Skip to main content
Log in

Multifaceted roles of ASB proteins and its pathological significance

  • Research Article
  • Published:
Frontiers in Biology

Abstract

Background

Post-translational (PT) modification in cells regulates many intracellular events like signal transduction, transcription, cell cycle, protein quality control, apoptosis and cellular development. Ubiquitination is one of the PT modifications which functions as a marker for degradation of target proteins by the proteasome and as a regulatory mechanism for several signalling pathways. The ubiquitination mechanism requires multiple enzymes, including E1, E2, and E3 ligases. Among them, E3 ligases play a major role in recognizing target proteins and an essential feature of protein homeostatic mechanisms within the cell. Most of the ASB (ankyrin repeat SOCS box) proteins function as RING family of E3 ubiquitin ligases characterized by the presence of two conserved domains N-terminal ankyrin repeat and C-terminal SOCS box domain

Methods and Results

Current studies have shown that some ASBs function as important regulators of several signalling pathways. This review gives an overview of ASB proteins on numerous cellular processes such as insulin signalling, spermatogenesis, myogenesis and in cellular development. Including various pathological situations, such as cancer, primary open-angle glaucoma, and inflammation, indicating that ASBs has important functions in both normal and pathological development

Conclusions

This article provides a precise comprehensive focus on ASBs protein structure, its biological functions, and their pathological significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albertson D G, Collins C, McCormick F, Gray J W (2003). Chromosome aberrations in solid tumors. Nat Genet, 34(4): 369–376

    Article  PubMed  CAS  Google Scholar 

  • Andresen C A, Smedegaard S, Sylvestersen K B, Svensson C, Iglesias-Gato D, Cazzamali G, Nielsen T K, Nielsen M L, Flores-Morales A (2014). Protein interaction screening for the ankyrin repeats and suppressor of cytokine signaling (SOCS) box (ASB) family identify Asb11 as a novel endoplasmic reticulum resident ubiquitin ligase. J Biol Chem, 289(4): 2043–2054

    Article  PubMed  CAS  Google Scholar 

  • Au V, Tsang F H, Man K, Fan S T, Poon R T, Lee N P (2014). Expression of ankyrin repeat and SOCS box containing 4 (ASB4) confers migration and invasion properties of hepatocellular carcinoma cells. Biosci Trends, 8(2): 101–110

    Article  PubMed  CAS  Google Scholar 

  • Baer C, Claus R, Plass C (2013). Genome-wide epigenetic regulation of miRNAs in cancer. Cancer Res, 73(2): 473–477

    Article  PubMed  CAS  Google Scholar 

  • Bello N F, Lamsoul I, Heuzé ML, Métais A, Moreaux G, Calderwood D A, Duprez D, Moog-Lutz C, Lutz P G (2009). The E3 ubiquitin ligase specificity subunit ASB2β is a novel regulator of muscle differentiation that targets filamin B to proteasomal degradation. Cell Death Differ, 16(6): 921–932

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ben-Baruch A (2006). Inflammation-associated immune suppression in cancer: the roles played by cytokines, chemokines and additional mediators. Seminars in cancer biology, Elsevier.

    Google Scholar 

  • Blenk S, Engelmann J, Weniger M, Schultz J, Dittrich M, Rosenwald A, Müller-Hermelink H K, Müller T, Dandekar T (2007). Germinal center B cell-like (GCB) and activated B cell-like (ABC) type of diffuse large B cell lymphoma (DLBCL): analysis of molecular predictors, signatures, cell cycle state and patient survival. Cancer Inform, 3: 399–420

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bode M, Wu Y, Pi X, Lockyer P, Dechyapirom W, Portbury A L, Patterson C (2011). Regulation of ASB4 expression in the immortalized murine endothelial cell lines MS1 and SVR: a role for TNF-a and oxygen. Cell Biochem Funct, 29(4): 334

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boengler K, Pipp F, Fernandez B, Richter A, Schaper W, Deindl E (2003). The ankyrin repeat containing SOCS box protein 5: a novel protein associated with arteriogenesis. Biochem Biophys Res Commun, 302(1): 17–22

    Article  PubMed  CAS  Google Scholar 

  • Bork P (1993). Hundreds of ankyrin-like repeats in functionally diverse proteins: mobile modules that cross phyla horizontally? Proteins, 17 (4): 363–374

    Article  PubMed  CAS  Google Scholar 

  • Chung A S, Guan Y J, Yuan Z L, Albina J E, Chin Y E (2005). Ankyrin repeat and SOCS box 3 (ASB3) mediates ubiquitination and degradation of tumor necrosis factor receptor II. Mol Cell Biol, 25 (11): 4716–4726

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clermont Y (1972). Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal. Physiol Rev, 52(1): 198–236

    Article  PubMed  CAS  Google Scholar 

  • Costa M L, Escaleira R, Cataldo A, Oliveira F, Mermelstein C S (2004). Desmin: molecular interactions and putative functions of the muscle intermediate filament protein. Braz J Med Biol Res, 37(12): 1819–1830

    Article  PubMed  CAS  Google Scholar 

  • Coussens L M, Werb Z (2002). Inflammation and cancer. Nature, 420 (6917): 860–867

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Croker B A, Kiu H, Nicholson S E (2008). SOCS regulation of the JAK/STAT signalling pathway. Seminars in cell & developmental biology, Elsevier.

    Book  Google Scholar 

  • Crosetto N, Bienko M, Dikic I (2006). Ubiquitin hubs in oncogenic networks. Mol Cancer Res, 4(12): 899–904

    Article  PubMed  CAS  Google Scholar 

  • da Silva M A S, Peppelenbosch M P (2003). Size matters: the emerging role of ASB proteins in controlling cell fate decisions and cancer development. Werking en functie van ASB eiwitten in de regulatie van compartimentgrootte: 15.

    Google Scholar 

  • Debrincat M A, Zhang J G, Willson T A, Silke J, Connolly L M, Simpson R J, Alexander W S, Nicola N A, Kile B T, Hilton D J (2007). Ankyrin repeat and suppressors of cytokine signaling box protein asb-9 targets creatine kinase B for degradation. J Biol Chem, 282(7): 4728–4737

    Article  PubMed  CAS  Google Scholar 

  • Diks S H, Bink R J, van de Water S, Joore J, van Rooijen C, Verbeek F J, den Hertog J, Peppelenbosch M P, Zivkovic D (2006). The novel gene asb11: a regulator of the size of the neural progenitor compartment. J Cell Biol, 174(4): 581–592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Du W Y, Lu Z H, Ye W, Fu X, Zhou Y, Kuang C M, Wu J X, Pan Z Z, Chen S, Liu R Y, Huang W L (2017). The loss-of-function mutations and down-regulated expression of ASB3 gene promote the growth and metastasis of colorectal cancer cells. Chin J Cancer, 36(1): 11

    Article  PubMed  PubMed Central  Google Scholar 

  • Fei X, Gu X, Fan S, Yang Z, Li F, Zhang C, Gong W, Mao Y, Ji C (2012). Crystal structure of Human ASB9-2 and substrate-recognition of CKB. Protein J, 31(4): 275–284

    Article  PubMed  CAS  Google Scholar 

  • Ferguson J 3rd, Wu Y (2007). Ankyrin repeat and SOCS Box Protein 4 (ASB4) is a hydroxylation substrate of factor inhibiting HIF1 {alpha} (FIH) and promotes vascular differentiation via an oxygen-dependent mechanism. Cell Signal, 19(6):1185–92

    Article  CAS  Google Scholar 

  • Ferguson J E 3rd, Wu Y, Smith K, Charles P, Powers K, Wang H, Patterson C (2007). ASB4 is a hydroxylation substrate of FIH and promotes vascular differentiation via an oxygen-dependent mechanism. Mol Cell Biol, 27(18): 6407–6419

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Foord R, Taylor I A, Sedgwick S G, Smerdon S J (1999). X-ray structural analysis of the yeast cell cycle regulator Swi6 reveals variations of the ankyrin fold and has implications for Swi6 function. Nat Struct Biol, 6(2): 157–165

    Article  PubMed  CAS  Google Scholar 

  • Groothuis T A, Dantuma N P, Neefjes J, Salomons F A (2006). Ubiquitin crosstalk connecting cellular processes. Cell Div, 1(1): 21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guibal F C, Moog-Lutz C, Smolewski P, Di Gioia Y, Darzynkiewicz Z, Lutz P G, Cayre Y E (2002). ASB-2 inhibits growth and promotes commitment in myeloid leukemia cells. J Biol Chem, 277(1): 218–224

    Article  PubMed  CAS  Google Scholar 

  • Guo J H, Saiyin H, Wei Y H, Chen S, Chen L, Bi G, Ma L J, Zhou G J, Huang C Q, Yu L, Dai L (2004). Expression of testis specific ankyrin repeat and SOCS box-containing 17 gene. Arch Androl, 50(3): 155–161

    Article  PubMed  CAS  Google Scholar 

  • Hilton D J (1999). Negative regulators of cytokine signal transduction. Cell Mol Life Sci, 55(12): 1568–1577

    Article  PubMed  CAS  Google Scholar 

  • Hilton D J, Richardson R T, Alexander W S, Viney E M, Willson T A, Sprigg N S, Starr R, Nicholson S E, Metcalf D, Nicola N A (1998). Twenty proteins containing a C-terminal SOCS box form five structural classes. Proc Natl Acad Sci USA, 95(1): 114–119

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa N, Noda Y, Tanaka Y, Niwa S (2009). Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol, 10 (10): 682–696

    Article  PubMed  CAS  Google Scholar 

  • Hotamisligil G S (2006). Inflammation and metabolic disorders. Nature, 444(7121): 860–867

    Article  PubMed  CAS  Google Scholar 

  • Jang C Y, Wong J, Coppinger J A, Seki A, Yates J R 3rd, Fang G (2008). DDA3 recruits microtubule depolymerase Kif2a to spindle poles and controls spindle dynamics and mitotic chromosome movement. J Cell Biol, 181(2): 255–267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnson D G, Walker C L (1999). Cyclins and cell cycle checkpoints. Annu Rev Pharmacol Toxicol, 39(1): 295–312

    Article  PubMed  CAS  Google Scholar 

  • Kamura T, Sato S, Haque D, Liu L, Kaelin W G Jr, Conaway R C, Conaway J W (1998). The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. Genes Dev, 12(24): 3872–3881

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Keller K E, Wirtz M K (2016). Working your SOCS off: The role of ASB10 and protein degradation pathways in glaucoma. Exp Eye Res

    Google Scholar 

  • Kile B T, Schulman B A, Alexander W S, Nicola N A, Martin H M, Hilton D J (2002). The SOCS box: a tale of destruction and degradation. Trends Biochem Sci, 27(5): 235–241

    Article  PubMed  CAS  Google Scholar 

  • Kim K S, Kim M S, Kim S K, Baek K H (2004). Murine Asb-17 expression during mouse testis development and spermatogenesis. Zygote, 12(2): 151–156

    Article  PubMed  CAS  Google Scholar 

  • Kim S K, Rhim S Y, Lee M R, Kim J S, Kim H J, Lee D R, Kim K S (2008). Stage-specific expression of ankyrin and SOCS box protein-4 (Asb-4) during spermatogenesis. Mol Cell, 25(2):317–21

    Article  CAS  Google Scholar 

  • Kohroki J, Nishiyama T, Nakamura T, Masuho Y (2005). ASB proteins interact with Cullin5 and Rbx2 to form E3 ubiquitin ligase complexes. FEBS Lett, 579(30): 6796–6802

    Article  PubMed  CAS  Google Scholar 

  • Lai K C, Chang K W, Liu C J, Lee T C (2006). Enhanced expression of ASB6 and IFIT2 in oral squamous cell carcinoma, AACR.

    Google Scholar 

  • Lamsoul I, Burande C F, Razinia Z, Houles T C, Menoret D, Baldassarre M, Erard M, Moog-Lutz C, Calderwood D A, Lutz P G (2011). Functional and structural insights into ASB2a, a novel regulator of integrin-dependent adhesion of hematopoietic cells. J Biol Chem, 286(35): 30571–30581

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee M R, Kim S K, Kim J S, Rhim S Y, Kim K S (2008). Expression of murine Asb-9 during mouse spermatogenesis. Mol Cell, 26(6):621–4

    CAS  Google Scholar 

  • Lee N P, Leung K W, Cheung N, Lam B Y, Xu M Z, Sham P C, Lau G K, Poon R T, Fan S T, Luk J M (2008). Comparative proteomic analysis of mouse livers from embryo to adult reveals an association with progression of hepatocellular carcinoma. Proteomics, 8(10): 2136–2149

    Article  PubMed  CAS  Google Scholar 

  • Li J, Mahajan A, Tsai M D (2006). Ankyrin repeat: a unique motif mediating protein-protein interactions. Biochemistry, 45(51): 15168–15178

    Article  PubMed  CAS  Google Scholar 

  • Li J Y, Chai B, Zhang W, Wu X, Zhang C, Fritze D, Xia Z, Patterson C, Mulholland M W (2011). Ankyrin repeat and SOCS box containing protein 4 (Asb-4) colocalizes with insulin receptor substrate 4 (IRS4) in the hypothalamic neurons and mediates IRS4 degradation. BMC Neurosci, 12(1): 95

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Linossi EM, Nicholson S E (2012). The SOCS box-adapting proteins for ubiquitination and proteasomal degradation. IUBMB Life, 64(4): 316–323

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Li J, Zhang F, Qin W, Yao G, He X, Xue P, Ge C, Wan D, Gu J (2003). Molecular cloning and characterization of the human ASB-8 gene encoding a novel member of ankyrin repeat and SOCS box containing protein family. Biochem Biophys Res Commun, 300(4): 972–979

    Article  PubMed  CAS  Google Scholar 

  • Lux S E, John K M, Bennett V (1990). Analysis of cDNA for human erythrocyte ankyrin indicates a repeated structure with homology to tissue-differentiation and cell-cycle control proteins. Nature 344 (6261):36–42

    Article  PubMed  CAS  Google Scholar 

  • Marcotte E M, Pellegrini M, Yeates T O, Eisenberg D (1999). A census of protein repeats. J Mol Biol, 293(1): 151–160

    Article  PubMed  CAS  Google Scholar 

  • Maxwell P H, Wiesener M S, Chang G W, Clifford S C, Vaux E C, Cockman M E, Wykoff C C, Pugh C W, Maher E R, Ratcliffe P J (1999). The tumour suppressor protein VHL targets hypoxiainducible factors for oxygen-dependent proteolysis. Nature, 399 (6733): 271–275

    Article  PubMed  CAS  Google Scholar 

  • McDaneld T G, Hannon K, Moody D E (2006). Ankyrin repeat and SOCS box protein 15 regulates protein synthesis in skeletal muscle. Am J Physiol Regul Integr Comp Physiol, 290(6): R1672–R1682

    Article  PubMed  CAS  Google Scholar 

  • McDaneld T G, Spurlock D M (2008). Ankyrin repeat and suppressor of cytokine signaling (SOCS) box-containing protein (ASB) 15 alters differentiation of mouse C2C12 myoblasts and phosphorylation of mitogen-activated protein kinase and Akt. J Anim Sci, 86(11): 2897–2902

    Article  PubMed  CAS  Google Scholar 

  • Mocellin S, Rossi C R, Pilati P, Nitti D (2005). Tumor necrosis factor, cancer and anticancer therapy. Cytokine Growth Factor Rev, 16(1): 35–53

    Article  PubMed  CAS  Google Scholar 

  • Morris L G, Veeriah S, Chan T A (2010). Genetic determinants at the interface of cancer and neurodegenerative disease. Oncogene, 29 (24): 3453–3464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mosavi L K, Cammett T J, Desrosiers D C, Peng Z Y (2004). The ankyrin repeat as molecular architecture for protein recognition. Protein Sci, 13(6): 1435–1448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mosavi L K, Minor D L Jr, Peng Z Y (2002). Consensus-derived structural determinants of the ankyrin repeat motif. Proc Natl Acad Sci USA, 99(25): 16029–16034

    Article  PubMed  CAS  Google Scholar 

  • Nie L, Zhao Y, Wu W, Yang Y Z, Wang H C, Sun X H (2011). Notchinduced Asb2 expression promotes protein ubiquitination by forming non-canonical E3 ligase complexes. Cell Res, 21(5): 754–769

    Article  PubMed  CAS  Google Scholar 

  • Okumura F, Matsuzaki M, Nakatsukasa K, Kamura T (2012).The role of elongin BC-containing ubiquitin ligases. Front Oncol, 2: 10 Pahl H L (1999). Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene, 18(49): 6853–6866

    Article  CAS  Google Scholar 

  • Plum L, Belgardt B F, Brüning J C (2006). Central insulin action in energy and glucose homeostasis. J Clin Invest, 116(7): 1761–1766

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seki A, Coppinger J A, Jang C Y, Yates J R, Fang G (2008). Bora and the kinase Aurora a cooperatively activate the kinase Plk1 and control mitotic entry. Science, 320(5883): 1655–1658

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sonnhammer E L, Von Heijne G, Krogh A (1998). A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol, 6:175–82

    PubMed  CAS  Google Scholar 

  • Tee J M, Peppelenbosch M P (2010). Anchoring skeletal muscle development and disease: the role of ankyrin repeat domain containing proteins in muscle physiology. Crit Rev Biochem Mol Biol, 45(4): 318–330

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tee J M, Sartori da Silva M A, Rygiel A M, Muncan V, Bink R, van den Brink G R, van Tijn P, Zivkovic D, Kodach L L, Guardavaccaro D, Diks S H, Peppelenbosch M P (2012). asb11 is a regulator of embryonic and adult regenerative myogenesis. Stem Cells Dev, 21 (17): 3091–3103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thomas J C, Matak-Vinkovic D, Van Molle I, Ciulli A (2013). Multimeric complexes among ankyrin-repeat and SOCS-box protein 9 (ASB9), ElonginBC, and Cullin 5: insights into the structure and assembly of ECS-type Cullin-RING E3 ubiquitin ligases. Biochemistry, 52(31): 5236–5246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thottakara T, Friedrich F W, Reischmann S, Braumann S, Schlossarek S, Krämer E, Juhr D, Schlüter H, van der Velden J, Münch J, Patten M, Eschenhagen T, Moog-Lutz C, Carrier L (2015). The E3 ubiquitin ligase Asb2β is downregulated in a mouse model of hypertrophic cardiomyopathy and targets desmin for proteasomal degradation. J Mol Cell Cardiol, 87: 214–224

    Article  PubMed  CAS  Google Scholar 

  • Tokuoka M, Miyoshi N, Hitora T, Mimori K, Tanaka F, Shibata K, Ishii H, Sekimoto M, Doki Y, Mori M (2010). Clinical significance of ASB9 in human colorectal cancer. Int J Oncol, 37(5): 1105–1111

    PubMed  CAS  Google Scholar 

  • Townley-Tilson W H, Wu Y, Ferguson J E 3rd, Patterson C (2014). The ubiquitin ligase ASB4 promotes trophoblast differentiation through the degradation of ID2. PLoS One, 9(2): e89451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Uematsu K, Okumura F, Tonogai S, Joo-Okumura A, Alemayehu D H, Nishikimi A, Fukui Y, Nakatsukasa K, Kamura T (2016). ASB7 regulates spindle dynamics and genome integrity by targeting DDA3 for proteasomal degradation. J Cell Biol, 215(1): 95–106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Kouwenhove M, Kedde M, Agami R (2011). MicroRNA regulation by RNA-binding proteins and its implications for cancer. Nat Rev Cancer, 11(9): 644–656

    Article  PubMed  CAS  Google Scholar 

  • Wajant H, Pfizenmaier K, Scheurich P (2003). Tumor necrosis factor signaling. Cell Death Differ, 10(1): 45–65

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Muntean A G, Hess J L (2012). ECSASB2 mediates MLL degradation during hematopoietic differentiation. Blood, 119(5): 1151–1161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wauman J, De Smet A S, Catteeuw D, Belsham D, Tavernier J (2008). Insulin receptor substrate 4 couples the leptin receptor to multiple signaling pathways. Mol Endocrinol, 22(4): 965–977

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilcox A, Katsanakis K D, Bheda F, Pillay T S (2004). Asb6, an adipocyte-specific ankyrin and SOCS box protein, interacts with APS to enable recruitment of elongins B and C to the insulin receptor signaling complex. J Biol Chem, 279(37): 38881–38888

    Article  PubMed  CAS  Google Scholar 

  • Wilcox G (2005). Insulin and insulin resistance. Clin Biochem Rev, 26 (2): 19–39

    PubMed  PubMed Central  Google Scholar 

  • Yang X Y, Ren C P, Wang L, Li H, Jiang C J, Zhang H B, Zhao M, Yao K T (2005). Identification of differentially expressed genes in metastatic and non-metastatic nasopharyngeal carcinoma cells by suppression subtractive hybridization. Cell Oncol, 27(4): 215–223

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yuan J H, Yang F, Chen B F, Lu Z, Huo X S, Zhou W P, Wang F, Sun S H (2011). The histone deacetylase 4/SP1/microrna-200a regulatory network contributes to aberrant histone acetylation in hepatocellular carcinoma. Hepatology, 54(6): 2025–2035

    Article  PubMed  CAS  Google Scholar 

  • Ziemin-van der Poel S, McCabe N R, Gill H J, Espinosa R 3rd, Patel Y, Harden A, Rubinelli P, Smith S D, LeBeau M M, Rowley J D (1991). Identification of a gene, MLL, that spans the breakpoint in 11q23 translocations associated with human leukemias. Proc Natl Acad Sci USA, 88(23): 10735–10739

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to greatly acknowledge VIT University. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sector. The authors wish to thank Navin Kumar B for his help in the manuscript proof reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priti Talwar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anasa, V.V., Ravanan, P. & Talwar, P. Multifaceted roles of ASB proteins and its pathological significance. Front. Biol. 13, 376–388 (2018). https://doi.org/10.1007/s11515-018-1506-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-018-1506-2

Keywords

Navigation