Skip to main content
Log in

Recognition of diabetic retinopathy and macular edema using deep learning

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Diabetic retinopathy (DR) and diabetic macular edema (DME) are both serious eye conditions associated with diabetes and if left untreated, and they can lead to permanent blindness. Traditional methods for screening these conditions rely on manual image analysis by experts, which can be time-consuming and costly due to the scarcity of such experts. To overcome the aforementioned challenges, we present the Modified CornerNet approach with DenseNet-100. This system aims to localize and classify lesions associated with DR and DME. To train our model, we first generate annotations for input samples. These annotations likely include information about the location and type of lesions within the retinal images. DenseNet-100 is a deep CNN used for feature extraction, and CornerNet is a one-stage object detection model. CornerNet is known for its ability to accurately localize small objects, which makes it suitable for detecting lesions in retinal images. We assessed our technique on two challenging datasets, EyePACS and IDRiD. These datasets contain a diverse range of retinal images, which is important to estimate the performance of our model. Further, the proposed model is also tested in the cross-corpus scenario on two challenging datasets named APTOS-2019 and Diaretdb1 to assess the generalizability of our system. According to the accomplished analysis, our method outperformed the latest approaches in terms of both qualitative and quantitative results. The ability to effectively localize small abnormalities and handle over-fitted challenges is highlighted as a key strength of the suggested framework which can assist the practitioners in the timely recognition of such eye ailments.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nawaz M et al (2022) An efficient deep learning approach to automatic glaucoma detection using optic disc and optic cup localization. Sensors 22(2):434

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nazir T et al (2021) Detection of diabetic eye disease from retinal images using a deep learning based CenterNet model. Sensors 21(16):5283

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nazir T, Irtaza A, Rashid J, Nawaz M, Mehmood T (2020) Diabetic retinopathy lesions detection using faster-RCNN from retinal images, in 2020 First International Conference of Smart Systems and Emerging Technologies (SMARTTECH), IEEE, pp. 38–42

  4. Nawaz M, Nazir T, Masood M (2021) Glaucoma detection using tetragonal local octa patterns and SVM from retinal images. Int Arab J Inf Technol 18(5):686–693

    Google Scholar 

  5. Jacoba CMP et al (2023) Performance of automated machine learning for diabetic retinopathy image classification from multi-field handheld retinal images. Ophthalmol Retina 7(8):703–712

  6. Reddy S, Soma S, Jadhav A, Pawar R, Madabhavi G, Patil RS (2023) Deep belief network based diabetic maculopathy detection and classification using modified chicken swarm algorithm, in 2023 International Conference on Computational Intelligence, Communication Technology and Networking (CICTN), IEEE, pp. 380–385

  7. Zhu W, Qiu P, Lepore N, Dumitrascu OM, Wang Y (2023) NNMobile-Net: rethinking CNN design for deep learning-based retinopathy research. arXiv:01289

  8. Reddy VPC, Gurrala KK (2022) Joint DR-DME classification using deep learning-CNN based modified grey-wolf optimizer with variable weights. Biomed Signal Process Control 73:103439

    Article  Google Scholar 

  9. Yang Z, Tan T-E, Shao Y, Wong TY, Li X (2022) Classification of diabetic retinopathy: past, present and future. Front Endocrinol 13:1079217

    Article  Google Scholar 

  10. Shahriari MH, Sabbaghi H, Asadi F, Hosseini A, Khorrami Z (20220 Artificial intelligence in screening, diagnosis, and classification of diabetic macular edema: a systematic review. Surv Ophthalmol 68(1):42–53

  11. Bogacsovics G, Toth J, Hajdu A, Harangi B (2022) Enhancing CNNs through the use of hand-crafted features in automated fundus image classification. Biomed Signal Process Control 76:103685

    Article  Google Scholar 

  12. Reddy VPC, Gurrala KK (2022) OHGCNet: optimal feature selection-based hybrid graph convolutional network model for joint DR-DME classification. Biomed Signal Process Control 78:103952

    Article  Google Scholar 

  13. Lu Z, Miao J, Dong J, Zhu S, Wang X, Feng J (2023) Automatic classification of retinal diseases with transfer learning-based lightweight convolutional neural network. Biomed Signal Process Control 81:104365

    Article  Google Scholar 

  14. Usman TM, Saheed YK, Ignace D, Nsang A (2023) Diabetic retinopathy detection using principal component analysis multi-label feature extraction and classification. Int J Cogn Comput Eng 4:78–88

    Google Scholar 

  15. Wu T, Liu L, Zhang T, Wu X (2022) Deep learning-based risk classification and auxiliary diagnosis of macular edema. Intell-Based Med 6:100053

    Google Scholar 

  16. Jiwani N, Gupta K, Afreen N (2022) A convolutional neural network approach for diabetic retinopathy classification, in 2022 IEEE 11th International Conference on Communication Systems and Network Technologies (CSNT), IEEE, pp. 357–361

  17. Sreekanth G et al. (2021) Automated detection and classification of diabetic retinopathy and diabetic macular edema in retinal fundus images using deep learning approach, NVEO-Natural volatiles essential oils Journal NVEO, pp. 61–70

  18. Nasir N, Afreen N, Patel R, Kaur S, Sameer M (2021) A transfer learning approach for diabetic retinopathy and diabetic macular edema severity grading. Rev d’Intell Artif 35(6):497–502

    Google Scholar 

  19. Saranya K, Lakshmanan N, Mathivanan S, Logeshwaran M (2023) Deep learning based algorithm for detection of diabetic retinopathy. Int Res J Educ Technol

  20. Sarki R, Ahmed K, Wang H, Zhang Y, Wang K (2022) Convolutional neural network for multi-class classification of diabetic eye disease. EAI Endorsed Trans Scalable Inform Syst 9(4):e5–e5

    Google Scholar 

  21. Remya K, Giriprasad M, Sudhakar M (2023) A localized feature description means assisting diabetic macular edema detection and classification. Wireless Personal Commun 129(4):2909–2927

  22. Sarki R, Ahmed K, Wang H, Zhang Y, Ma J, Wang K (2021) Image preprocessing in classification and identification of diabetic eye diseases. Data Sci Eng 6(4):455–471

    Article  PubMed  PubMed Central  Google Scholar 

  23. He J, Wang J, Han Z, Ma J, Wang C, Qi M (2023) An interpretable transformer network for the retinal disease classification using optical coherence tomography. Sci Rep 13(1):3637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Da Rocha DA, Ferreira FMF, Peixoto ZMA (2022) Diabetic retinopathy classification using VGG16 neural network. Res Biomed Eng 38(2):761–772

    Article  Google Scholar 

  25. Kumar A, Tewari AS, Singh JP (2022) Classification of diabetic macular edema severity using deep learning technique. Res Biomed Eng 38(3):977–987

    Article  Google Scholar 

  26. Law H, Deng J (2019) CornerNet: detecting objects as paired keypoints. Int J Comput Vision 128:642–656

    Article  Google Scholar 

  27. Lin T (2021) Labelimg. https://github.com/tzutalin/labelImg/blob/master/README (accessed 08 April, 2021)

  28. Girshick R (2015) Fast r-cnn, in Proceedings of the IEEE international conference on computer vision, pp. 1440–1448. https://doi.org/10.1109/ICCV.2015.169

  29. Ren S, He K, Girshick R, Sun J (2016) Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 39(6):1137–1149

    Article  PubMed  Google Scholar 

  30. Raj A, Namboodiri VP, Tuytelaars T (2015) Subspace alignment based domain adaptation for rcnn detector. arXiv preprint arXiv:1507.05578

  31. Zhao X, Li W, Zhang Y, Gulliver TA, Chang S, Feng Z (2016) A faster RCNN-based pedestrian detection system, in 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), IEEE, pp. 1–5

  32. Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-time object detection, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779–788

  33. Liu W et al (2016) Ssd: Single shot multibox detector. European conference on computer vision. Springer, pp 21–37

    Google Scholar 

  34. Redmon J, Farhadi A (2018) Yolov3: an incremental improvement. arXiv preprint arXiv:.02767

  35. Girshick R, Donahue J, Darrell T, Malik J (2015) Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans Pattern Anal Mach Intell 38(1):142–158

    Article  Google Scholar 

  36. Zhao Z-Q, Zheng P, Xu S-T, Wu X (2019) Object detection with deep learning: a review. IEEE Trans Neural Networks Learn Syst 30(11):3212–3232

    Article  Google Scholar 

  37. Huang G, Liu, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4700–4708

  38. Porwal P et al (2018) Indian diabetic retinopathy image dataset (IDRiD): a database for diabetic retinopathy screening research. Data 3(3):25

    Article  Google Scholar 

  39. Emma Dugas J, Jorge, Will Cukierski. Diabetic retinopathy detection. Kaggle. https://www.kaggle.com/competitions/diabetic-retinopathy-detection/data (accessed 20–03–2017, 2017)

  40. Mehboob A, Akram MU, Alghamdi NS, Abdul Salam A (2022) A deep learning based approach for grading of diabetic retinopathy using large fundus image dataset. Diagnostics 12(12):3084

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhang C, Lei T, Chen P (2022) Diabetic retinopathy grading by a source-free transfer learning approach. Biomed Signal Process Control 73:103423

    Article  Google Scholar 

  42. Batool S et al (2023) Deploying efficient net batch normalizations (BNs) for grading diabetic retinopathy severity levels from fundus images. Sci Rep 13(1):14462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Albahli S, Nazir T, Irtaza A, Javed A (2021) Recognition and detection of diabetic retinopathy using Densenet-65 based faster-RCNN. Comput Mater Continua 67(2):1333–1351. https://doi.org/10.32604/cmc.2021.014691

  44. Saranya P, Pranati R, Patro SS (2023) Detection and classification of red lesions from retinal images for diabetic retinopathy detection using deep learning models. Multimed Tools Appl 82(25):39327–39347

  45. Wu Z et al (2020) Coarse-to-fine classification for diabetic retinopathy grading using convolutional neural network. Artif Intell Med 108:101936

    Article  PubMed  Google Scholar 

  46. Tang W, Yang Z, Song Y (2023) Selective interactive networks with knowledge graphs for image classification. Knowl-Based Syst 278:110889

    Article  Google Scholar 

  47. Luo X et al (2024) A deep convolutional neural network for diabetic retinopathy detection via mining local and long-range dependence. CAAI Trans Intell Technol 9(1):153–166

    Article  Google Scholar 

  48. Xu X, Liu D, Huang G, Wang M, Lei M, Jia Y (2024) Computer aided diagnosis of diabetic retinopathy based on multi-view joint learning. Comput Biol Med 174:108428. https://doi.org/10.1016/j.compbiomed.2024.108428

  49. Ashwini K, Dash R (2023) Grading diabetic retinopathy using multiresolution based CNN. Biomed Signal Process Control 86:105210

    Article  Google Scholar 

  50. Parsa S, Khatibi T (2024) Grading the severity of diabetic retinopathy using an ensemble of self-supervised pre-trained convolutional neural networks: ESSP-CNNs. Multimedia Tools Appl 1–34. https://doi.org/10.1007/s11042-024-18968-5

  51. Karthik M. Sohier Dane APTOS 2019 blindness detection. Kaggle. https://kaggle.com/competitions/aptos2019-blindness-detection (accessed 20–10–2021

  52. Zhang J et al (2021) LCU-Net: a novel low-cost U-Net for environmental microorganism image segmentation. Pattern Recogn 115:107885

    Article  Google Scholar 

  53. Zhang J, Li C, Yin Y, Zhang J, Grzegorzek M (2023) Applications of artificial neural networks in microorganism image analysis: a comprehensive review from conventional multilayer perceptron to popular convolutional neural network and potential visual transformer. Artif Intell Rev 56(2):1013–1070

    Article  PubMed  Google Scholar 

  54. Chen H et al (2022) IL-MCAM: an interactive learning and multi-channel attention mechanism-based weakly supervised colorectal histopathology image classification approach. Comput Biol Med 143:105265

    Article  CAS  PubMed  Google Scholar 

  55. Li X et al (2022) A comprehensive review of computer-aided whole-slide image analysis: from datasets to feature extraction, segmentation, classification and detection approaches. Artif Intell Rev 55(6):4809–4878

    Article  Google Scholar 

  56. Chen H et al (2022) GasHis-Transformer: a multi-scale visual transformer approach for gastric histopathological image detection. Pattern Recogn 130:108827

    Article  Google Scholar 

  57. Kulwa F et al (2022) A new pairwise deep learning feature for environmental microorganism image analysis. Environ Sci Pollut Res 29(34):51909–51926

    Article  Google Scholar 

  58. Liu W et al (2022) CVM-Cervix: a hybrid cervical Pap-smear image classification framework using CNN, visual transformer and multilayer perceptron. Pattern Recogn 130:108829

    Article  Google Scholar 

  59. Rahaman MM et al (2021) DeepCervix: a deep learning-based framework for the classification of cervical cells using hybrid deep feature fusion techniques. Comput Biol Med 136:104649

    Article  PubMed  Google Scholar 

  60. Fan Z et al (2023) CAM-VT: a weakly supervised cervical cancer nest image identification approach using conjugated attention mechanism and visual transformer. Comput Biol Med 162:107070

    Article  CAS  PubMed  Google Scholar 

  61. Rahaman MM et al (2020) Identification of COVID-19 samples from chest X-ray images using deep learning: a comparison of transfer learning approaches. J X-ray Sci Technol 28(5):821–839

    CAS  Google Scholar 

  62. Nie Q et al (2023) OII-DS: a benchmark oral implant image dataset for object detection and image classification evaluation. Comput Biol Med 167:107620

    Article  PubMed  Google Scholar 

  63. Chen A et al (2022) SVIA dataset: a new dataset of microscopic videos and images for computer-aided sperm analysis. Biocybernetics Biomed Eng 42(1):204–214

    Article  CAS  Google Scholar 

Download references

Funding

The authors extend their appreciation to the Deputyship of Research & Innovation, Ministry of Education, in Saudi Arabia for funding this research work through the project number ISP23-78.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Javed.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeribi, F., Nazir, T., Nawaz, M. et al. Recognition of diabetic retinopathy and macular edema using deep learning. Med Biol Eng Comput (2024). https://doi.org/10.1007/s11517-024-03105-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11517-024-03105-z

Keywords

Navigation