_{n}+\beta _{2}T_{n}+\beta _{3}W_{n}\Bigg ). \end{aligned} \end{aligned}$$

Appendix I: MCMC method for parameter estimation

Let \(\varepsilon \) be the fitting error, and \(\varepsilon \) follows the additive independent Gaussian distribution with mean zero and unknown variance \(\xi ^{2}\), which is based on the result of the Central Limit Theorem. Then, the observations y can be expressed as follows

$$\begin{aligned} y=f(x,{\widehat{\chi }})+\varepsilon ,\;\;\varepsilon \sim N(0,I\xi ^{2}), \end{aligned}$$
(45)

where \(f(x,{\widehat{\chi }})\) is the nonlinear model (\(\theta (a)\), \({\mathcal {Z}}_{1}(0,a)\), or \({\mathcal {Z}}_{2}(j,a)\)); x are the independent variables; \({\widehat{\chi }}\) are the unknown parameters and initial values.

For \({\hat{\varPsi }}\) independent identically distributed observations, the likelihood function \(p(y|{\hat{\chi }}, \xi ^{2})\) from Eq. (45) with a Gaussian error model is

$$\begin{aligned} p(y|{\hat{\chi }}, \xi ^{2})=\Bigg (\frac{1}{\sqrt{2\pi \xi ^2}}\Bigg )^{{\hat{\varPsi }}}\exp \Bigg [\frac{-\textrm{SS}({\hat{\chi }})}{2\xi ^{2}}\Bigg ], \end{aligned}$$

where \(\textrm{SS}({\hat{\chi }})\) represents the sum of squares function

$$\begin{aligned} \textrm{SS}({\hat{\chi }})=\overset{{\hat{\varPsi }}}{\underset{i=1}{\sum }} \Big [(y_{i}-f({\hat{\chi }})_{i})^{2}\Big ]. \end{aligned}$$

For simplicity, we assume that the unknown parameters \({\hat{\chi }}\) are an independent Gaussian prior specification, that is,

$$\begin{aligned} {\hat{\chi }}_{j}\sim N(\nu _{j}, \varphi ^{2}_{j}),\;\;j = 1,\ldots , {\hat{M}}. \end{aligned}$$

where \({\hat{M}}\) is the number of unknown parameters. For \(\xi ^{-2}\), a Gamma distribution is used as a prior, that is,

$$\begin{aligned} p(\xi ^{-2})\sim \Gamma \Bigg (\frac{n_{0}}{2}, \frac{n_{0}}{2}S^{2}_{0}\Bigg ), \end{aligned}$$

where \(S^2_0\) and \(n_0\) are the prior mean and prior accuracy of variance \(\xi ^{2}\), respectively.

The conditional distribution \(p(\xi ^{-2}|y, {\hat{\chi }})\) can be expressed as follows

$$\begin{aligned} \begin{aligned} p(\xi ^{-2}|y, {\hat{\chi }})\propto \big (\xi ^{-2}\big )^{-\frac{{\hat{\varPsi }} +n_{0}}{2}-1}\exp \bigg [-\frac{\textrm{SS}({\hat{\chi }})+n_{0}S^{2}_{0}}{2\xi ^{-2}}\bigg ]. \end{aligned} \end{aligned}$$

Using the conditional conjugacy property of the Gamma distribution, the conditional distribution \(p(\xi ^{-2}|y, {\hat{\chi }})\) is also a Gamma distribution with

$$\begin{aligned} p(\xi ^{-2}|y, {\hat{\chi }})=\Gamma \Bigg (\frac{{\hat{\varPsi }}+n_{0}}{2}, \frac{\textrm{SS}({\hat{\chi }})+n_{0}S^{2}_{0}}{2}\Bigg ), \end{aligned}$$

according to which we sample and update \(\xi ^{-2}\) for other parameters within each run of Metropolis Hastings simulations. Since we assume independent Gaussian prior specification for parameters \({\hat{\chi }}\), the prior sum of squares for the given parameters \({\hat{\chi }}\) can be calculated as follows

$$\begin{aligned} \textrm{SS}_{\textrm{pri}}({\hat{\chi }})=\overset{{\hat{M}}}{\underset{i=1}{\sum }} \Bigg [\frac{{\hat{\chi }}_{i}-\nu _{i}}{\varphi _{i}}\Bigg ]^{2}. \end{aligned}$$

Then the posterior for the unknown parameters \({\hat{\chi }}\) can be estimated as

$$\begin{aligned} \begin{aligned} p({\hat{\chi }}|y, \xi ^{2})\propto \exp \Bigg [-\frac{1}{2} \bigg (\frac{\textrm{SS}({\hat{\chi }})}{\xi ^2}+\textrm{SS}_{\textrm{pri}}({\hat{\chi }})\bigg )\Bigg ]. \end{aligned} \end{aligned}$$

In the simulation, we use Delayed Rejection Adaptive Metropolis (DRAM) algorithm to generate efficient chains of estimated parameters (Haario et al. 2006). The variance of measured components \(\theta (a)\), \({\mathcal {Z}}_{1}(0,a)\), and \({\mathcal {Z}}_{2}(j,a)\) are given by inverse gamma distribution with hyper-parameters (0.01, 0.04), where 0.01 is the initial error variance, which is updated by inverse gamma distribution (Tang et al. 2018). Prior information of unknown parameters is given by \(\theta _{1}\in (0, 1000)\), \(\theta _{2}\in (0, 1000)\), \(\varpi _{1}\in (0, 10000)\), \(\varpi _{2}\in (0, 1000)\), \(\sigma _{1}\in (0, 10)\), \(\sigma _{2}\in (0, 1000)\), \(\beta _{1}\in (0, 1\times 10^{-7})\), \(\beta _{3}\in (0, 1\times 10^{-7})\), \(\xi _{2}\in (0.6, 1)\), \(\zeta _{1}\in (0, 1000)\), \(T(0)\in (10000, 50000)\), \(R(0)\in (2\times 10^{6}, 1\times 10^{7})\), \(W(0)\in (1\times 10^{4}, 1\times 10^{5})\), and the proposal density follows a multivariate normal distribution.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, S., Xue, L., Wang, H. et al. Global analysis of an age-structured tuberculosis model with an application to Jiangsu, China. J. Math. Biol. 88, 52 (2024). https://doi.org/10.1007/s00285-024-02066-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00285-024-02066-z

Keywords

Mathematics Subject Classification

Navigation