Skip to main content
Log in

A comprehensive review of computer-aided whole-slide image analysis: from datasets to feature extraction, segmentation, classification and detection approaches

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

With the development of Computer-aided Diagnosis (CAD) and image scanning techniques, Whole-slide Image (WSI) scanners are widely used in the field of pathological diagnosis. Therefore, WSI analysis has become the key to modern digital histopathology. Since 2004, WSI has been used widely in CAD. Since machine vision methods are usually based on semi-automatic or fully automatic computer algorithms, they are highly efficient and labor-saving. The combination of WSI and CAD technologies for segmentation, classification, and detection helps histopathologists to obtain more stable and quantitative results with minimum labor costs and improved diagnosis objectivity. This paper reviews the methods of WSI analysis based on machine learning. Firstly, the development status of WSI and CAD methods are introduced. Secondly, we discuss publicly available WSI datasets and evaluation metrics for segmentation, classification, and detection tasks. Then, the latest development of machine learning techniques in WSI segmentation, classification, and detection are reviewed. Finally, the existing methods are studied, and the application prospects of the methods in this field are forecasted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38

Similar content being viewed by others

Abbreviations

AUC:

Area under ROC curve

BOF:

Bag-of-features

CAD:

Computer-aided diagnosis

CAE:

Convolutional automatic encoder

CBMIA:

Content-based microscopic image analysis

CCD :

Charged coupled device

CCV:

Color coherence vectors

CDSA:

Cancer digital slide archive

CM:

Co-occurrence Matrix

CNN:

Convolutional neural network

CRF:

Conditional random field

CT:

Computed tomography

DCIS:

Ductal carcinoma In-situ

DCN:

Deep convolutional networks

DNN:

Deep neural network

DT:

Decision tree

FCN:

Fully convolutional network

FESI:

Traditional foreground extraction

FN:

False negatives

FP:

False positives

FRBS:

Fuzzy rule-based model

FROC:

Free receiver operating characteristic curve

GAN:

Generative adversarial network

GBM:

Glioblastoma multiforme

GLCM:

Gray-level co-occurrence matrix

H&E:

Hematoxylin and eosin

HOG:

Histogram of Oriented Gradient

ICIAR:

International conference on image analysis and recognition

IDC:

Invasive ductal carcinoma

IHC:

Immunohistochemistry

ISBI:

International symposium on biomedical imaging

k-NN:

k-nearest neighbor

LBP:

Local binary pattern

LSTM:

Long short term

LYNA:

Lymph node assistant

MFEM:

Multi-scale feature extraction module

MICCAI:

Medical image computing and computer assisted intervention society

MIL:

Multiple instance learning

MIML:

Multi-instance multi-label

MRI:

Magnetic resonance imaging

MSER:

Maximally stable extrernal regions

M-WRSF:

Multi-channel weighted region scalable fitting

OOF:

Out-of-focus

PPV:

Positive predictive value

PSO:

Particle swarm optimization

RAZN:

Reinforced auto-zoom net

RBF:

Radial basis function

ResNet:

Residual network

RF:

Random forest

RMDL:

Recalibrated multi-instance deep learning

ROC:

Receiver operating characteristic

ROI:

Region of interest

RUMC:

Radboud university medical center

SFFS:

Sequential floating forward selection

SIFT:

Scale-invariant feature transform

SLIC:

Simple linear iterative clustering

SVM:

Support vector machine

TCGA:

The cancer genome atlas

TDI:

Time delay and integration

TN:

True negatives

TP:

True positives

TPR:

True positive rate

UMCU:

Utrecht university medical center

VAE:

Variational automatic encoder

WELDON:

Weakly supervised learning of deep convolutional neural networks

WSI:

Whole-slide image

References

  • Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Süsstrunk S (2012) Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intel 34(11):2274–2282

    Article  Google Scholar 

  • Adams R, Bischof L (1994) Seeded region growing. IEEE Trans Pattern Anal Mach Intell 16(6):641–647

    Article  Google Scholar 

  • Aeffner F, Zarella MD, Buchbinder N, Bui MM, Goodman MR, Hartman DJ, Lujan GM, Molani MA, Parwani AV, Lillard K, et al. (2019) Introduction to digital image analysis in whole-slide imaging: a white paper from the digital pathology association. J Pathol Inform 10(9):1–17

  • Akakin HC, Gurcan MN (2012) Content-based microscopic image retrieval system for multi-image queries. IEEE Trans Inf Technol Biomed 16(4):758–769

    Article  Google Scholar 

  • Al-Amri SS, Kalyankar NV, Khamitkar SD (2010) A comparative study of removal noise from remote sensing image. arXiv preprint arXiv:1002.1148

  • Al-Janabi S, Huisman A, Nap M, Clarijs R, Van Diest PJ (2012) Whole slide images as a platform for initial diagnostics in histopathology in a medium-sized routine laboratory. J Clin Pathol 65(12):1107–1111

    Article  Google Scholar 

  • Al-Janabi S, Huisman A, Vink A, Leguit RJ, Offerhaus GJA, Ten Kate FJ, Van Dijk MR, Van Diest PJ (2012) Whole slide images for primary diagnostics in dermatopathology: a feasibility study. J Clin Pathol 65(2):152–158

    Article  Google Scholar 

  • Alomari RS, Allen R, Sabata B, Chaudhary V (2009) Localization of tissues in high-resolution digital anatomic pathology images. In: Medical imaging 2009: computer-aided diagnosis. International Society for Optics and Photonics 7260:726016

  • Amin W, Srintrapun SJ, Parwani AV (2008) Automated whole slide imaging. Expert Opin Med Diagn 2(10):1173–1181

    Article  Google Scholar 

  • Apou G, Naegel B, Forestier G, Feuerhake F, Wemmert C (2014) Fast segmentation for texture-based cartography of whole slide images. In: 2014 International conference on computer vision theory and applications (VISAPP), IEEE, vol 1, pp 309–319

  • Apou G, Feuerhake F, Forestier G, Naegel B, Wemmert C (2015) Synthesizing whole slide images. In: 2015 9th International symposium on image and signal processing and analysis (ISPA), IEEE, pp 154–159

  • Araújo T, Aresta G, Castro E, Rouco J, Aguiar P, Eloy C, Polónia A, Campilho A (2017) Classification of breast cancer histology images using convolutional neural networks. PLoS One 12(6):e0177544

    Article  Google Scholar 

  • Arevalo J, Cruz-Roa A, Arias V, Romero E, González FA (2015) An unsupervised feature learning framework for basal cell carcinoma image analysis. Artif Intell Med 64(2):131–145

    Article  Google Scholar 

  • Arunachalam HB, Mishra R, Armaselu B, Daescu O, Martinez M, Leavey P, Rakheja D, Cederberg K, Sengupta A, NI’SUILLEABHAIN M (2017) Computer aided image segmentation and classification for viable and non-viable tumor identification in osteosarcoma. In: Pacific symposium on biocomputing 2017, World Scientific, pp 195–206

  • Atlas TCG (2006) Website, https://portal.gdc.cancer.gov/

  • Babaie M, Kalra S, Sriram A, Mitcheltree C, Zhu S, Khatami A, Rahnamayan S, Tizhoosh HR (2017) Classification and retrieval of digital pathology scans: a new dataset. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 8–16

  • Bándi P, van de Loo R, Intezar M, Geijs D, Ciompi F, van Ginneken B, van der Laak J, Litjens G (2017) Comparison of different methods for tissue segmentation in histopathological whole-slide images. In: 2017 IEEE 14th international symposium on biomedical imaging (ISBI 2017), IEEE, pp 591–595

  • Bandi P, Geessink O, Manson Q, Van Dijk M, Balkenhol M, Hermsen M, Bejnordi BE, Lee B, Paeng K, Zhong A et al (2018) From detection of individual metastases to classification of lymph node status at the patient level: the camelyon17 challenge. IEEE Trans Med Imag 38(2):550–560

    Article  Google Scholar 

  • Barker J, Hoogi A, Depeursinge A, Rubin DL (2016) Automated classification of brain tumor type in whole-slide digital pathology images using local representative tiles. Med Image Anal 30:60–71

    Article  Google Scholar 

  • Bautista PA, Yagi Y (2009) Detection of tissue folds in whole slide images. In: 2009 Annual international conference of the IEEE engineering in medicine and biology society. IEEE, pp 3669–3672

  • Bautista PA, Yagi Y (2010) Improving the visualization and detection of tissue folds in whole slide images through color enhancement. J Pathol Inform 1(1):25

  • Bautista PA, Hashimoto N, Yagi Y (2014) Color standardization in whole slide imaging using a color calibration slide. J Pathol Inform 5

  • Bejnordi BE, Litjens G, Hermsen M, Karssemeijer N, van der Laak JA (2015) A multi-scale superpixel classification approach to the detection of regions of interest in whole slide histopathology images. In: Medical imaging 2015: digital pathology, International Society for Optics and Photonics, vol 9420, p 94200H

  • Bejnordi BE, Balkenhol M, Litjens G, Holland R, Bult P, Karssemeijer N, Van Der Laak JA (2016) Automated detection of dcis in whole-slide h&e stained breast histopathology images. IEEE Trans Med Imag 35(9):2141–2150

    Article  Google Scholar 

  • Bejnordi BE, Veta M, Van Diest PJ, Van Ginneken B, Karssemeijer N, Litjens G, Van Der Laak JA, Hermsen M, Manson QF, Balkenhol M et al (2017) Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318(22):2199–2210

    Article  Google Scholar 

  • Bejnordi BE, Zuidhof G, Balkenhol M, Hermsen M, Bult P, van Ginneken B, Karssemeijer N, Litjens G, van der Laak J (2017) Context-aware stacked convolutional neural networks for classification of breast carcinomas in whole-slide histopathology images. J Med Imag 4(4):044504

    Article  Google Scholar 

  • Bergmeir C, Silvente MG, Benítez JM (2012) Segmentation of cervical cell nuclei in high-resolution microscopic images: a new algorithm and a web-based software framework. Comput Methods Prog Biomed 107(3):497–512

    Article  Google Scholar 

  • Bilaloglu S, Wu J, Fierro E, Sanchez RD, Ocampo PS, Razavian N, Coudray N, Tsirigos A (2019) Efficient pan-cancer whole-slide image classification and outlier detection using convolutional neural networks. bioRxiv p 633123

  • Birkfellner W (2016) Applied medical image processing: a basic course. CRC Press, Boca Raton

    Book  Google Scholar 

  • Bodenstorfer E, Fürtler J, Brodersen J, Mayer KJ, Eckel C, Gravogl K, Nachtnebel H (2007) High-speed line-scan camera with digital time delay integration. In: Real-time image processing 2007, International Society for Optics and Photonics, vol 6496, p 64960I

  • Boroujeni AM, Dehghani A, Yousefi E, Gupta R (2016) Whole slide imaging for her2/neu immunohistochemistry: reproducibility study for digital and paired glass slide interpretation. Am J Clin Pathol 146:36

    Article  Google Scholar 

  • Boyce B (2017) An update on the validation of whole slide imaging systems following fda approval of a system for a routine pathology diagnostic service in the united states. Biotech Histochem 92(6):381–389

    Article  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  MATH  Google Scholar 

  • Brieu N, Pauly O, Zimmermann J, Binnig G, Schmidt G (2016) Slide-specific models for segmentation of differently stained digital histopathology whole slide images. In: Medical imaging 2016: image processing, International Society for Optics and Photonics, vol 9784, p 978410

  • Bychkov D, Linder N, Turkki R, Nordling S, Kovanen PE, Verrill C, Walliander M, Lundin M, Haglund C, Lundin J (2018) Deep learning based tissue analysis predicts outcome in colorectal cancer. Sci Rep 8(1):1–11

    Article  Google Scholar 

  • Campanella G, Silva VWK, Fuchs TJ (2018) Terabyte-scale deep multiple instance learning for classification and localization in pathology. arXiv preprint arXiv:1805.06983

  • Campanella G, Hanna MG, Geneslaw L, Miraflor A, Silva VWK, Busam KJ, Brogi E, Reuter VE, Klimstra DS, Fuchs TJ (2019) Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat Med 25(8):1301–1309

    Article  Google Scholar 

  • Camparo P, Egevad L, Algaba F, Berney DM, Boccon-Gibod L, Compérat E, Evans AJ, Grobholz R, Kristiansen G, Langner C et al (2012) Utility of whole slide imaging and virtual microscopy in prostate pathology. APMIS 120(4):298–304

    Article  Google Scholar 

  • Chang HY, Jung CK, Woo JI, Lee S, Cho J, Kim SW, Kwak TY (2019) Artificial intelligence in pathology. J Pathol Trans Med 53(1):1

    Article  Google Scholar 

  • Chellappa R, Chatterjee S (1985) Classification of textures using gaussian markov random fields. IEEE Trans Acoust Speech Signal Process 33(4):959–963

    Article  MathSciNet  Google Scholar 

  • Chen XW, Liu M (2005) Prediction of protein-protein interactions using random decision forest framework. Bioinformatics 21(24):4394–4400

    Article  Google Scholar 

  • Chen Y, Li Y, Narayan R, Subramanian A, Xie X (2016) Gene expression inference with deep learning. Bioinformatics 32(12):1832–1839

    Article  Google Scholar 

  • Cohen LD (1991) On active contour models and balloons. CVGIP: Image Underst 53(2):211–218

    Article  MATH  Google Scholar 

  • Collins BT, Collins LE (2013) Assessment of malignancy for atypia of undetermined significance in thyroid fine-needle aspiration biopsy evaluated by whole-slide image analysis. Am J Clin Pathol 139(6):736–745

    Article  Google Scholar 

  • Cooper LA, Kong J, Gutman DA, Dunn WD, Nalisnik M, Brat DJ (2015) Novel genotype-phenotype associations in human cancers enabled by advanced molecular platforms and computational analysis of whole slide images. Lab Invest 95(4):366–376

    Article  Google Scholar 

  • Cornish TC, Swapp RE, Kaplan KJ (2012) Whole-slide imaging: routine pathologic diagnosis. Adv Anat Pathol 19(3):152–159

    Article  Google Scholar 

  • Courtiol P, Tramel EW, Sanselme M, Wainrib G (2018) Classification and disease localization in histopathology using only global labels: A weakly-supervised approach. arXiv preprint arXiv:1802.02212

  • Cruz-Roa A, Basavanhally A, González F, Gilmore H, Feldman M, Ganesan S, Shih N, Tomaszewski J, Madabhushi A (2014) Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks. In: Medical imaging 2014: digital pathology, International Society for Optics and Photonics, vol 9041, p 904103

  • Cruz-Roa A, Gilmore H, Basavanhally A, Feldman M, Ganesan S, Shih NN, Tomaszewski J, González FA, Madabhushi A (2017) Accurate and reproducible invasive breast cancer detection in whole-slide images: a deep learning approach for quantifying tumor extent. Sci Rep 7:46450

    Article  Google Scholar 

  • Cruz-Roa A, Gilmore H, Basavanhally A, Feldman M, Ganesan S, Shih N, Tomaszewski J, Madabhushi A, González F (2018) High-throughput adaptive sampling for whole-slide histopathology image analysis (hashi) via convolutional neural networks: Application to invasive breast cancer detection. PLoS One 13(5):e0196828

    Article  Google Scholar 

  • Cui J, Guo H, Wang H, Chen F, Shu L, Li LC (2020) Fully-automatic segmentation of coronary artery using growing algorithm. J X-Ray Sci Technol 55:1–16

    Google Scholar 

  • Cui Y, Zhang G, Liu Z, Xiong Z, Hu J (2019) A deep learning algorithm for one-step contour aware nuclei segmentation of histopathology images. Medical Biol Eng Comput 57(9):2027–2043

    Article  Google Scholar 

  • Cutler DR, Edwards TC Jr, Beard KH, Cutler A, Hess KT, Gibson J, Lawler JJ (2007) Random forests for classification in ecology. Ecology 88(11):2783–2792

    Article  Google Scholar 

  • Das K, Karri SPK, Roy AG, Chatterjee J, Sheet D (2017) Classifying histopathology whole-slides using fusion of decisions from deep convolutional network on a collection of random multi-views at multi-magnification. In: 2017 IEEE 14th International symposium on biomedical imaging (ISBI 2017), IEEE, pp 1024–1027

  • Das K, Conjeti S, Roy AG, Chatterjee J, Sheet D (2018) Multiple instance learning of deep convolutional neural networks for breast histopathology whole slide classification. In: 2018 IEEE 15th International symposium on biomedical imaging (ISBI 2018), IEEE, pp 578–581

  • Dass R, Devi S (2012) Image segmentation techniques 1. Int J Comput Sci Mobile Comput 3(1):2230–7109

  • Deng L, Platt JC (2014) Ensemble deep learning for speech recognition. In: Fifteenth annual conference of the international speech communication association

  • Devi S, Sahoo MN, Bakshi S (2020) A novel privacy-supporting 2-class classification technique for brain mri images. Biocybern Biomed Eng 40(3):1022–1035

    Article  Google Scholar 

  • Diamond J, Anderson NH, Bartels PH, Montironi R, Hamilton PW (2004) The use of morphological characteristics and texture analysis in the identification of tissue composition in prostatic neoplasia. Hum Pathol 35(9):1121–1131

    Article  Google Scholar 

  • DiFranco MD, O’Hurley G, Kay EW, Watson RWG, Cunningham P (2011) Ensemble based system for whole-slide prostate cancer probability mapping using color texture features. Comput Med Imag Graph 35(7–8):629–645

    Article  Google Scholar 

  • Dimitriou N, Arandjelović O, Caie PD (2019) Deep learning for whole slide image analysis: an overview. Front Med 6:264

    Article  Google Scholar 

  • Domingos P, Pazzani M (1997) On the optimality of the simple bayesian classifier under zero-one loss. Mach Learn 29(2–3):103–130

    Article  MATH  Google Scholar 

  • Dong N, Kampffmeyer M, Liang X, Wang Z, Dai W, Xing E (2018) Reinforced auto-zoom net: towards accurate and fast breast cancer segmentation in whole-slide images. In: Deep learning in medical image analysis and multimodal learning for clinical decision support, Springer, Cham, 11045:317–325

  • Doyle S, Feldman M, Tomaszewski J, Madabhushi A (2010) A boosted bayesian multiresolution classifier for prostate cancer detection from digitized needle biopsies. IEEE Trans Biomed Eng 59(5):1205–1218

    Article  Google Scholar 

  • Du G, Cao X, Liang J, Chen X, Zhan Y (2020) Medical image segmentation based on U-net: a review. J Imag Sci Technol 64(2):20508

    Article  Google Scholar 

  • Durand T, Thome N, Cord M (2016) Weldon: Weakly supervised learning of deep convolutional neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4743–4752

  • Egan JP, Greenberg GZ, Schulman AI (1961) Operating characteristics, signal detectability, and the method of free response. J Acoust Soc Am 33(8):993–1007

    Article  Google Scholar 

  • El-Gabry EA, Parwani AV, Pantanowitz L (2014) Whole-slide imaging: widening the scope of cytopathology. Diagn Histopathol 20(12):456–461

    Article  Google Scholar 

  • Fan J, Upadhye S, Worster A (2006) Understanding receiver operating characteristic (roc) curves. Can J Emerg Med 8(1):19–20

    Article  Google Scholar 

  • Farahani N, Parwani AV, Pantanowitz L (2015) Whole slide imaging in pathology: advantages, limitations, and emerging perspectives. Pathol Lab Med Int 7(23–33):4321

    Google Scholar 

  • Feng Y, Hafiane A, Laurent H (2020) A deep learning based multiscale approach to segment cancer area in liver whole slide image. arXiv preprint arXiv:2007.12935

  • Gadermayr M, Strauch M, Klinkhammer BM, Djudjaj S, Boor P, Merhof D (2016) Domain adaptive classification for compensating variability in histopathological whole slide images. In: International conference on image analysis and recognition, Springer, pp 616–622

  • Galvão FL, Guimarães SJF, Falcão AX (2020) Image segmentation using dense and sparse hierarchies of superpixels. Pattern Recogn 108:107532

    Article  Google Scholar 

  • Geçer B (2016) Detection and classification of breast cancer in whole slide histopathology images using deep convolutional networks. Diss Bilkent University 1

  • Gecer B, Aksoy S, Mercan E, Shapiro LG, Weaver DL, Elmore JG (2018) Detection and classification of cancer in whole slide breast histopathology images using deep convolutional networks. Pattern Recogn 84:345–356

    Article  Google Scholar 

  • Ghaznavi F, Evans A, Madabhushi A, Feldman M (2013) Digital imaging in pathology: whole-slide imaging and beyond. Annu Rev Pathol 8:331–359

    Article  Google Scholar 

  • Ghimire B, Rogan J, Miller J (2010) Contextual land-cover classification: incorporating spatial dependence in land-cover classification models using random forests and the getis statistic. Remote Sens Lett 1(1):45–54

    Article  Google Scholar 

  • Ghosh A, Singh S, Sheet D (2017) Simultaneous localization and classification of acute lymphoblastic leukemic cells in peripheral blood smears using a deep convolutional network with average pooling layer. In: 2017 IEEE international conference on industrial and information systems (ICIIS), IEEE, pp 1–6

  • Gislason PO, Benediktsson JA, Sveinsson JR (2006) Random forests for land cover classification. Pattern Recogn Lett 27(4):294–300

    Article  Google Scholar 

  • Goceri E, Goksel B, Elder JB, Puduvalli VK, Otero JJ, Gurcan MN (2017) Quantitative validation of anti-ptbp1 antibody for diagnostic neuropathology use: image analysis approach. Int J Numer Methods Biomed Eng 33(11):e2862

    Article  MathSciNet  Google Scholar 

  • Goggin LS, Eikelboom RH, Atlas MD (2007) Clinical decision support systems and computer-aided diagnosis in otology. Otolaryngology-Head and Neck Surgery 136:s21–s26

    Article  Google Scholar 

  • Gonzalez RC, Woods RE (2007) Image processing. Digital Image Process 2:1

    Google Scholar 

  • Grigorescu SE, Petkov N, Kruizinga P (2002) Comparison of texture features based on gabor filters. IEEE Trans Image Process 11(10):1160–1167

    Article  MathSciNet  Google Scholar 

  • Grunkin M, Raundahl J, Foged NT (2011) Practical considerations of image analysis and quantification of signal transduction IHC staining. Signal transduction immunohistochemistry. Springer, Heidelberg, pp 143–154

    Chapter  Google Scholar 

  • Guo L, Chehata N, Mallet C, Boukir S (2011) Relevance of airborne lidar and multispectral image data for urban scene classification using random forests. ISPRS J Photogramm Remote Sens 66(1):56–66

    Article  Google Scholar 

  • Gurcan MN, Boucheron LE, Can A, Madabhushi A, Rajpoot NM, Yener B (2009) Histopathological image analysis: a review. IEEE Rev Biomed Eng 2:147–171

    Article  Google Scholar 

  • Gutman DA, Cobb J, Somanna D, Park Y, Wang F, Kurc T, Saltz JH, Brat DJ, Cooper LA, Kong J (2013) Cancer digital slide archive: an informatics resource to support integrated in silico analysis of TCGA pathology data. J Am Med Inform Assoc 20(6):1091–1098

    Article  Google Scholar 

  • Hamadi A, Lattar H, Khoussa MEB, Safadi B (2020) Using semantic context for multiple concepts detection in still images. Pattern Anal Appl 23(1):27–44

    Article  Google Scholar 

  • Han W, Johnson C, Gaed M, Gomez J, Moussa M, Chin JL, Pautler SE, Bauman G, Ward AD (2018) Automatic cancer detection and localization on prostatectomy histopathology images. In: Medical imaging 2018: digital pathology, International Society for Optics and Photonics, vol 10581, p 105810Q

  • Hanna MG, Parwani A, Sirintrapun SJ (2020) Whole slide imaging: technology and applications. Adv Anat Pathol 27(4):251–259

    Article  Google Scholar 

  • Hao Q, Sun B, Li S, Crawford MM, Kang X (2021) Curvature filters-based multiscale feature extraction for hyperspectral image classification. IEEE Trans Geosci Remote Sens. https://doi.org/10.1109/TGRS.2021.3091860

  • Haralick RM, Shapiro LG (1985) Image segmentation techniques. Comput Vis Gr Image Process 29(1):100–132

    Article  Google Scholar 

  • Harder N, Athelogou M, Hessel H, Buchner A, Schönmeyer R, Schmidt G, Stief C, Kirchner T, Binnig G (2016) Co-occurrence features characterizing gland distribution patterns as new prognostic markers in prostate cancer whole-slide images. In: 2016 IEEE 13th international symposium on biomedical imaging (ISBI), IEEE, pp 807–810

  • Hastie T, Tibshirani R (1996) Discriminant adaptive nearest neighbor classification. IEEE Trans Pattern Anal Mach Intell 18(6):607–616

    Article  Google Scholar 

  • He BS, Zhu F, Shi YG (2013) Medical image segmentation. Adv Mater Res Trans Tech Publ 760:1590–1593

    Google Scholar 

  • Hiary H, Alomari RS, Chaudhary V (2013) Segmentation and localisation of whole slide images using unsupervised learning. IET Image Proc 7(5):464–471

    Article  Google Scholar 

  • Higgins C (2015) Applications and challenges of digital pathology and whole slide imaging. Biotech Histochem 90(5):341–347

    Article  Google Scholar 

  • Homeyer A, Schenk A, Arlt J, Dahmen U, Dirsch O, Hahn HK (2013) Practical quantification of necrosis in histological whole-slide images. Comput Med Imag Graph 37(4):313–322

    Article  Google Scholar 

  • Hou L, Samaras D, Kurc TM, Gao Y, Davis JE, Saltz JH (2016) Patch-based convolutional neural network for whole slide tissue image classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2424–2433

  • Hsu RL, Abdel-Mottaleb M, Jain AK (2002) Face detection in color images. IEEE Trans Pattern Anal Mach Intell 24(5):696–706

    Article  Google Scholar 

  • Hu JX, Xu YY, Shen HB, et al. (2017) Deep learning-based classification of protein subcellular localization from immunohistochemistry images. In: 2017 4th IAPR Asian conference on pattern recognition (ACPR), IEEE, pp 599–604

  • Huang CH, Racoceanu D (2017) Automated high-grade prostate cancer detection and ranking on whole slide images. In: Medical imaging 2017: digital pathology, International Society for Optics and Photonics, vol 10140, p 101400A

  • Huang Y, Lei Y, Wang Q, Li D, Ma L, Guo L, Tang M, Liu G, Yan Q, Shen L et al (2018) Telepathology consultation for frozen section diagnosis in china. Diagn Pathol 13(1):1–6

    Article  Google Scholar 

  • Jamaluddin MF, Fauzi MFA, Abas FS (2017) Tumor detection and whole slide classification of h&e lymph node images using convolutional neural network. In: 2017 IEEE International conference on signal and image processing applications (ICSIPA), IEEE, pp 90–95

  • Jhajharia S, Varshney HK, Verma S, Kumar R (2016) A neural network based breast cancer prognosis model with pca processed features. In: 2016 International conference on advances in computing, communications and informatics (ICACCI), IEEE, pp 1896–1901

  • Jiao L, Chen Q, Li S, Xu Y (2013) Colon cancer detection using whole slide histopathological images. World congress on medical physics and biomedical engineering May 26–31. Springer, Beijing, pp 1283–1286

    Google Scholar 

  • Kamath CN, Bukhari SS, Dengel A (2018) Comparative study between traditional machine learning and deep learning approaches for text classification. Proceedings of the ACM Symposium on Document Engineering 2018, pp 1–11

  • Kamath U, Liu J, Whitaker J (2019) Deep learning for NLP and speech recognition, vol 84. Springer, Heidelberg

    Book  Google Scholar 

  • Karpathy A, Fei-Fei L (2015) Deep visual-semantic alignments for generating image descriptions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3128–3137

  • Khan AM, Rajpoot N, Treanor D, Magee D (2014) A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution. IEEE Trans Biomed Eng 61(6):1729–1738

    Article  Google Scholar 

  • Klimov S, Miligy IM, Gertych A, Jiang Y, Toss MS, Rida P, Ellis IO, Green A, Krishnamurti U, Rakha EA et al (2019) A whole slide image-based machine learning approach to predict ductal carcinoma in situ (dcis) recurrence risk. Breast Cancer Res 21(1):83

    Article  Google Scholar 

  • Kodituwakku SR, Selvarajah S (2004) Comparison of color features for image retrieval. Indian J Comput Sci Eng 1(3):207–211

    Google Scholar 

  • Kohlberger T, Liu Y, Moran M, Chen PHC, Brown T, Hipp JD, Mermel CH, Stumpe MC (2019) Whole-slide image focus quality: Automatic assessment and impact on ai cancer detection. J Pathol Inform 10

  • Komura D, Ishikawa S (2018) Machine learning methods for histopathological image analysis. Comput Struct Biotechnol J 16:34–42

    Article  Google Scholar 

  • Kong J, Sertel O, Shimada H, Boyer KL, Saltz JH, Gurcan MN (2009) Computer-aided evaluation of neuroblastoma on whole-slide histology images: classifying grade of neuroblastic differentiation. Pattern Recogn 42(6):1080–1092

    Article  Google Scholar 

  • Kong J, Cooper LA, Wang F, Gutman DA, Gao J, Chisolm C, Sharma A, Pan T, Van Meir EG, Kurc TM et al (2011) Integrative, multimodal analysis of glioblastoma using TCGA molecular data, pathology images, and clinical outcomes. IEEE Trans Biomed Eng 58(12):3469–3474

    Article  Google Scholar 

  • Kong J, Cooper LA, Wang F, Gao J, Teodoro G, Scarpace L, Mikkelsen T, Schniederjan MJ, Moreno CS, Saltz JH et al (2013) Machine-based morphologic analysis of glioblastoma using whole-slide pathology images uncovers clinically relevant molecular correlates. PLoS One 8(11):e81049

    Article  Google Scholar 

  • Korbar B, Olofson AM, Miraflor AP, Nicka CM, Suriawinata MA, Torresani L, Suriawinata AA, Hassanpour S (2017a) Deep learning for classification of colorectal polyps on whole-slide images. J Pathol Inform 8(1):30

  • Korbar B, Olofson AM, Miraflor AP, Nicka CM, Suriawinata MA, Torresani L, Suriawinata AA, Hassanpour S (2017b) Looking under the hood: deep neural network visualization to interpret whole-slide image analysis outcomes for colorectal polyps. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 69–75

  • Kothari S, Phan JH, Osunkoya AO, Wang MD (2012) Biological interpretation of morphological patterns in histopathological whole-slide images. In: Proceedings of the ACM conference on bioinformatics, computational biology and biomedicine, pp 218–225

  • Kothari S, Phan JH, Stokes TH, Wang MD (2013) Pathology imaging informatics for quantitative analysis of whole-slide images. J Am Med Inform Assoc 20(6):1099–1108

    Article  Google Scholar 

  • Kothari S, Phan JH, Wang MD (2013b) Eliminating tissue-fold artifacts in histopathological whole-slide images for improved image-based prediction of cancer grade. J Pathol Inform 4(1):22

  • Kumar G, Bhatia PK (2014) A detailed review of feature extraction in image processing systems. In: 2014 Fourth international conference on advanced computing & communication technologies, IEEE, pp 5–12

  • Kumar MD, Babaie M, Tizhoosh HR (2018) Deep barcodes for fast retrieval of histopathology scans. In: 2018 International joint conference on neural networks (IJCNN), IEEE, pp 1–8

  • Kumar N, Gupta R, Gupta S (2020) Whole slide imaging (wsi) in pathology: current perspectives and future directions. J Digital Imag 33:1034–1040

    Article  Google Scholar 

  • Kumar S, Khan Z, Jain A (2012) A review of content based image classification using machine learning approach. Int J Adv Comput Res 2(3):55

    Google Scholar 

  • Kwok S (2018) Multiclass classification of breast cancer in whole-slide images. In: International conference image analysis and recognition, Springer, pp 931–940

  • Leo P, Lee G, Shih NN, Elliott R, Feldman MD, Madabhushi A (2016) Evaluating stability of histomorphometric features across scanner and staining variations: prostate cancer diagnosis from whole slide images. J Med Imag 3(4):047502

    Article  Google Scholar 

  • Li C (2016) Content-based microscopic image analysis, vol 39. Logos Verlag Berlin GmbH

  • Li C, Wang K, Xu N (2019) A survey for the applications of content-based microscopic image analysis in microorganism classification domains. Artif Intell Rev 51(4):577–646

    Article  Google Scholar 

  • Li J, Li W, Gertych A, Knudsen BS, Speier W, Arnold CW (2019b) An attention-based multi-resolution model for prostate whole slide imageclassification and localization. arXiv preprint arXiv:1905.13208

  • Li R, Huang J (2015) Fast regions-of-interest detection in whole slide histopathology images. In: International workshop on patch-based techniques in medical imaging, Springer, pp 120–127

  • Li Y, Zhang X (2011) Improving k nearest neighbor with exemplar generalization for imbalanced classification. In: Pacific-Asia conference on knowledge discovery and data mining, Springer, pp 321–332

  • Li Z, Zhang X, Müller H, Zhang S (2018) Large-scale retrieval for medical image analytics: a comprehensive review. Med Image Anal 43:66–84

    Article  Google Scholar 

  • Lin H, Chen H, Dou Q, Wang L, Qin J, Heng PA (2018) Scannet: A fast and dense scanning framework for metastastic breast cancer detection from whole-slide image. In: 2018 IEEE Winter conference on applications of computer vision (WACV), IEEE, pp 539–546

  • Lin H, Chen H, Graham S, Dou Q, Rajpoot N, Heng PA (2019) Fast scannet: fast and dense analysis of multi-gigapixel whole-slide images for cancer metastasis detection. IEEE Trans Med Imag 38(8):1948–1958

    Article  Google Scholar 

  • Litjens G, Bejnordi BE, Timofeeva N, Swadi G, Kovacs I, Hulsbergen-van de Kaa C, van der Laak J (2015) Automated detection of prostate cancer in digitized whole-slide images of h and e-stained biopsy specimens. In: Medical imaging 2015: digital pathology, International Society for Optics and Photonics, vol 9420, p 94200B

  • Litjens G, Bandi P, Ehteshami Bejnordi B, Geessink O, Balkenhol M, Bult P, Halilovic A, Hermsen M, van de Loo R, Vogels R et al (2018) 1399 h&e-stained sentinel lymph node sections of breast cancer patients: the camelyon dataset. GigaScience 7(6):giy065

    Article  Google Scholar 

  • Liu Y, Kohlberger T, Norouzi M, Dahl GE, Smith JL, Mohtashamian A, Olson N, Peng LH, Hipp JD, Stumpe MC (2019) Artificial intelligence-based breast cancer nodal metastasis detection: insights into the black box for pathologists. Arch Pathol Lab Med 143(7):859–868

    Article  Google Scholar 

  • Lopez XM, Debeir O, Maris C, Rorive S, Roland I, Saerens M, Salmon I, Decaestecker C (2012) Clustering methods applied in the detection of ki67 hot-spots in whole tumor slide images: an efficient way to characterize heterogeneous tissue-based biomarkers. Cytom A 81(9):765–775

    Article  Google Scholar 

  • Lopez XM, D’Andrea E, Barbot P, Bridoux AS, Rorive S, Salmon I, Debeir O, Decaestecker C (2013) An automated blur detection method for histological whole slide imaging. PLoS One 8(12):e82710

    Article  Google Scholar 

  • Lu C, Mandal M (2012) Automated segmentation and analysis of the epidermis area in skin histopathological images. In: 2012 Annual international conference of the IEEE engineering in medicine and biology society, IEEE, pp 5355–5359

  • Lu C, Mandal M (2015) Automated analysis and diagnosis of skin melanoma on whole slide histopathological images. Pattern Recogn 48(8):2738–2750

    Article  Google Scholar 

  • Ma Y, Jiang Z, Zhang H, Xie F, Zheng Y, Shi H, Zhao Y (2016) Breast histopathological image retrieval based on latent dirichlet allocation. IEEE J Biomed Health Inform 21(4):1114–1123

    Article  Google Scholar 

  • MacQueen J et al (1967) Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, Oakland, pp 281–297

  • Madzarov G, Gjorgjevikj D, Chorbev I (2009) A multi-class svm classifier utilizing binary decision tree. Informatica 33(2):233–241

    MathSciNet  MATH  Google Scholar 

  • Manyala A, Cholakkal H, Anand V, Kanhangad V, Rajan D (2019) Cnn-based gender classification in near-infrared periocular images. Pattern Anal Appl 22(4):1493–1504

    Article  MathSciNet  Google Scholar 

  • Masood S, Sharif M, Masood A, Yasmin M, Raza M (2015) A survey on medical image segmentation. Current Med Imag 11(1):3–14

    Article  Google Scholar 

  • Mehta S, Mercan E, Bartlett J, Weaver D, Elmore J, Shapiro L (2018) Learning to segment breast biopsy whole slide images. In: 2018 IEEE Winter conference on applications of computer vision (WACV), IEEE, pp 663–672

  • Mercan C, Mercan E, Aksoy S, Shapiro LG, Weaver DL, Elmore JG (2016a) Multi-instance multi-label learning for whole slide breast histopathology. In: Medical imaging 2016: digital pathology, International Society for Optics and Photonics, vol 9791, p 979108

  • Mercan C, Aksoy S, Mercan E, Shapiro LG, Weaver DL, Elmore JG (2017) Multi-instance multi-label learning for multi-class classification of whole slide breast histopathology images. IEEE Trans Med Imag 37(1):316–325

    Article  Google Scholar 

  • Mercan E, Aksoy S, Shapiro LG, Weaver DL, Brunye T, Elmore JG (2014) Localization of diagnostically relevant regions of interest in whole slide images. In: 2014 22nd International conference on pattern recognition, IEEE, pp 1179–1184

  • Mercan E, Aksoy S, Shapiro LG, Weaver DL, Brunyé TT, Elmore JG (2016) Localization of diagnostically relevant regions of interest in whole slide images: a comparative study. J Digit Imag 29(4):496–506

    Article  Google Scholar 

  • Mohammadi S, Noori M, Bahri A, Majelan SG, Havaei M (2020) Cagnet: content-aware guidance for salient object detection. Pattern Recogn 103:107303

    Article  Google Scholar 

  • Mohanaiah P, Sathyanarayana P, GuruKumar L (2013) Image texture feature extraction using GLCM approach. Int J Sci Res Publ 3(5):1

    Google Scholar 

  • Morkūnas M, Treigys P, Bernatavičienė J, Laurinavičius A, Korvel G (2018) Machine learning based classification of colorectal cancer tumour tissue in whole-slide images. Informatica 29(1):75–90

    Article  Google Scholar 

  • Mu C, Liu J, Liu Y, Liu Y (2020) Hyperspectral image classification based on active learning and spectral-spatial feature fusion using spatial coordinates. IEEE Access 8:6768–6781

    Article  Google Scholar 

  • Mukherjee J, Kar M, Chakrabarti A, Das S (2020) A soft-computing based approach towards automatic detection of pulmonary nodule. Biocybern Biomed Eng 40(3):1036–1051

    Article  Google Scholar 

  • Nayak N, Chang H, Borowsky A, Spellman P, Parvin B (2013) Classification of tumor histopathology via sparse feature learning. In: 2013 IEEE 10th international symposium on biomedical imaging, IEEE, pp 410–413

  • Nguyen K, Jain AK, Sabata B (2011) Prostate cancer detection: fusion of cytological and textural features. J Pathol Inform 2(3):1-11

  • Niazi MKK, Parwani AV, Gurcan MN (2019) Digital pathology and artificial intelligence. Lancet Oncol 20(5):e253–e261

    Article  Google Scholar 

  • Nichols JA, Chan HWH, Baker MA (2019) Machine learning: applications of artificial intelligence to imaging and diagnosis. Biophys Rev 11(1):111–118

    Article  Google Scholar 

  • Nirschl JJ, Janowczyk A, Peyster EG, Frank R, Margulies KB, Feldman MD, Madabhushi A (2018) A deep-learning classifier identifies patients with clinical heart failure using whole-slide images of h&e tissue. PLoS One 13(4):e0192726

    Article  Google Scholar 

  • Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  MATH  Google Scholar 

  • Otsu N (1978) Discriminant and least square threshold selection. Proc 4th IJCPR, Tokyo, 1978

  • Özçift A (2011) Random forests ensemble classifier trained with data resampling strategy to improve cardiac arrhythmia diagnosis. Comput Biol Med 41(5):265–271

    Article  Google Scholar 

  • Pal NR, Pal SK (1993) A review on image segmentation techniques. Pattern Recogn 26(9):1277–1294

    Article  Google Scholar 

  • Pantanowitz L, Valenstein PN, Evans AJ, Kaplan KJ, Pfeifer JD, Wilbur DC, Collins LC, Colgan TJ (2011) Review of the current state of whole slide imaging in pathology. J Pathol Inform 2(36):83746

  • Pantanowitz L, Sinard JH, Henricks WH, Fatheree LA, Carter AB, Contis L, Beckwith BA, Evans AJ, Lal A, Parwani AV (2013) Validating whole slide imaging for diagnostic purposes in pathology: guideline from the college of American pathologists pathology and laboratory quality center. Arch Pathol Lab Med 137(12):1710–1722

    Article  Google Scholar 

  • Park H, Park S, Joo Y (2020) Detection of abandoned and stolen objects based on dual background model and mask rRCNN. IEEE Access 8:80010–80019

    Article  Google Scholar 

  • Parwani AV (2019) Next generation diagnostic pathology: use of digital pathology and artificial intelligence tools to augment a pathological diagnosis

  • Pass G, Zabih R, Miller J (1997) Comparing images using color coherence vectors. In: Proceedings of the fourth ACM international conference on Multimedia, pp 65–73

  • Patil DD, Deore SG (2013) Medical image segmentation: a review. Int J Comput Sci Mob Comput 2(1):22–27

    Google Scholar 

  • Peikari M, Gangeh MJ, Zubovits J, Clarke G, Martel AL (2015) Triaging diagnostically relevant regions from pathology whole slides of breast cancer: a texture based approach. IEEE Trans Med Imag 35(1):307–315

    Article  Google Scholar 

  • Petrou M, Petrou C (2010) Image processing: the fundamentals. Wiley, US

    Book  MATH  Google Scholar 

  • Petushi S, Garcia FU, Haber MM, Katsinis C, Tozeren A (2006) Large-scale computations on histology images reveal grade-differentiating parameters for breast cancer. BMC Med Imag 6(1):14

    Article  Google Scholar 

  • Pham DL, Xu C, Prince JL (2000) Current methods in medical image segmentation. Annu Rev Biomed Eng 2(1):315–337

    Article  Google Scholar 

  • Pichler O, Teuner A, Hosticka BJ (1996) A comparison of texture feature extraction using adaptive gabor filtering, pyramidal and tree structured wavelet transforms. Pattern Recogn 29(5):733–742

    Article  Google Scholar 

  • Rawat W, Wang Z (2017) Deep convolutional neural networks for image classification: a comprehensive review. Neural Comput 29(9):2352–2449

    Article  MathSciNet  MATH  Google Scholar 

  • Ren J, Hacihaliloglu I, Singer EA, Foran DJ, Qi X (2018a) Adversarial domain adaptation for classification of prostate histopathology whole-slide images. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 201–209

  • Ren J, Karagoz K, Gatza M, Foran DJ, Qi X (2018b) Differentiation among prostate cancer patients with gleason score of 7 using histopathology whole-slide image and genomic data. In: Medical imaging 2018: imaging informatics for healthcare, research, and applications, International Society for Optics and Photonics, vol 10579, p 1057904

  • Rodrigues ER, Oliveira I, Cunha R, Netto M (2018) Deepdownscale: a deep learning strategy for high-resolution weather forecast. In: 2018 IEEE 14th International conference on e-Science (e-Science), IEEE, pp 415–422

  • Rojo MG, García GB, Mateos CP, García JG, Vicente MC (2006) Critical comparison of 31 commercially available digital slide systems in pathology. Int J Surg Pathol 14(4):285–305

    Article  Google Scholar 

  • Rosenfeld A, De La Torre P (1983) Histogram concavity analysis as an aid in threshold selection. IEEE Trans Syst Man Cybern 13(2):231–235

    Article  Google Scholar 

  • Roullier V, Lézoray O, Ta VT, Elmoataz A (2010a) Mitosis extraction in breast-cancer histopathological whole slide images. In: International symposium on visual computing, Springer, pp 539–548

  • Roullier V, Ta VT, Lezoray O, Elmoataz A (2010b) Graph-based multi-resolution segmentation of histological whole slide images. In: 2010 IEEE International symposium on biomedical imaging: from nano to macro, IEEE, pp 153–156

  • Roullier V, Lézoray O, Ta VT, Elmoataz A (2011) Multi-resolution graph-based analysis of histopathological whole slide images: application to mitotic cell extraction and visualization. Comput Med Imag Graph 35(7–8):603–615

    Article  Google Scholar 

  • Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326

    Article  Google Scholar 

  • Saco A, Bombi JA, Garcia A, Ramírez J, Ordi J (2016) Current status of whole-slide imaging in education. Pathobiology 83(2–3):79–88

    Article  Google Scholar 

  • Saltz J, Sharma A, Iyer G, Bremer E, Wang F, Jasniewski A, DiPrima T, Almeida JS, Gao Y, Zhao T et al (2017) A containerized software system for generation, management, and exploration of features from whole slide tissue images. Can Res 77(21):e79–e82

    Article  Google Scholar 

  • Samsi S, Krishnamurthy AK, Gurcan MN (2012) An efficient computational framework for the analysis of whole slide images: Application to follicular lymphoma immunohistochemistry. J Comput Sci 3(5):269–279

    Article  Google Scholar 

  • Van de Sande KE, Uijlings JR, Gevers T, Smeulders AW (2011) Segmentation as selective search for object recognition. In: 2011 International conference on computer vision, IEEE, pp 1879–1886

  • Seera M, Lim CP (2014) A hybrid intelligent system for medical data classification. Expert Syst Appl 41(5):2239–2249

    Article  Google Scholar 

  • Sertel O, Kong J, Shimada H, Catalyurek U, Saltz JH, Gurcan M (2008) Computer-aided prognosis of neuroblastoma: classification of stromal development on whole-slide images. In: Medical imaging 2008: computer-aided diagnosis, International Society for Optics and Photonics, vol 6915, p 69150P

  • Sertel O, Catalyurek UV, Shimada H, Gurcan MN (2009a) A combined computerized classification system for whole-slide neuroblastoma histology: model-based structural features. In: International conference on medical image computing and computer assisted intervention (MICCAI 2009), pp 7–18

  • Sertel O, Kong J, Shimada H, Catalyurek UV, Saltz JH, Gurcan MN (2009) Computer-aided prognosis of neuroblastoma on whole-slide images: classification of stromal development. Pattern Recogn 42(6):1093–1103

    Article  Google Scholar 

  • Seth N (2019) Automated localization of breast ductal carcinoma in situ in whole slide images. PhD thesis, University of Toronto (Canada)

  • Seth N, Akbar S, Nofech-Mozes S, Salama S, Martel AL (2019) Automated segmentation of dcis in whole slide images. European congress on digital pathology. Springer, Heidelberg, pp 67–74

    Chapter  Google Scholar 

  • Sharma H, Alekseychuk A, Leskovsky P, Hellwich O, Anand RS, Zerbe N, Hufnagl P (2012) Determining similarity in histological images using graph-theoretic description and matching methods for content-based image retrieval in medical diagnostics. Diagn Pathol 7(1):134

    Article  Google Scholar 

  • Sharma H, Zerbe N, Klempert I, Lohmann S, Lindequist B, Hellwich O, Hufnagl P (2015a) Appearance-based necrosis detection using textural features and svm with discriminative thresholding in histopathological whole slide images. In: 2015 IEEE 15th International conference on bioinformatics and bioengineering (BIBE), IEEE, pp 1–6

  • Sharma H, Zerbe N, Lohmann S, Kayser K, Hellwich O, Hufnagl P (2015b) A review of graph-based methods for image analysis in digital histopathology. Diagn Pathol 1(1):1–51

  • Sharma H, Zerbe N, Klempert I, Hellwich O, Hufnagl P (2016) Deep convolutional neural networks for histological image analysis in gastric carcinoma whole slide images. Diagn Pathol 1(8):230–232

  • Sharma H, Zerbe N, Klempert I, Hellwich O, Hufnagl P (2017) Deep convolutional neural networks for automatic classification of gastric carcinoma using whole slide images in digital histopathology. Comput Med Imag Graph 61:2–13

    Article  Google Scholar 

  • Shen S, Sandham W, Granat M (2003) Preprocessing and segmentation of brain magnetic resonance images. In: 4th International IEEE EMBS special topic Conference on information technology applications in biomedicine, 2003., IEEE, pp 149–152

  • Shirinifard A, Thiagarajan S, Vogel P, Sablauer A (2016) Detection of phenotypic alterations using high-content analysis of whole-slide images. J Histochem Cytochem 64(5):301–310

    Article  Google Scholar 

  • Shou J, Li Y, Yu G, Li G (2018) Whole slide image classification of gastric cancer using convolutional neural networks. OpenReview : MIDL 2018

  • Shrimali V, Anand R, Kumar V (2009) Current trends in segmentation of medical ultrasound b-mode images: a review. IETE Tech Rev 26(1):8–17

    Article  Google Scholar 

  • Shu J, Fu H, Qiu G, Kaye P, Ilyas M (2013) Segmenting overlapping cell nuclei in digital histopathology images. In: 2013 35th Annual international conference of the IEEE engineering in Medicine and Biology Society (EMBC), IEEE, pp 5445–5448

  • Shukla P, Verma S, et al. (2017) A compact fuzzy rule interpretation of svm classifier for medical whole slide images. In: TENCON 2017–2017 IEEE Region 10 conference, IEEE, pp 1588–1592

  • Simon O, Yacoub R, Jain S, Tomaszewski JE, Sarder P (2018) Multi-radial lbp features as a tool for rapid glomerular detection and assessment in whole slide histopathology images. Sci Rep 8(1):1–11

    Article  Google Scholar 

  • Singh S, Gupta P, Sharma MK (2010) Breast cancer detection and classification of histopathological images. Int J Eng Sci Technol 3(5):4228

    Google Scholar 

  • Singh VK, Kumar N, Madhavan S (2019) Saliency boosting: a novel framework to refine salient object detection. Artificial Intelligence Review pp 1–42

  • Sirinukunwattana K, Raza SEA, Tsang YW, Snead DR, Cree IA, Rajpoot NM (2016) Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans Med Imag 35(5):1196–1206

    Article  Google Scholar 

  • Sirinukunwattana K, Alham NK, Verrill C, Rittscher J (2018) Improving whole slide segmentation through visual context-a systematic study. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 192–200

  • Smith AR (1978) Color gamut transform pairs. ACM Siggraph Comput Gr 12(3):12–19

    Article  Google Scholar 

  • Sokolova M, Lapalme G (2009) A systematic analysis of performance measures for classification tasks. Inform Process Manag 45(4):427–437

    Article  Google Scholar 

  • Sun C, Li C, Zhang J, Rahaman MM, Ai S, Chen H, Kulwa F, Li Y, Li X, Jiang T (2020) Gastric histopathology image segmentation using a hierarchical conditional random field. Biocybern Biomed Eng 40(4):1535–1555

    Article  Google Scholar 

  • Swiderska Z, Korzynska A, Markiewicz T, Lorent M, Zak J, Wesolowska A, Roszkowiak L, Slodkowska J, Grala B (2015a) Comparison of the manual, semiautomatic, and automatic selection and leveling of hot spots in whole slide images for ki-67 quantification in meningiomas. Anal Cell Pathol 2015

  • Swiderska Z, Markiewicz T, Grala B, Kozlowski W (2015b) Texture and mathematical morphology for hot-spot detection in whole slide images of meningiomas and oligodendrogliomas. In: International conference on computer analysis of images and patterns, Springer, pp 1–12

  • Szczypiński PM, Klepaczko A (2017) Mazda–a framework for biomedical image texture analysis and data exploration. In: Biomedical texture analysis, Elsevier, pp 315–347

  • Tellez D, Balkenhol M, Otte-Höller I, van de Loo R, Vogels R, Bult P, Wauters C, Vreuls W, Mol S, Karssemeijer N et al (2018) Whole-slide mitosis detection in h&e breast histology using phh3 as a reference to train distilled stain-invariant convolutional networks. IEEE Trans Med Imag 37(9):2126–2136

    Article  Google Scholar 

  • Tellez D, van der Laak J, Ciompi F (2018b) Gigapixel whole-slide image classification using unsupervised image compression and contrastive training. In Proceeding of 1st conference on medical imaging with deep learning (MIDL 2018), Amsterdam, The Netherlands, p. 1–3

  • ping Tian D (2013) A review on image feature extraction and representation techniques. Int J Multimed Ubiquit Eng 8(4):385–396

    Google Scholar 

  • Titapiccolo JI, Ferrario M, Cerutti S, Barbieri C, Mari F, Gatti E, Signorini MG (2013) Artificial intelligence models to stratify cardiovascular risk in incident hemodialysis patients. Expert Syst Appl 40(11):4679–4686

    Article  Google Scholar 

  • Toğaçar M, Ergen B, Cömert Z (2020) Detection of lung cancer on chest CT images using minimum redundancy maximum relevance feature selection method with convolutional neural networks. Biocybern Biomed Eng 40(1):23–39

    Article  Google Scholar 

  • Tomczak K, Czerwińska P, Wiznerowicz M (2015) The cancer genome atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol 19(1A):A68

    Google Scholar 

  • Tustison N, Gee J (2009) Introducing dice, jaccard, and other label overlap measures to itk. Insight J 2

  • Valkonen M, Kartasalo K, Liimatainen K, Nykter M, Latonen L, Ruusuvuori P (2017) Metastasis detection from whole slide images using local features and random forests. Cytometry A 91(6):555–565

    Article  Google Scholar 

  • Vapnik V (1964) A note one class of perceptrons. Automation and remote control

  • Vapnik V, Lerner AY (1963) Recognition of patterns with help of generalized portraits. Avtomat i Telemekh 24(6):774–780

    Google Scholar 

  • Vedaldi A, Gulshan V, Varma M, Zisserman A (2009) Multiple kernels for object detection. In: 2009 IEEE 12th international conference on computer vision, IEEE, pp 606–613

  • Veta M, Kornegoor R, Huisman A, Verschuur-Maes AH, Viergever MA, Pluim JP, Van Diest PJ (2012) Prognostic value of automatically extracted nuclear morphometric features in whole slide images of male breast cancer. Mod Pathol 25(12):1559–1565

    Article  Google Scholar 

  • Veta M, van Diest PJ, Pluim JP (2013a) Detecting mitotic figures in breast cancer histopathology images. In: Medical imaging 2013: digital pathology, International Society for Optics and Photonics, vol 8676, p 867607

  • Veta M, Van Diest PJ, Kornegoor R, Huisman A, Viergever MA, Pluim JP (2013) Automatic nuclei segmentation in h&e stained breast cancer histopathology images. PLoS One 8(7):e70221

    Article  Google Scholar 

  • Veta M, Pluim JP, Van Diest PJ, Viergever MA (2014) Breast cancer histopathology image analysis: a review. IEEE Trans Biomed Eng 61(5):1400–1411

    Article  Google Scholar 

  • Veta M, Van Diest PJ, Willems SM, Wang H, Madabhushi A, Cruz-Roa A, Gonzalez F, Larsen AB, Vestergaard JS, Dahl AB et al (2015) Assessment of algorithms for mitosis detection in breast cancer histopathology images. Med Image Anal 20(1):237–248

    Article  Google Scholar 

  • Veta M, Heng YJ, Stathonikos N, Bejnordi BE, Beca F, Wollmann T, Rohr K, Shah MA, Wang D, Rousson M et al (2019) Predicting breast tumor proliferation from whole-slide images: the tupac16 challenge. Med Image Anal 54:111–121

    Article  Google Scholar 

  • Vincent L, Soille P (1991) Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans Pattern Anal Machine Intell 13(6):583–598

    Article  Google Scholar 

  • Vo H, Kong J, Teng D, Liang Y, Aji A, Teodoro G, Wang F (2016) Cloud-based whole slide image analysis using mapreduce. In: VLDB workshop on data management and analytics for medicine and healthcare, Springer, pp 62–77

  • Vo H, Kong J, Teng D, Liang Y, Aji A, Teodoro G, Wang F (2019) Mareia: a cloud mapreduce based high performance whole slide image analysis framework. Distrib Parallel Databases 37(2):251–272

    Article  Google Scholar 

  • Vyas NS, Markow M, Prieto-Granada C, Gaudi S, Turner L, Rodriguez-Waitkus P, Messina JL, Jukic DM (2016) Comparing whole slide digital images versus traditional glass slides in the detection of common microscopic features seen in dermatitis. J Pathol Inform 7

  • Wang D, Khosla A, Gargeya R, Irshad H, Beck AH (2016) Deep learning for identifying metastatic breast cancer. arXiv preprint arXiv:1606.05718

  • Wang S, Yang DM, Rong R, Zhan X, Xiao G (2019) Pathology image analysis using segmentation deep learning algorithms. Am J Pathol 189(9):1686–1698

    Article  Google Scholar 

  • Wang S, Zhu Y, Yu L, Chen H, Lin H, Wan X, Fan X, Heng PA (2019) Rmdl: recalibrated multi-instance deep learning for whole slide gastric image classification. Med Image Anal 58:101549

    Article  Google Scholar 

  • Wang X, Wang Y (2014) Improving content-based and hybrid music recommendation using deep learning. In: Proceedings of the 22nd ACM international conference on multimedia, pp 627–636

  • Wang X, Chen H, Gan C, Lin H, Dou Q, Huang Q, Cai M, Heng PA (2018) Weakly supervised learning for whole slide lung cancer image classification. Med Imag Deep Learn

  • Wang Y, Xi J, Ma Y (2020) Accurate extraction method for structural features of building facades through texture fusion. IEEE Access 8:195799–195809

    Article  Google Scholar 

  • Watanabe H, Uchihashi T, Kobashi T, Shibata M, Nishiyama J, Yasuda R, Ando T (2013) Wide-area scanner for high-speed atomic force microscopy. Rev Sci Instrum 84(5):053702

    Article  Google Scholar 

  • Webster J, Dunstan R (2014) Whole-slide imaging and automated image analysis: considerations and opportunities in the practice of pathology. Vet Pathol 51(1):211–223

    Article  Google Scholar 

  • Weihua L (2013) Research and comparison of mk-lssvm and adaboost-svm in classification. Process Auto Instrum 5

  • Weingant M, Reynolds HM, Haworth A, Mitchell C, Williams S, DiFranco MD (2015) Ensemble prostate tumor classification in h&e whole slide imaging via stain normalization and cell density estimation. In: International workshop on machine learning in medical imaging, Springer, pp 280–287

  • Weinstein RS, Graham AR, Richter LC, Barker GP, Krupinski EA, Lopez AM, Erps KA, Bhattacharyya AK, Yagi Y, Gilbertson JR (2009) Overview of telepathology, virtual microscopy, and whole slide imaging: prospects for the future. Hum Pathol 40(8):1057–1069

    Article  Google Scholar 

  • Xu H, Mandal M (2015) Epidermis segmentation in skin histopathological images based on thickness measurement and k-means algorithm. EURASIP J Image Video Process 1:1–14

    Google Scholar 

  • Xu H, Lu C, Berendt R, Jha N, Mandal M (2018) Automated analysis and classification of melanocytic tumor on skin whole slide images. Comput Med Imag Graph 66:124–134

    Article  Google Scholar 

  • Xu Y, Jia Z, Wang LB, Ai Y, Zhang F, Lai M, Eric I, Chang C (2017) Large scale tissue histopathology image classification, segmentation, and visualization via deep convolutional activation features. BMC Bioinform 18(1):1–17

    Article  Google Scholar 

  • Yamaguchi K, McAllester D, Urtasun R (2014) Efficient joint segmentation, occlusion labeling, stereo and flow estimation. In: European conference on computer vision, Springer, pp 756–771

  • Yeh FC, Ye Q, Hitchens TK, Wu YL, Parwani AV, Ho C (2014) Mapping stain distribution in pathology slides using whole slide imaging. J Pathol Inform 5(1):1

  • Yoshida H, Yamashita Y, Shimazu T, Cosatto E, Kiyuna T, Taniguchi H, Sekine S, Ochiai A (2017) Automated histological classification of whole slide images of colorectal biopsy specimens. Oncotarget 8(53):90719

    Article  Google Scholar 

  • Yoshida H, Shimazu T, Kiyuna T, Marugame A, Yamashita Y, Cosatto E, Taniguchi H, Sekine S, Ochiai A (2018) Automated histological classification of whole-slide images of gastric biopsy specimens. Gastric Cancer 21(2):249–257

    Article  Google Scholar 

  • Zanjani FG, Zinger S, et al. (2018) Cancer detection in histopathology whole-slide images using conditional random fields on deep embedded spaces. In: Medical imaging 2018: digital pathology, International Society for Optics and Photonics, vol 10581, p 105810I

  • ZHANG C (2013) Challenges in machine learning. Sci Sinica Inform 43(12):1612–1623

    Article  Google Scholar 

  • Zhang J, Li C, Kulwa F, Zhao X, Sun C, Li Z, Jiang T, Li H, Qi S (2020) A multiscale cnn-crf framework for environmental microorganism image segmentation. BioMed Res Int 2020

  • Zhang L, Zhang L, Tao D, Huang X, Du B (2013) Hyperspectral remote sensing image subpixel target detection based on supervised metric learning. IEEE Trans Geosci Remote Sens 52(8):4955–4965

    Article  Google Scholar 

  • Zhang X, Su H, Yang L, Zhang S (2015) Fine-grained histopathological image analysis via robust segmentation and large-scale retrieval. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5361–5368

  • Zhao Y, Black EF, Marini L, McHenry K, Kenyon N, Patil R, Balla A, Bartholomew A (2016) Automatic glomerulus extraction in whole slide images towards computer aided diagnosis. In: 2016 IEEE 12th international conference on e-Science (e-Science), IEEE, pp 165–174

  • Zhao ZQ, Zheng P, Xu St WuX (2019) Object detection with deep learning: a review. IEEE Trans Neural Netw Learn Systems 30(11):3212–3232

    Article  Google Scholar 

  • Zucker SW, Terzopoulos D (1980) Finding structure in co-occurrence matrices for texture analysis. Comput Gr Image Process 12(3):286–308

    Article  Google Scholar 

  • Zuva T, Olugbara OO, Ojo SO, Ngwira SM (2011) Image segmentation, available techniques, developments and open issues. Can J Image Process Computer Vision 2(3):20–29

    Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (No. 61806047). We thank Miss Zixian Li and Mr. Guoxian Li for their important discussion. We also thank B.E. Xiaoming Zhou, B.E. Jinghua Zhang and B.E. Jining Li, for their Important technical supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Li, C., Rahaman, M.M. et al. A comprehensive review of computer-aided whole-slide image analysis: from datasets to feature extraction, segmentation, classification and detection approaches. Artif Intell Rev 55, 4809–4878 (2022). https://doi.org/10.1007/s10462-021-10121-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-021-10121-0

Keywords

Navigation