Skip to main content

Advertisement

Log in

Recovery of heart rate variability after treadmill exercise analyzed by lagged Poincaré plot and spectral characteristics

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The aim of this study was to analyze the recovery of heart rate variability (HRV) after treadmill exercise and to investigate the autonomic nervous system response after exercise. Frequency domain indices, i.e., LF(ms2), HF(ms2), LF(n.u.), HF(n.u.) and LF/HF, and lagged Poincaré plot width (SD1 m ) and length (SD2 m ) were introduced for comparison between the baseline period (Pre-E) before treadmill running and two periods after treadmill running (Post-E1 and Post-E2). The correlations between lagged Poincaré plot indices and frequency domain indices were applied to reveal the long-range correlation between linear and nonlinear indices during the recovery of HRV. The results suggested entirely attenuated autonomic nervous activity to the heart following the treadmill exercise. After the treadmill running, the sympathetic nerves achieved dominance and the parasympathetic activity was suppressed, which lasted for more than 4 min. The correlation coefficients between lagged Poincaré plot indices and spectral power indices could separate not only Pre-E and two sessions after the treadmill running, but also the two sessions in recovery periods, i.e., Post-E1 and Post-E2. Lagged Poincaré plot as an innovative nonlinear method showed a better performance over linear frequency domain analysis and conventional nonlinear Poincaré plot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Billman GE (2011) Heart rate variability—a historical perspective. Front Physiol 2:86

    Article  PubMed  PubMed Central  Google Scholar 

  2. Billman GE (2013) The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front Physiol 4:26

    PubMed  PubMed Central  Google Scholar 

  3. Boardman A, Schlindwein FS, Rocha AP, Leite A (2002) A study on the optimum order of autoregressive models for heart rate variability. Physiol Meas 23(2):325–336

    Article  PubMed  Google Scholar 

  4. Brennan M, Palaniswami M, Kamen P (2001) Do existing measures of Poincaré plot geometry reflect nonlinear features of heart rate variability? IEEE Trans Biomed Eng 48(11):1342–1347

    Article  CAS  PubMed  Google Scholar 

  5. Brennan M, Palaniswami M, Kamen P (2002) Poincaré plot interpretation using a physiological model of HRV based on a network of oscillators. Am J Physiol Heart Circ Physiol 283(5):H1873–H1886

    Article  CAS  PubMed  Google Scholar 

  6. Burr RL (2007) Interpretation of normalized spectral heart rate variability indices in sleep research: a critical review. Sleep 30(7):913–919

    Article  PubMed  PubMed Central  Google Scholar 

  7. Carter JB, Banister EW, Blaber AP (2003) Effect of endurance exercise on autonomic control of heart rate. Sports Med 33(1):33–46

    Article  PubMed  Google Scholar 

  8. Casonatto J, Tinucci T, Dourado AC, Polito M (2011) Cardiovascular and autonomic responses after exercise sessions with different intensities and durations. Clinics (Sao Paulo) 66(3):453–458

    Article  Google Scholar 

  9. Chen J-L, Yeh D-P, Lee J-P, Chen C-Y, Huang C-Y, Lee S-D, Chen C-C, Kuo TBJ, Kao C-L, Kuo C-H (2011) Parasympathetic nervous activity mirrors recovery status in weightlifting performance after training. J Strength Cond Res 25(6):1546–1552

    Article  PubMed  Google Scholar 

  10. Contreras P, Canetti R, Migliaro ER (2007) Correlations between frequency-domain HRV indices and lagged poincaré plot width in healthy and diabetic subjects. Physiol Meas 28(1):85–94

    Article  PubMed  Google Scholar 

  11. Dantas EM, Andreao RV, da Silva VJ, Ribeiro AL, Kemp AH, Brunoni AR, Lotufo PA, Rodrigues SL, Bensenor IM, Mill JG (2015) Comparison between symbolic and spectral analyses of short-term heart rate variability in a subsample of the ELSA-Brasil study. Physiol Meas 36(10):2119–2134

    Article  PubMed  Google Scholar 

  12. De Vito G, Galloway SDR, Nimmo MA, Maas P, McMurray JJV (2002) Effects of central sympathetic inhibition on heart rate variability during steady-state exercise in healthy humans. Clin Physiol Funct Imaging 22(1):32–38

    Article  PubMed  Google Scholar 

  13. Eckberg DL (1997) Sympathovagal balance: a critical appraisal. Circulation 96(9):3224–3232

    Article  CAS  PubMed  Google Scholar 

  14. Figueiredo T, Willardson JM, Miranda H, Bentes CM, Reis VM, Simao R (2015) Influence of load intensity on postexercise hypotension and heart rate variability after a strength training session. J Strength Cond Res 29(10):2941–2948

    Article  PubMed  Google Scholar 

  15. Figueroa A, Baynard T, Fernhall B, Carhart R, Kanaley JA (2007) Endurance training improves post-exercise cardiac autonomic modulation in obese women with and without type 2 diabetes. Eur J Appl Physiol 100(4):437–444

    Article  PubMed  Google Scholar 

  16. Francesco B, Maria Grazia B, Emanuele G, Valentina F, Sara C, Chiara F, Riccardo M, Francesco F (2012) Linear and nonlinear heart rate variability indexes in clinical practice. Comput Math Methods Med 2012:219080

    Article  PubMed  PubMed Central  Google Scholar 

  17. Goshvarpour A, Goshvarpour A (2015) Poincaré indices for analyzing meditative heart rate signals. Biomed J 38(3):229–234

    Article  PubMed  Google Scholar 

  18. Guzik P, Piskorski J, Krauze T, Schneider R, Wesseling KH, Wykretowicz A, Wysocki H (2007) Correlations between the Poincaré plot and conventional heart rate variability parameters assessed during paced breathing. J Physiol Sci 57(1):63–71

    Article  PubMed  Google Scholar 

  19. Imai K, Sato H, Hori M, Kusuoka H, Ozaki H, Yokoyama H, Takeda H, Inoue M, Kamada T (1994) Vagally mediated heart rate recovery after exercise is accelerated in athletes but blunted in patients with chronic heart failure. J Am Coll Cardiol 24(6):1529–1535

    Article  CAS  PubMed  Google Scholar 

  20. Jurca R, Church TS, Morss GM, Jordan AN, Earnest CP (2004) Eight weeks of moderate-intensity exercise training increases heart rate variability in sedentary postmenopausal women. Am Heart J 147(5):e21

    Article  PubMed  Google Scholar 

  21. Kamen PW, Tonkin AM (1995) Application of the Poincare plot to heart rate variability: a new measure of functional status in heart failure. Aust N Z J Med 25(1):18–26

    Article  CAS  PubMed  Google Scholar 

  22. Kamen PW, Krum H, Tonkin AM (1996) Poincare plot of heart rate variability allows quantitative display of parasympathetic nervous activity in humans. Clin Sci (Lond) 91(2):201–208

    Article  CAS  Google Scholar 

  23. Karmakar C, Jelinek HF, Khandoker A, Tulppo M, Makikallio T, Kiviniemi A, Huikuri H, Palaniswami M (2015) Multi-lag HRV analysis discriminates disease progression of post-infarct people with no diabetes versus diabetes. In: Conference Proceedings of IEEE Engineering Medical Biology Society 2015: 2367–2370

  24. Kingsley JD, Hochgesang S, Brewer A, Buxton E, Martinson M, Heidner G (2014) Autonomic modulation in resistance-trained individuals after acute resistance exercise. Int J Sports Med 35(10):851–856

    Article  CAS  PubMed  Google Scholar 

  25. Kluttig A, Schumann B, Swenne CA, Kors JA, Kuss O, Schmidt H, Werdan K, Haerting J, Greiser KH (2010) Association of health behaviour with heart rate variability: a population-based study. BMC Cardiovasc Disord 10:58

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lerma C, Infante O, Perez-Grovas H, Jose MV (2003) Poincaré plot indexes of heart rate variability capture dynamic adaptations after haemodialysis in chronic renal failure patients. Clin Physiol Funct Imaging 23(2):72–80

    Article  PubMed  Google Scholar 

  27. Levy WC, Cerqueira MD, Harp GD, Johannessen KA, Abrass IB, Schwartz RS, Stratton JR (1998) Effect of endurance exercise training on heart rate variability at rest in healthy young and older men. Am J Cardiol 82(10):1236–1241

    Article  CAS  PubMed  Google Scholar 

  28. Lombardi F, Stein PK (2011) Origin of heart rate variability and turbulence: an appraisal of autonomic modulation of cardiovascular function. Front Physiol 2:95

    Article  PubMed  PubMed Central  Google Scholar 

  29. Madden KM, Levy WC, Stratton JK (2006) Exercise training and heart rate variability in older adult female subjects. Clin Investig Med 29(1):20–28

    Google Scholar 

  30. Malliani A, Pagani M, Lombardi F, Cerutti S (1991) Cardiovascular neural regulation explored in the frequency domain. Circulation 84(2):482–492

    Article  CAS  PubMed  Google Scholar 

  31. Mendonca GV, Pereira FD, Fernhall B (2013) Heart rate recovery and variability following combined aerobic and resistance exercise training in adults with and without Down syndrome. Res Dev Disabil 34(1):353–361

    Article  PubMed  Google Scholar 

  32. Miyata TT, Oishi S, Taniguchi Y, Kawai H, Yasaka Y, Yokoyama H (2016) Power spectral analysis of heart rate variability during the postural change from sitting to upright position reveal sympathetic hyperactivity. Eur J Heart Fail 18(S1):407

    Google Scholar 

  33. Nardelli M, Valenza G, Greco A, Lanata A, Scilingo EP (2015) Arousal recognition system based on heartbeat dynamics during auditory elicitation. In: Conference Proceedings of IEEE Engineering Medical Biology Society 2015: 6110–6113

  34. Pagani M, Lombardi F, Guzzetti S, Rimoldi O, Furlan R, Pizzinelli P, Sandrone G, Malfatto G, Dell’Orto S, Piccaluga E (1986) Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res 59(2):178–193

    Article  CAS  PubMed  Google Scholar 

  35. Panda K, Krishna P (2014) Physical exercise and cardiac autonomic activity in healthy adult men. Indian J Physiol Pharmacol 58(4):365–370

    PubMed  Google Scholar 

  36. Roy B, Ghatak S (2013) Nonlinear methods to assess changes in heart rate variability in type 2 diabetic patients. Arq Bras Cardiol 101(4):317–327

    PubMed  Google Scholar 

  37. Saboul D, Balducci P, Millet G, Pialoux V, Hautier C (2016) A pilot study on quantification of training load: the use of HRV in training practice. Eur J Sport Sci 16(2):172–181

    Article  PubMed  Google Scholar 

  38. Stoggl T, Schwarzl C, Muller EE, Nagasaki M, Stoggl J, Schonfelder M, Niebauer J (2017) Alpine skiing as winter-time high-intensity training. Med Sci Sports Exerc. doi:10.1249/MSS.0000000000001289

    Google Scholar 

  39. Sun P, Yan H, Ranadive SM, Lane AD, Kappus RM, Bunsawat K, Baynard T, Hu M, Li S, Fernhall B (2016) Autonomic recovery is delayed in Chinese compared with caucasian following treadmill exercise. PLoS ONE 11(1):e0147104

    Article  PubMed  PubMed Central  Google Scholar 

  40. Takalo R, Hytti H, Ihalainen H (2005) Tutorial on univariate autoregressive spectral analysis. J Clin Monit Comput 19(6):401–410

    Article  PubMed  Google Scholar 

  41. Tarvainen MP, Georgiadis SD, Ranta-Aho PO, Karjalainen PA (2006) Time-varying analysis of heart rate variability signals with a Kalman smoother algorithm. Physiol Meas 27(3):225–239

    Article  PubMed  Google Scholar 

  42. Task force of the European society of cardiology and the North American society of pacing and electrophysiology (1996) Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation 93(5):1043–1065

    Article  Google Scholar 

  43. Teixeira L, Ritti-Dias RM, Tinucci T, Mion Junior D, Forjaz CLdM (2011) Post-concurrent exercise hemodynamics and cardiac autonomic modulation. Eur J Appl Physiol 111(9):2069–2078

    Article  PubMed  Google Scholar 

  44. Thakre TP, Smith ML (2006) Loss of lag-response curvilinearity of indices of heart rate variability in congestive heart failure. BMC Cardiovasc Disord 6:27

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tulppo MP, Makikallio TH, Takala TE, Seppanen T, Huikuri HV (1996) Quantitative beat-to-beat analysis of heart rate dynamics during exercise. Am J Physiol 271(1 Pt 2):H244–H252

    CAS  PubMed  Google Scholar 

  46. Voss A, Fischer C, Schroeder R, Figulla HR, Goernig M (2012) Lagged segmented Poincaré plot analysis for risk stratification in patients with dilated cardiomyopathy. Med Biol Eng Comput 50(7):727–736

    Article  PubMed  Google Scholar 

  47. Weippert M, Behrens K, Rieger A, Kumar M, Behrens M (2015) Effects of breathing patterns and light exercise on linear and nonlinear heart rate variability. Appl Physiol Nutr Metab 40(8):762–768

    Article  PubMed  Google Scholar 

  48. Wessel N, Riedl M, Kurths J (2009) Is the normal heart rate “chaotic” due to respiration? Chaos 19(2):028508

    Article  PubMed  Google Scholar 

  49. Wessel N, Sidorenko L, Kraemer JF, Schoebel C, Baumann G (2016) Assessing cardiac autonomic function via heart rate variability analysis requires monitoring respiration. Europace 18(8):1280

    CAS  PubMed  Google Scholar 

  50. Zhang D, She J, Yang J, Yu M (2015) Linear and nonlinear dynamics of heart rate variability in the process of exposure to 3600 m in 10 min. Australas Phys Eng Sci Med 38(2):263–270

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Innovation Program of Shanghai Municipal Education Commission (Grant No. 14YZ091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Shi.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The study was approved by the ethics committee of University of Shanghai for Science and Technology, Shanghai, China (Ref. No. 2013-9023-14YZ091).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, P., Hu, S. & Yu, H. Recovery of heart rate variability after treadmill exercise analyzed by lagged Poincaré plot and spectral characteristics. Med Biol Eng Comput 56, 221–231 (2018). https://doi.org/10.1007/s11517-017-1682-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-017-1682-2

Keywords

Navigation