Skip to main content
Log in

Spreading Properties for SIR Models on Homogeneous Trees

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We consider an epidemic model of SIR type set on a homogeneous tree and investigate the spreading properties of the epidemic as a function of the degree of the tree, the intrinsic basic reproduction number and the strength of the interactions between the populations of infected individuals at each node. When the degree is one, the homogeneous tree is nothing but the standard lattice on the integers and our model reduces to a SIR model with discrete diffusion for which the spreading properties are very similar to the continuous case. On the other hand, when the degree is larger than two, we observe some new features in the spreading properties. Most notably, there exists a critical value of the strength of interactions above which spreading of the epidemic in the tree is no longer possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Note that in the physics literature homogeneous trees of degree k are often called Bethe lattices (Bethe 1935).

References

  • Aronson DG (1977) The asymptotic speed of propagation of a simple epidemic. Res Notes Math 14:1–23

    MathSciNet  MATH  Google Scholar 

  • Ball F, Britton T (2020) Epidemics on networks with preventive rewiring. arXiv:2008.06375

  • Berestycki H, Nordmann S, Rossi L (2020) Modeling propagation of epidemics, social unrest and other collective behaviors. arXiv:2005.09865

  • Berestycki H, Roquejoffre J-M, Rossi L (2021) Propagation of epidemics along lines with fast diffusion. Bull Math Biol 83(1):1–34

    Article  MathSciNet  Google Scholar 

  • Besse C, Faye G (2021) Dynamics of epidemic spreading on connected graphs. J Math Biol 82(6):1–52

    Article  MathSciNet  Google Scholar 

  • Bethe HA (1935) Statistical theory of superlattices. Proc R Soc Lond A 150(871):552–575

    Article  Google Scholar 

  • Bollobás B (2013) Modern graph theory, vol 184. Springer, Berlin

    MATH  Google Scholar 

  • Bonnasse-Gahot L, Depuiset M-A, Gordon MB, Roché S, Rodriguez N, Nadal JP (2005) Epidemiological modelling of the French riots: a spreading wave and the role of contagion. Sci Rep 8:2018

    Google Scholar 

  • Britton T, Deijfen M, Lindholm M, Nordvall Lageras A (2008) Epidemics on random graphs with tunable clustering. J Appl Prob 45:743–756

    Article  MathSciNet  Google Scholar 

  • Brockmann D, Helbing D (2013) The hidden geometry of complex, network-driven contagion phenomena. Science 342(6164):1337–1342

    Article  Google Scholar 

  • Burioni R, Chibbaro S, Vergni D, Vulpiani A (2012) Reaction spreading on graphs. Phys Rev E 86(5):055101

    Article  Google Scholar 

  • Chen X (1997) Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations. Adv Differ Equ 2(1):125–160

    Article  MathSciNet  Google Scholar 

  • Chen X, Guo JS (2002) Existence and asymptotic stability of traveling waves of discrete quasilinear monostable equations. J Differ Equ 184:549–569

    Article  MathSciNet  Google Scholar 

  • Chen X, Fu S-C, Guo JS (2006) Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices. SIAM J Math Anal 38(1):233–258

    Article  MathSciNet  Google Scholar 

  • Chen YY, Guo JS, Hamel F (2017) Traveling waves for a lattice dynamical system arising in a diffusive endemic model. Nonlinearity 30(6):2334

    Article  MathSciNet  Google Scholar 

  • Chen LM, Holzer M, Shapiro A (2018) Estimating epidemic arrival times using linear spreading theory. Chaos Interdiscip J Nonlinear Sci 28(1):013105

    Article  Google Scholar 

  • Corless RM, Gonnet GH, Hare DE, Jeffrey DJ, Knuth DE (1996) On the LambertW function. Adv Comput Math 5(1):329–359

    Article  MathSciNet  Google Scholar 

  • Diekmann O, Heesterbeek JAP, Metz JAJ (1990) On the definition and the computation of the basic reproduction ratio \(R0\) in models for infectious diseases in heterogeneous populations. J Math Biol 28:365

    Article  MathSciNet  Google Scholar 

  • Ducrot A, Giletti T (2014) Convergence to a pulsating travelling wave for an epidemic reaction–diffusion system with non-diffusive susceptible population. J Math Biol 69(3):533–552

    Article  MathSciNet  Google Scholar 

  • Fu SC, Guo JS, Wu C-C (2016) Traveling wave solutions for a discrete diffusive epidemic model. J Nonlinear Convex Anal 17:1739–1751

    MathSciNet  MATH  Google Scholar 

  • Hethcote HW (2000) The mathematics of infectious diseases. SIAM Rev 42(4):599–653

    Article  MathSciNet  Google Scholar 

  • Hindes J, Singh S, Myers CR, Schneider DJ (2013) Epidemic fronts in complex networks with metapopulation structure. Phys Rev E 88(1):012809

    Article  Google Scholar 

  • Hoffman A, Holzer M (2019) Invasion fronts on graphs: the Fisher-KPP equation on homogeneous trees and Erdös–Réyni graphs. Discrete Contin Dyn Syst B 24(2):671

    MathSciNet  MATH  Google Scholar 

  • Kermack WO, McKendrick AG (1927) A contribution to the mathematical theory of epidemics. Proc R Soc Ser A 115:700–721

    MATH  Google Scholar 

  • Matano H, Punzo F, Tesei A (2015) Front propagation for nonlinear diffusion equations on the hyperbolic space. J Eur Math Soc 17(5):1199–1227

    Article  MathSciNet  Google Scholar 

  • Sahneh FD, Scoglio C, Van Mieghem P (2013) Generalized epidemic mean-field model for spreading processes over multilayer complex networks. IEEE/ACM Trans Netw 21(5):1609–1620

    Article  Google Scholar 

  • Spricer K, Britton T (2019) An SIR epidemic on a weighted network. Netw Sci 7:556–580

    Article  Google Scholar 

  • Stolerman LM, Coombs D, Boatto S (2015) SIR-network model and its application to dengue fever. SIAM J Appl Math 75(6):2581–2609

    Article  MathSciNet  Google Scholar 

  • Van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180(1–2):29–48

    Article  MathSciNet  Google Scholar 

  • Weinberger H (1982) Long-time behavior of a class of biological models. SIAM J Math Anal 13(3):353–396

    Article  MathSciNet  Google Scholar 

  • Wu C-C (2017) Existence of traveling waves with the critical speed for a discrete diffusive epidemic model. J Differ Equ 262(1):272–282

    Article  MathSciNet  Google Scholar 

  • Zinner B, Harris G, Hudson W (1991) Traveling wavefronts for the discrete Fisher’s equation. J Differ Equ 105:46–62

Download references

Acknowledgements

This work was partially supported by Labex CIMI under grant agreement ANR-11-LABX-0040. G.F. acknowledges support from an ANITI (Artificial and Natural Intelligence Toulouse Institute) Research Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grégory Faye.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Besse, C., Faye, G. Spreading Properties for SIR Models on Homogeneous Trees. Bull Math Biol 83, 114 (2021). https://doi.org/10.1007/s11538-021-00948-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11538-021-00948-7

Keywords

Navigation