Skip to main content
Log in

Methods of Mathematical Analysis of Heart Rate Variability

  • Published:
Biomedical Engineering Aims and scope

This article reviews contemporary methods for analysis of heart rate variability. Along with classical processing methods using spectral and statistical assessments, novel approaches based on analysis of the nonlinear heart rate dynamics are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kalakutskii, L. I. and Manelis, E. S., Equipment and Methods for Clinical Monitoring [in Russian], Vysshaya Shkola, Moscow (2004).

    Google Scholar 

  2. Baevskii, R. M. and Ivanov, G. G., Heart Rhythm Variability: Theoretical Aspects and Potential Clinical Applications [in Russian], Meditsina, Moscow (2000).

    Google Scholar 

  3. Task Force of the European Society of Cardiology and North American Society of Pacing and Electrophysiology, “Heart rate variability. Standards of measurement, physiological interpretation and clinical use,” Circulation, 93, 1043-1065 (1996).

    Article  Google Scholar 

  4. Fedotov, A. A. and Akulov, S. A., Measurement of Transformation of Biomedical Signals by Clinical Monitoring Systems [in Russian], Radio i Svyaz’, Moscow (2013).

    Google Scholar 

  5. Rangayyan, R. M., Biomedical Signal Analysis [Russian translation], Fizmatlit, Moscow (2007).

    Google Scholar 

  6. Baevskii, R. M., Kirillov, O. I., and Kletskin, S. Z., Mathematical Analysis of Changes in Heart Rate in Stress [in Russian], Nauka, Moscow (1994).

    Google Scholar 

  7. Fedotov, A. A. and Akulov, S. A., Basic Biotechnical Systems Theory [in Russian], Fizmatlit, Moscow (2014).

    Google Scholar 

  8. Timo, H. “Fractal analysis and time- and frequency-domain measures of heart rate variability as predictors of mortality in patients with heart failure,” Am. J. Cardiol., 87, 178-182 (2001).

    Article  Google Scholar 

  9. Timo, H. “Prediction of sudden cardiac death by fractal analysis of heart rate variability in elderly subjects,” J. Am. Coll. Cardiol., 37, No. 5, 1395-1402 (2001).

    Article  Google Scholar 

  10. Hotta, N. et al., “Fractal analysis of heart rate variability and mortality in elderly community_dwelling people – Longitudinal investigation for the longevity and aging in Hokkaido County study,” Biomed. Pharmacother., 59, 45-48 (2005).

    Article  Google Scholar 

  11. McSharry, P. E., “Quantifying self-similarity in cardiac inter-beat interval time series,” Computers in Cardiology, 459-462 (2005).

  12. Fedotov, A. A., Akulova, A. S., and Akulov, S. A., “Uncertainties in measurement of nonlinear dynamics in heart rate variability,” IFMBE Proc. 6th European Conference of the International Federation for Medical and Biological Engineering, 45, 102-105 (2015).

    Article  Google Scholar 

  13. Akselrod, S. et al., “Power spectral analysis of heart rate fluctuations: A quantitative probe of beat-to-beat cardiovascular control,” Science, 213, 220-222 (1981).

    Article  Google Scholar 

  14. Mamii, V. I., “Spectral analysis and interpretation of the spectral components of heart rate variations,” Fiziol. Chel., 32, No. 2, 1-9 (2006).

    Google Scholar 

  15. Clifford, G. D. and Tarassenko, L. “Quantifying errors in spectral estimates of HRV due to beat replacement and resampling,” IEEE Trans. Biomed. Eng., 52, No. 4, 630-638 (2006).

    Article  Google Scholar 

  16. Moody, G. B., “Spectral analysis of heart rate without resampling,” in: Computers in Cardiology Proceedings, 715-718 (1993).

    Chapter  Google Scholar 

  17. Pomeranz, B. et al., “Assessment of autonomic function in humans by heart rate spectral analysis,” Am. J. Physiol., 248, 151-153 (1985).

    Google Scholar 

  18. Tzabazisa, A. et al., “Wavelet analysis of heart rate variability: Impact of wavelet selection,” Biomed. Signal Proc. Contr., 40, 220-225 (2018).

    Article  Google Scholar 

  19. Garcia, C. A. et al., “A new algorithm for wavelet-based heart rate variability analysis,” Biomed. Signal Proc. Contr., 8, No. 6, 542-550 (2013).

    Article  Google Scholar 

  20. Hurst, H. E., “Long-term storage capacity of reservoirs,” Trans. Am. Soc. Civil Eng., 116, 770-808 (1951).

    Google Scholar 

  21. Peng, C. K., “Mosaic organization of DNA nucleotides,” Physiol. Rev. E., 49, 1685-1689 (1994).

    Article  Google Scholar 

  22. Bauer, A. et al., “Deceleration capacity of heart rate as a predictor of mortality after myocardial infarction: Cohort study,” Lancet, 367, 1674-1681 (2006).

    Article  Google Scholar 

  23. Bauer, A. et al., “Phase-rectified signal averaging detects quasi-periodicities in non-stationary data,” Physica A, 364, 423-434 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Fedotov.

Additional information

Translated from Meditsinskaya Tekhnika, Vol. 54, No. 3, May-Jun., 2020, pp. 49-53.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedotov, A.A., Akulov, S.A. & Timchenko, E.V. Methods of Mathematical Analysis of Heart Rate Variability. Biomed Eng 54, 220–225 (2020). https://doi.org/10.1007/s10527-020-10008-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10527-020-10008-4

Navigation