Skip to main content
Log in

Large scale multi-configuration Hartree-Fock calculation of the hyperfine structure of the ground state of vanadium

  • Published:
Central European Journal of Physics

Abstract

The hyperfine structure of the ground state of vanadium, 51VI, is calculated in the nonrelativistic framework of the multi-configuration Hartree-Fock approximation. A configuration state function limiting algorithm is used to make the calculations feasible and to study the influence of core, valence and core-valence correlations in detail. The obtained configuration state function space captures the most important orbital correlations within 2%. Further correlations are included through configuration interaction calculation. The atomic state functions are used to evaluate the magnetic dipole hyperfine factor A and the electric quadrupole factor B. It turns out that the ab initio calculation can not capture the core polarization of the 2s shell. It introduces an error that is higher than the Hartree-Fock approximation. However, the detailed correlations being observed suggest the introduction of a wrong correlation orbital due to the algorithm being used. Neglecting this orbital leads to good agreement with 2% deviation from the experimental values for the A factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Gaigalas, Z.R. Rudzikas and C.F. Fischer: “An efficient approach for spin-angular integrations in atomic structure calculations”, J. Phys. B, Vol. 30, (1997), pp. 3747–3771.

    Article  ADS  Google Scholar 

  2. A. Irimia and C.F. Fischer: “Breit-Pauli Oscillator Strengths, Lifetimes and Einstein A-Coefficients in Singly Ionized Sulphur”, Phys. Scripta, Vol. 71, (2005), pp. 172–184.

    Article  ADS  Google Scholar 

  3. P. Jönsson and C.G. Wahlström: “A program for computing magnetic dipole and electric quadrupole hyperfine constants from MCHF wave functions”, Comput. Phys. Commun., Vol. 74, (1993), pp. 399–414.

    Article  ADS  Google Scholar 

  4. J. Bieroń, F.A. Parpia, C.F. Fischer and P. Jönsson: “Large-scale multiconfiguration Dirac-Fock calculation of hyperfine interaction constants for nd 2 levels of Sc+ and Y+”, Phys. Rev. A, Vol. 51, (1995), pp. 4603–4610.

    Article  ADS  Google Scholar 

  5. K. Paduch and J. Bieroń: “Hyperfine-structure calculations in Xe II”, J. Phys. B, Vol. 33, (2000), pp. 303–311.

    Article  ADS  Google Scholar 

  6. L. Young, W.J. Childs, T. Dinneen, C. Kurtz, H.G. Berry and L. Engström: “Hyperfine structure of Sc II: Experiment and theory”, Phys. Rev. A, Vol. 37, (1988), pp. 4213–4219.

    Article  ADS  Google Scholar 

  7. W.J. Childs and L.S. Goodman: “Hyperfine structure of nine levels in two configurations of V51. I. Experimental”, Phys. Rev., Vol. 156, (1967), pp. 64–70.

    Article  ADS  Google Scholar 

  8. M.G. Edmunds: “Calculation of Hyperfine Structure of Scandium and Vanadium for Stellar Spectral Analysis”, Astron. Astrophys., Vol. 23(2), (1973), pp. 311–316.

    ADS  MathSciNet  Google Scholar 

  9. P. Unkel, P. Buch, J. Dembcyński, W. Ertmer and U. Johann: “Sternheimer free determination of the 51V nuclear quadrupole moment from hyperfine structure measurements”, Zeitschrift für Physik D: Atoms, Molecules and Cluster, Vol. 11, (1989), pp. 259–271.

    Article  Google Scholar 

  10. W.J. Childs: “Hyperfine structure of nine levels in two configurations of V51. II. Theoretical”, Phys. Rev., Vol. 156, (1967), pp. 71–82.

    Article  ADS  Google Scholar 

  11. P. Raghavan: “Table of nuclear moments”, Atomic Data and Nuclear Data Tables, Vol. 42, (1989), p. 189.

    Article  ADS  Google Scholar 

  12. C.F. Fischer: Computational atomic structure. An MCHF approach, Institute of Physics Publishing, Bristol and Philadelphia, 1997.

    Google Scholar 

  13. C.F. Fischer: “A general multi-configuration Hartree-Fock program”, Comput. Phys. Commun., Vol. 64, (1991), pp. 431–454.

    Article  ADS  Google Scholar 

  14. C. Schwartz: “Theory of hyperfine structure”, Phys. Rev., Vol. 97, (1955), pp. 380–395.

    Article  ADS  MATH  Google Scholar 

  15. G. Gaigalas, Z. Rudzikas and O. Scharf: “Hyperfine Structure Operator in the Tensorial Form of Second Quantization”, Cent. Eur. J. Phys., Vol. 2, (2004), pp. 720–736.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Scharf, O., Gaigalas, G. Large scale multi-configuration Hartree-Fock calculation of the hyperfine structure of the ground state of vanadium. centr.eur.j.phys. 4, 42–57 (2006). https://doi.org/10.1007/s11534-005-0005-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11534-005-0005-7

Keywords

PACS (2006)

Navigation