Skip to main content
Log in

MTF of columnar phosphors with a homogenous part: an analytical approach

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

A method for the theoretical estimation of the MTF of columnar phosphors with a homogeneous part at the end used in X-ray imaging has been developed. This method considers the light transport inside the scintillator through an analytical modelling, the optical photon beams distribution on the scintillator–optical sensor interface, and uses the definition of the PSF and a Gauss fitted LSF to estimate the MTF of an indirect detector. This method was applied to a columnar CsI:Tl scintillator and validated against experimental results found in literature, and a good agreement was observed. It was found that, by increasing the pixel size of the optical detector and the thickness of the scintillator, the MTF decreased as expected. This method may be used in evaluating the performance of the columnar phosphors used in medical imaging, given their physical and geometrical characteristics.

Graphical abstract

(a) Side view of a part of the scintillator where five crystal columns with homogeneous ends attached to an optical sensor is shown.

(b) Propagation of two random optical photon beams emitted from point K with different angles of emission is shown. All the symbols are explained analytically in the text.

(c) MTF of a 140-μm length scintillator attached to a 22.5-μm pixel size optical sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Acciavatti RJ, Maidment AD (2011) Optimization of phosphor-based detector design for oblique X-ray incidence in digital breast tomosynthesis. Med Phys 38(11):6188–6202. https://doi.org/10.1118/1.3639999

    Article  PubMed  PubMed Central  Google Scholar 

  2. Arvanitis CD, Bohndiek SE, Blakesley J, Olivo A, Speller RD (2009) Signal and noise transfer properties of CMOS based active pixel flat panel imager coupled to structured CsI:Tl. Med Phys 36(1):116–126. https://doi.org/10.1118/1.3036117

    Article  CAS  PubMed  Google Scholar 

  3. Badano A (2003) Optical blur and collection efficiency in columnar phosphors for X - ray imaging. Nucl Instrum Methods Phys Res A 508(3):467–479. https://doi.org/10.1016/S0168-9002(03)01651-6

    Article  CAS  Google Scholar 

  4. Badano A, Leimbach R (2002) Depth-dependent phosphor blur in indirect X-ray imaging sensors. Proc SPIE 4682, Medical Imaging: Physics of Medical Imaging 94-106. https://doi.org/10.1117/12.465546

  5. Badano A, Gagne RM, Gallas BD, Jennings RJ, Boswell JS, Myers KJ (2004) Lubberts effect in columnar phosphors. Med Phys 31(11):3122–3131. https://doi.org/10.1118/1.1796151

    Article  CAS  PubMed  Google Scholar 

  6. Blakesley JC, Speller R (2008) Modeling the imaging performance of prototype organic x - ray imagers. Med Phys 35(1):225–239. https://doi.org/10.1118/1.2805479

    Article  CAS  PubMed  Google Scholar 

  7. Bushberg J, Seibert JA, Leidholdt EM, Boone JM (1994) The essential physics of medical imaging. Williams & Wilkins, Baltimore

    Google Scholar 

  8. Cavouras D, Kandarakis I, Panayiotakis GS, Nomicos CD (2002) Integrated model for estimating phosphor signal and noise transfer characteristics on medical images: application to CdPO3CI:Mn phosphor screens. Med Biol Eng Comput 40:273–277. https://doi.org/10.1007/BF02344207

    Article  CAS  PubMed  Google Scholar 

  9. Chen H, Gu M, Liu X, Zhang J, Liu B, Huang S, Ni C (2018) Simulated performances of pixelated CsI(Tl) scintillation screens with different microcolumn shapes and array structures in X-ray imaging. Sci Rep 8(16819):1–12. https://doi.org/10.1038/s41598-018-34852-3

    Article  CAS  Google Scholar 

  10. Doré S, Kearney RE (2004) Experimental evaluation of computerised tomography point spread function variability within the field of view: parametric models. Med Biol Eng Comput 42(5):591–597. https://doi.org/10.1007/bf02347539

    Article  PubMed  Google Scholar 

  11. Doré S, Kearney RE, De Guise JA (1997) Experimental correlation-based identification of X-ray CT point spread function. Part 1: Method and experimental results. Med Biol Eng Comput 35(1):2–8. https://doi.org/10.1007/bf02510384

    Article  PubMed  Google Scholar 

  12. Doré S, Kearney RE, De Guise JA (1997) Experimental correlation-based identification of X-ray CT point spread function. Part 2: Simulation and design of input signal. Med Biol Eng Comput 35(1):9–16. https://doi.org/10.1007/bf02510385

    Article  PubMed  Google Scholar 

  13. Freed M, Miller S, Tang K, Badano A (2009) Experimental validation of Monte Carlo (MANTIS) simulated X-ray response of columnar CsI scintillator screens. Med Phys 36(11):4944–4956. https://doi.org/10.1118/1.3233683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Giakoumakis GE, Katsarioti MC, Lagaris IE, Panayiotakis GS (1991) A theoretical model for the x - ray luminescence of granular phosphor screens. J Appl Phys 69(9):6607–6611. https://doi.org/10.1063/1.348873

    Article  CAS  Google Scholar 

  15. Giakoumakis GE, Katsarioti MC, Panayiotakis GS (1991) Modulation Transfer Function of thin transparent foils in radiographic cassettes. Appl Phys A Mater Sci Process 52:210–212. https://doi.org/10.1007/BF00324421

    Article  Google Scholar 

  16. Goldsmith WA, Nusynowitz ML (1971) Determination of the modulation transfer function (MTF) using a programmable calculator. Am J Roentgenol Radium Ther Nucl Med 112(4):806–811. https://doi.org/10.2214/ajr.112.4.806

    Article  CAS  PubMed  Google Scholar 

  17. Grabski V, Brandan ME (2007) A simple method to estimate coordinate resolution and MTF for pixelized detectors. Nucl Instrum Methods Phys Res A 571(1–2):433–436. https://doi.org/10.1016/j.nima.2006.10.128

    Article  CAS  Google Scholar 

  18. Hajdok G, Battista JJ, Cunningham IA (2008) Fundamental X-ray interaction limits in diagnostic imaging detectors: frequency-dependent Swank noise. Med Phys 35(7 Part 1):3194–3204. https://doi.org/10.1118/1.2936412

    Article  CAS  PubMed  Google Scholar 

  19. https://www.oem-products.siemens.com/x-ray-spectra-simulation. Accessed 10 July 2019

  20. Jing Z, Huda W, Walker JK, Choi WY (1999) Spatial-frequency-dependent DQE performance of a CsI:Tl-based X-ray detector for digital mammography. Proc SPIE 3659, Medical Imaging 1999: Physics of Medical Imaging: 159 - 168. https://doi.org/10.1117/12.349489

  21. Kalivas N, Kandarakis I, Cavouras D, Costaridou L, Nomicos CD, Panayiotakis G (1999) Modeling quantum noise of phosphors used in medical X-ray imaging detectors. Nucl Instrum Methods Phys Res A 430(2-3):559–569. https://doi.org/10.1016/S0168-9002(99)00232-6

    Article  CAS  Google Scholar 

  22. Kalivas N, Costaridou L, Kandarakis I, Cavouras D, Nomicos CD, Panayiotakis G (2002) Modeling quantum and structure noise of phosphors used in medical X-ray imaging detectors. Nucl Instrum Methods Phys Res A 490(3):614–629. https://doi.org/10.1016/S0168-9002(02)01088-4

    Article  CAS  Google Scholar 

  23. Kalyvas N, Valais I, Costaridou L, Kandarakis I, Cavouras D, Nomicos CD, Panayiotakis G (2009) Evaluating optical spectral matching of phosphor-photodetector combinations. JINST 4:P07003. https://doi.org/10.1088/1748-0221/4/07/P07003

    Article  CAS  Google Scholar 

  24. Kalyvas N, Valais I, Michail C, Fountos G, Kandarakis I, Cavouras D (2015) A theoretical study of CsI:Tl columnar scintillator image quality parameters by analytical modeling. Nucl Instrum Methods Phys Res A 779:18–24. https://doi.org/10.1016/j.nima.2015.01.027

    Article  CAS  Google Scholar 

  25. Kandarakis I, Cavouras D, Kanellopoulos E, Nomicos CD, Panayiotakis GS (1999) A method for determining the information capacity of X-ray imaging scintillator detectors by means of luminescence and modulation transfer function measurements. Med Biol Eng Comput 37:25–35. https://doi.org/10.1007/BF02513261

    Article  CAS  PubMed  Google Scholar 

  26. Korner M, Weber CH, Wirth S, Pfeifer KJ, Reiser MF, Treitl M (2007) Advances in digital radiography: physical principles and system overview. Radiographics 27(3):675–686. https://doi.org/10.1148/rg.273065075

    Article  PubMed  Google Scholar 

  27. Kudrolli H, Bhandari H, Breen M, Gelfandbein V, Miller SR, Pivovaroff M, Squillante MR, Vogel J, Nagarkar VV (2011) Development of high spatial resolution detector for characterization of X-ray optics. JINST 6:C12013 http://iopscience.iop.org/1748-0221/6/12/C12013

    Article  Google Scholar 

  28. Leblans P, Struye L, Willems P (2000) A new needle-crystalline computed radiography detector. J Digit Imaging 13(Suppl 1):117–120. https://doi.org/10.1007/BF03167640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lubberts G (1968) Random noise produced by X-ray fluorescent screens. J Opt Soc Am 58:1475–1483. https://doi.org/10.1364/JOSA.58.001475

    Article  Google Scholar 

  30. Magnan P (2003) Detection of visible photons in CCD and CMOS: a comparative view. Nucl Instrum Methods Phys Res A 504(1-3):199–212. https://doi.org/10.1016/S0168-9002(03)00792-7

    Article  CAS  Google Scholar 

  31. Mainprize JG, Bloomquist AK, Kempston MP, Yaffe MJ (2006) Resolution at oblique incidence angles of a flat panel imager for breast tomosynthesis. Med Phys 33(9):3159–3164. https://doi.org/10.1118/1.2241994

    Article  PubMed  Google Scholar 

  32. MATLAB R2015a. http://www.upnet.gr/software/matlab/

  33. Michail CM, Fountos GP, Liaparinos PF, Kalyvas NE, Valais I, Kandarakis IS, Panayiotakis GS (2010) Light emission efficiency and imaging performance of Gd2O2S:Eu powder scintillator under X-ray radiography conditions. Med Phys 37(7):3694–3703. https://doi.org/10.1118/1.3451113

    Article  CAS  PubMed  Google Scholar 

  34. Michail C, Valais I, Seferis I, Kalyvas N, Fountos G, Kandarakis I (2015) Experimental measurement of a high resolution CMOS detector coupled to CsI scintillators under X-ray radiation. Radiat Meas 74:39–46. https://doi.org/10.1016/j.radmeas.2015.02.007

    Article  CAS  Google Scholar 

  35. Nishikawa RM, Yaffe MJ (1990) Model of the spatial-frequency-dependent detective quantum efficiency of phosphor screens. Med Phys 17(5):894–904. https://doi.org/10.1118/1.596583

    Article  CAS  PubMed  Google Scholar 

  36. Psichis K, Kalyvas N, Kandarakis I, Panayiotakis G (2017) An analytical approach to the light transport in columnar phosphors. Detector Optical Gain, angular distribution and the CsI:Tl paradigm. Phys Med 35:39–49. https://doi.org/10.1016/j.ejmp.2017.02.008

    Article  PubMed  Google Scholar 

  37. Rivetti S, Lanconelli N, Bertolini M, Nitrosi A, Burani A, Acchiappati D (2010) Comparison of different computed radiography systems: physical characterization and contrast detail analysis. Med Phys 37(2):440–448. https://doi.org/10.1118/1.3284539

    Article  CAS  PubMed  Google Scholar 

  38. Roncali E, Mosleh-Shirazi MA, Badano A (2017) Modelling the transport of optical photons in scintillation detectors for diagnostic and radiotherapy imaging. Phys Med Biol 62:R207–R235. https://doi.org/10.1088/1361-6560/aa8b31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sakellaris T, Spyrou G, Tzanakos G, Panayiotakis G (2005) Monte Carlo simulation of primary electron production inside an a-selenium detector for X-ray mammography: physics. Phys Med Biol 50:3717–3738. https://doi.org/10.1088/0031-9155/50/16/005

    Article  CAS  PubMed  Google Scholar 

  40. Sakellaris T, Spyrou G, Tzanakos G, Panayiotakis G (2007) Energy, angular and spatial distributions of primary electrons inside photoconducting materials for digital mammography: Monte Carlo simulation studies. Phys Med Biol 52:6439–6460. https://doi.org/10.1088/0031-9155/52/21/007

    Article  CAS  PubMed  Google Scholar 

  41. Seibert JA (2006) Flat-panel detectors: how much better are they? Pediatr Radiol Sep 36(Suppl 2):173–181. https://doi.org/10.1007/s00247-006-0208-0

    Article  Google Scholar 

  42. Sharma D, Badano A (2012) Comparison of experimental, mantis, and hybridmantis X-ray response for a breast imaging CsI detector. In: Maidment ADA, Bakic PR, Gavenonis S (eds) Breast Imaging. IWDM 2012. Lecture Notes in Computer Science, vol 7361. Springer, Berlin. https://doi.org/10.1007/978-3-642-31271-7_8

  43. Sharma D, Badano A (2013) Validation of columnar CsI X-ray detector responses obtained with hybridMANTIS, a CPU-GPU Monte Carlo code for coupled X-ray, electron, and optical transport. Med Phys 40(3):031907 1–031907 5. https://doi.org/10.1118/1.4791642

    Article  CAS  Google Scholar 

  44. Spahn M (2005) Flat detectors and their clinical applications. Eur Radiol 15:1934–1947. https://doi.org/10.1007/s00330-005-2734-9

    Article  PubMed  Google Scholar 

  45. Strudley CJ, Looney P, Young KC (2014) Technical evaluation of Hologic Selenia Dimensions digital breast tomosynthesis system. NHSBSP Equipment Report 1307 Version 2. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/505800/nhsbsp-equipment-report-1307v2.pdf_uploaded_070316.pdf

  46. Valais I, Nikolopoulos D, Kalivas N, Gaitanis A, Loudos G, Sianoudis I, Giokaris N, Cavouras D, Dimitropoulos N, Nomicos CD, Kandarakis I, Panayiotakis GS (2007) A systematic study of the performance of the CsI:Tl single-crystal scintillator under X-ray excitation. Nucl Instrum Methods Phys Res A 571(1-2):343–345. https://doi.org/10.1016/j.nima.2006.10.096

    Article  CAS  Google Scholar 

  47. Zhao W, Ristic G, Rowlands JA (2004) X-ray imaging performance of structured cesium iodide scintillators. Med Phys 31(9):2594–2605. https://doi.org/10.1118/1.1782676

    Article  CAS  PubMed  Google Scholar 

  48. Zhao C, Kanicki J, Konstantinidis AC, Patel T (2015) Large area CMOS active pixel sensor X-ray imager for digital breast tomosynthesis: analysis, modeling, and characterization. Med Phys 42(11):6294–6308. https://doi.org/10.1118/1.4932368

    Article  PubMed  Google Scholar 

  49. Zyazin AS, Peters IM (2015) Complete optical stack modeling for CMOS-based medical X-ray detectors. Proc. SPIE 9412, Medical Imaging 2015: Physics of Medical Imaging, 94122H. https://doi.org/10.1117/12.2081836

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Panayiotakis.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

According to reference [36], DOG can be calculated as

$$ DOG=\frac{I_{tot}}{\sum \limits_Ef(E)} $$
(33)

where Itot is the total number of optical photons refracted in the optical sensor given by the following relationship:

$$ {\displaystyle \begin{array}{c}{I}_{tot}=\sum \limits_E\sum \limits_t\sum \limits_{\varphi }{I}_{0 ff}\left(E,t,\varphi \right)+\sum \limits_E\sum \limits_t\sum \limits_{v=1}^7{I}_{vff}\left(E,t,\varphi \right)+\sum \limits_E\sum \limits_t{I}_{0 ff}\left(E,t,0\right)+\sum \limits_E\sum \limits_t\sum \limits_{v=1}^7{I}_{vff}\left(E,t,0\right)+\\ {}\sum \limits_E\sum \limits_t\sum \limits_{\varphi }{I}_{fT I}\left(E,t,\varphi \right)\\ {}+\sum \limits_E\sum \limits_t\sum \limits_{\varphi }{I}_{0 ff H}\left(E,t,\varphi \right)+\sum \limits_E\sum \limits_t\sum \limits_{v=1}^7{I}_{vff H}\left(E,t,\varphi \right)+\sum \limits_E\sum \limits_t{I}_{0 ff H}\left(E,t,0\right)+\sum \limits_E\sum \limits_t\sum \limits_{v=1}^7{I}_{vff H}\left(E,t,0\right)+\\ {}\sum \limits_E\sum \limits_t\sum \limits_{\varphi }{I}_{fT1H}\left(E,t,\varphi \right)\\ {}+\sum \limits_E\sum \limits_t\sum \limits_{m=0}^4{I}_{Shm}\left(E,t,\varphi \right)\\ {}+\sum \limits_E\sum \limits_t\sum \limits_{\varphi }{I}_{0 bf}\left(E,t,\varphi \right)+\sum \limits_E\sum \limits_t\sum \limits_{\varphi}\sum \limits_{v=1}^7{I}_{vbf}\left(E,t,\varphi \right)+\sum \limits_E\sum \limits_t{I}_{0 bf}\left(E,t,180\right)+\sum \limits_E\sum \limits_t\sum \limits_{v=1}^7{I}_{vbf}\left(E,t,180\right)\\ {}+\sum \limits_E\sum \limits_t\sum \limits_{\varphi }{I}_{sbT1h}\left(E,t,\varphi \right)+\\ {}\sum \limits_E\sum \limits_t\sum \limits_{\varphi }{I}_{0 bf H}\left(E,t,\varphi \right)+\sum \limits_E\sum \limits_t\sum \limits_{\varphi}\sum \limits_{v=1}^7{I}_{vbf H}\left(E,t,\varphi \right)+\sum \limits_E\sum \limits_t{I}_{0 bf H}\left(E,t,180\right)+\sum \limits_E\sum \limits_t\sum \limits_{v=1}^7{I}_{vbf H}\left(E,t,180\right)+\\ {}\sum \limits_E\sum \limits_t\sum \limits_{\varphi }{I}_{Lb}\left(E,t,\varphi \right)\end{array}} $$
(34)

where the subscript H accounts for emission in the homogeneous part and φ ϵ (−90°, 0°) and φ ϵ (0°, 90°). f(E) is the number of X-ray photons that impinge on the DA side of the crystalline column.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Psichis, K., Kalyvas, N., Kandarakis, I. et al. MTF of columnar phosphors with a homogenous part: an analytical approach. Med Biol Eng Comput 58, 2551–2565 (2020). https://doi.org/10.1007/s11517-020-02243-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-020-02243-4

Keywords

Navigation