Skip to main content

Advertisement

Log in

A comparison of two Hilbert spectral analyses of heart rate variability

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The present paper compares the performance of two Hilbert spectral analyses when applied to a synthetic RR series from a nonstationary integral pulse frequency modulation model and to real RR series from a dataset of normal sinus arrhythmia. The Hilbert–Huang transformation based on empirical mode decomposition is compared to the presently introduced Hilbert–Olhede–Walden transformation based on stationary wavelet packet decomposition. The comparison gives consistent results pointing to a superior performance of the Hilbert–Olhede–Walden transformation showing 33–163 times smaller deviations when estimating the instantaneous frequency traces of the synthetic RR series. Artificial fluctuations caused by mode mixing in the Hilbert–Huang spectrum are seen in both the synthetic and real RR series. It can be concluded that the instantaneous frequencies and amplitudes estimated by the Hilbert–Huang transformation should be interpreted with caution when investigating heart rate variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. See Chap. 6 in [24] and [21, 22] for further information of the application of stationary wavelet packet transformation in the present paper.

  2. In the present paper, the discrete Hilbert transform was used according to D(t+ iD H(t= D(t) + i H D(t) where H denotes the Hilbert matrix implemented according to the hilbert.m algorithm in matlab.

  3. This step is necessary since M(t) is no longer a analytical vector by its zero coefficients for negative frequencies (see hilbert.m algorithm in matlab).

References

  1. Axelrod S, Gordon D, Ubel FA, Shannon DC, Barger AC, Cohen RJ (1981) Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat to beat cardiovascular control. Science 213:220–222

    Article  Google Scholar 

  2. Balocchi R, Meniccuci D (2004) Deriving the respiratory sinus arrhythmia from the heartbeat time series using empirical mode decomposition. Chaos Solitons Fractals 20:171–177

    Article  MATH  Google Scholar 

  3. Bayly E (1968) Spectral analysis of the pulse frequency model in the nervous system. IEEE Trans Bio Med Eng 4:257–365

    Article  Google Scholar 

  4. Bernardi L, Leuzzi S, Radaelli A, Passino C, Johnston JA, Sleight P (1994) Low-frequency spontaneous fluctuations of R–R interval and blood pressure in conscious humans: a baroreceptor or central phenomenon? Clin Sci 87:649–654

    Google Scholar 

  5. Berger R, Akselrod S, Gordon D, Cohen R (1986) An efficient algorithm for spectral analysis of heart rate variability. IEEE Trans Biomed Eng 33:900–904

    Article  Google Scholar 

  6. Boashash B (1992) Estimating and interpreting the instantaneous frequency of a signal-part 2: algorithms and applications. Proc IEEE 80:540–568

    Article  Google Scholar 

  7. Cevese A, Gulli G, Polati E, Gottin L, Grasso R (2001) Baroreflex and oscillations of heart period at 0.1 Hz studied by alpha-blockade and cross-spectral analysis in healthy humans. J Physiol 531:235–244

    Article  Google Scholar 

  8. De Boer R, Karemaker J, Strackee J (1985) Spectrum of a series of point events, generated by the integral pulse frequency modulation model. Med Biol Eng Comput 23:138–142

    Article  Google Scholar 

  9. Deering R, Kaiser JF (2005) The use of a masking signal to improve empirical mode decomposition. In Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), pp 485–488

  10. Echeverria JC, Crowe JA, Woolfson MS, Hayes-Gill BR (2001) Application of empirical mode decomposition to heart rate variability analysis. Med Biol Eng Comput 39:471–479

    Article  Google Scholar 

  11. Eckberg DL (1997) Sympathovagal balance. A critical appraisal. Circulation 96:3226–3232

    Google Scholar 

  12. Goldberger A, Amaral L, Glass L, Hausdorff J, Ivanov P, Mark R, Mietus J, Moody G, Peng C, Stanley E (2000) PhysioBank, PhysioToolkit, and PhysioNet. Components of a new research resource for complex physiological signals. Circulation 101:e215–e220

    Google Scholar 

  13. Hayano J, Taylor JA, Mukai S, Okada A, Watanabe Y, Takata K, Fujinami T (1994) Assessment of frequency shifts in R–R interval variability and respiration with complex demodulation. J Appl Physiol 77(6):2879–2888

    Google Scholar 

  14. Holland A, Aboy M. (2009) A novel recursive Fourier transform for nonuniform sampled signals: application to heart rate variability spectrum estimation. Med Biol Eng Comput (in press)

  15. Huang NE, Shen Z, Long S, Wu M, Shih H, Zheng Q, Yen N, Tung C, Liu H (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc A 454:903–995

    Article  MATH  MathSciNet  Google Scholar 

  16. Huang NE, Wu M-LC, Long SR, Shen SSP, Qu W, Gloersen P, Fan KL (2003) A confidence limit for the empirical mode decomposition and Hilbert spectral analysis. Proc R Soc A 459:2317–2345

    Article  MATH  MathSciNet  Google Scholar 

  17. Maestri R, Pinna GD, Accardo A, Allegrini P, Balocchi R, D’addio G, Ferrario M, Menicucci D, Porta A, Sassi R, Signorini MG, La Rovere MT, Cerutti S (2007) Nonlinear indices of heart rate variability in chronic heart failure patients: redundancy and comparative clinical value. J Cardiovasc Electrophysiol 18(4):425–433

    Article  Google Scholar 

  18. Malliani A, Pagani M, Montano N, Mela S (1998) Sympathovagal balance: a reappraisal. Circulation 98:2640–2642

    Google Scholar 

  19. Nakao M, Norimatsu M, Mizutani Y, Yamamoto M (1997) Spectral distortions properties of the Integral Pulse Frequency Modulation Model. IEEE Trans Biomed Eng 44:419–426

    Article  Google Scholar 

  20. Neto EPS, Custaud MA, Cejka JC, Abry P, Frutoso J, Gharib C, Flandrin P (2004) Assessment of cardiovascular autonomic control by the empirical mode decomposition. Meth Inform Med 1:60–65

    Google Scholar 

  21. Neto EPS, Abry P, Loiseau P, Cejka JC, Custaud MA, Frutoso J, Gharib C, Flandrin P (2007) Empirical mode decomposition to assess cardiovascular autonomic control in rats. Fundam Clin Pharmacol 21(5):481–496

    Article  Google Scholar 

  22. Nielsen M (2001) On the construction and frequency localization of finite orthogonal quadrature filters. J Approx Theory 108:36–52

    Article  MATH  MathSciNet  Google Scholar 

  23. Olhede S, Walden AT (2004) The Hilbert spectrum via wavelet projections. Proc R Soc A 460:955–975

    Article  MATH  MathSciNet  Google Scholar 

  24. Olhede S, Walden AT (2005) A generalized demodulation approach to time-frequency projections for multicomponent signal. Proc R Soc A 461:2159–2179

    Article  MATH  MathSciNet  Google Scholar 

  25. Percival DB, Walden AT (2000) Wavelet methods for time series analysis. Cambridge University Press, Cambridge, pp 206–253

    MATH  Google Scholar 

  26. Ponomarenko VI, Prokhorov MD, Bespyatov AB, Bodrov MB, Gridnev VI (2005) Deriving main rhythms of the human cardiovascular system from the heartbeat time series and detecting their synchronization. Chaos Solitons Fractals 23:1429–1438

    MATH  Google Scholar 

  27. Rajendra Acharya U, Paul Joseph K, Kannathal N, Lim CM, Suri JS (2006) Heart rate variability: a review. Med Biol Eng Comput 44(12):1031–1051

    Article  Google Scholar 

  28. Rilling G, Flandrin P, Goncalves P (2003) On empirical mode decompositions and its algorithms. IEEE-EURASIP NSIP, Grado, Italy

  29. Sörnmo L, Laguna P (2005) Bioelectrical signal processing in cardiac and neurological application. Elsevier Academic Press, London, pp 567–621

    Book  Google Scholar 

  30. Sleight P, Bernardi P (1998) Sympathovagal balance. Circulation 98:2640

    Google Scholar 

  31. Stein P, Kleiger E (1999) Insights from the study of the heart rate variability. Ann Rev Med 50:249–261

    Article  Google Scholar 

  32. Task Force European Society of Cardiology and North American Society of Pacing Electrophysiology (1996) Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Eur Heart J 17:354–381

    Google Scholar 

  33. Zhong Y, Bai Y, Yang B, Ju K, Shin KS, Lee MH, Jan K-M, Chon KH (2007) Autonomic nervous nonlinear interactions lead to frequency modulation between low- and high-frequency bands of the heart rate variability spectrum. Am J Physiol Integr Comp Physiol 293:R1961–R1968

    Google Scholar 

Download references

Acknowledgment

I thank professor Sofia Olhede and professor Andrew T. Walden for providing me Matlab scripts for the HOW-transformation. Their help is highly appreciated. The Matlab emd.m script for the HH-transformation is available at http://www.ens-lyon.fr/~flandrin|/software.html [26].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Espen Alexander Fürst Ihlen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ihlen, E.A.F. A comparison of two Hilbert spectral analyses of heart rate variability. Med Biol Eng Comput 47, 1035–1044 (2009). https://doi.org/10.1007/s11517-009-0500-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-009-0500-x

Keywords

Navigation