Skip to main content
Log in

Origin of tendon stem cells in situ

  • Review
  • Published:
Frontiers in Biology

Abstract

Background

Adult stem cells are surveillance repositories capable of supplying a renewable source of progenitors for tissue repair and regeneration to maintain tissue homeostasis throughout life. Many tissue-resident stem cells have been identified in situ, which lays the foundation for studying them in their native microenvironment, i.e. the niche. Within the musculoskeletal system, muscle stem cells have been unequivocally identified in the mouse, which have led to considerable advances in understanding their role in muscle homeostasis and regeneration. On the other hand, for bone and tendon progenitor cells, mesenchymal stem cells have been used as the main in vitro cell model as they can differentiate into osteogenic, chondrogenic and tenogenic fates. Despite considerable efforts and employment of modern tools, the in vivo origins of bone and tendon stem cells remain debated. Tendon regeneration via stem cells is understudied and deserves attention as tendon damage is noted for a bleak, time-consuming recovery and the repaired tendon seldom regains the structural integrity and strength of the native, uninjured state.

Objective

Here we review the past efforts and recent studies toward defining adult tendon stem cells and understanding tendon regeneration instead of tendon development. The focus is on adult tendon resident cells in situ and the uncertainty of their roles in regeneration.

Methods

A systematic literature search using the Pubmed search engine was conducted encompassing the seminal papers in the tendon field.

Conclusion

Investigation of tendon stem cells in situ is in its infancy mainly due to lack of necessary tools and standardized injury model. We propose a concerted effort toward establishing a comprehensive cell atlas of the tendon, making genetic tools and choosing a reliable injury model for coordinated studies among different laboratories. Increasing our basic understanding should aid future therapeutic innovations to shorten and enhance the tendon repair/regeneration process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarwal S, Loder S J, Cholok D, Peterson J, Li J, Breuler C, Cameron Brownley R, Hsin Sung H, Chung M T, Kamiya N, Li S, Zhao B, Kaartinen V, Davis T A, Qureshi A T, Schipani E, Mishina Y, Levi B (2017). Scleraxis-lineage cells contribute to ectopic bone formation in muscle and tendon. Stem Cells, 35(3): 705–710

    Article  PubMed  CAS  Google Scholar 

  • Anderson D M, Arredondo J, Hahn K, Valente G, Martin J F, Wilson-Rawls J, Rawls A (2006). Mohawk is a novel homeobox gene expressed in the developing mouse embryo. Dev Dyn, 235(3): 792–801

    Article  PubMed  CAS  Google Scholar 

  • Arble J R, Lalley A L, Dyment N A, Joshi P, Shin D G, Gooch C, Grawe B, Rowe D, Shearn J T (2016). The LG/J murine strain exhibits nearnormal tendon biomechanical properties following a full-length central patellar tendon defect. Connect Tissue Res, 57(6): 496–506

    Article  PubMed  CAS  Google Scholar 

  • Ateschrang A, Ahmad S S, Stöckle U, Schroeter S, Schenk S, Ahrend M D (2017). Recovery of ACL function after dynamic intraligamentary stabilization is resultant to restoration of ACL integrity and scar tissue formation. Knee Surg Sports Tramatol Arthrosc

    Google Scholar 

  • Bagchi R A and Czubryt M P (2012). Synergistic roles of scleraxis and Smads in the regulation of collagen 1a2 gene expression. Biochim Biophys Acta, 1823(10): 1936–1944

    Article  PubMed  CAS  Google Scholar 

  • Bajpai V K, Mistriotis P, Andreadis S T (2012). Clonal multipotency and effect of long-term in vitro expansion on differentiation potential of human hair follicle derived mesenchymal stem cells. Stem Cell Res (Amst), 8(1): 74–84

    Article  CAS  Google Scholar 

  • Baksh N, Hannon C P, Murawski C D, Smyth N A, Kennedy J G (2013). Platelet-rich plasma in tendon models: a systematic review of basic science literature. Arthroscopy, 29(3): 596–607

    Article  PubMed  Google Scholar 

  • Bao Z Z, Lakonishok M, Kaufman S, Horwitz A F (1993). Alpha 7 beta 1 integrin is a component of the myotendinous junction on skeletal muscle. J Cell Sci, 106(Pt 2): 579–589

    PubMed  CAS  Google Scholar 

  • Barker N, van Es J H, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters P J, Clevers H (2007). Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature, 449(7165): 1003–1007

    Article  PubMed  CAS  Google Scholar 

  • Beason D P, Kuntz A F, Hsu J E, Miller K S, Soslowsky L J (2012). Development and evaluation of multiple tendon injury models in the mouse. J Biomech, 45(8): 1550–1553

    Article  PubMed  PubMed Central  Google Scholar 

  • Benjamin M and Ralphs J R (1998). Fibrocartilage in tendons and ligaments–an adaptation to compressive load. J Anat, 193(4): 481–494

    Article  PubMed  PubMed Central  Google Scholar 

  • Berthet E, Chen C, Butcher K, Schneider R A, Alliston T, Amirtharajah M (2013). Smad3 binds Scleraxis and Mohawk and regulates tendon matrix organization. J Orthop Res, 31(9): 1475–1483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bi Y, Ehirchiou D, Kilts T M, Inkson C A, Embree M C, Sonoyama W, Li L, Leet A I, Seo B M, Zhang L, Shi S, Young M F (2007). Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med, 13(10): 1219–1227

    Article  PubMed  CAS  Google Scholar 

  • Brent A E, Schweitzer R, Tabin C J (2003). A somitic compartment of tendon progenitors. Cell, 113(2): 235–248

    Article  PubMed  CAS  Google Scholar 

  • Brent A E, Tabin C J (2004). FGF acts directly on the somitic tendon progenitors through the Ets transcription factors Pea3 and Erm to regulate scleraxis expression. Development, 131(16): 3885–3896

    Article  PubMed  CAS  Google Scholar 

  • Buschmann J, Bürgisser G M (2017). Biomechanics on tendons and ligaments. Zurich: Elsevier, Print

    Google Scholar 

  • Cairns J (1975). Mutation selection and the natural history of cancer. Nature, 255(5505): 197–200

    Article  PubMed  CAS  Google Scholar 

  • Calve S, Dennis R G, Kosnik P E 2nd, Baar K, Grosh K, Arruda E M (2004). Engineering of functional tendon. Tissue Eng, 10(5-6): 755–761

    Article  PubMed  Google Scholar 

  • Chan B P, Fu S, Qin L, Lee K, Rolf C G, Chan K (2000). Effects of basic fibroblast growth factor (bFGF) on early stages of tendon healing: a rat patellar tendon model. Acta Orthop Scand, 71(5): 513–518

    Article  PubMed  CAS  Google Scholar 

  • Chang J, Thunder R, Most D, Longaker M T, Lineaweaver W C (2000). Studies in flexor tendon wound healing: neutralizing antibody to TGF-beta1 increases postoperative range of motion. Plast Reconstr Surg, 105(1): 148–155

    Article  PubMed  CAS  Google Scholar 

  • Charvet B, Ruggiero F, Le Guellec D (2012). The development of the myotendinous junction. A review. Muscles Ligaments Tendons J, 2 (2): 53–63

    PubMed  Google Scholar 

  • Chien C, Pryce B, Tufa S F, Keene D R, Huang A H (2017). Optimizing a 3D model system for molecular manipulation of tenogenesis. Connect Tissue Res, 22): 1–14

    Article  CAS  Google Scholar 

  • Covas D T, Panepucci R A, Fontes A M, Silva W A Jr, Orellana M D, Freitas M C, Neder L, Santos A R, Peres L C, Jamur M C, Zago M A (2008). Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146 + perivascular cells and fibroblasts. Exp Hematol, 36(5): 642–654

    Article  PubMed  CAS  Google Scholar 

  • Cserjesi P, Brown D, Ligon K L, Lyons G E, Copeland N G, Gilbert D J, Jenkins N A, Olson E N (1995). Scleraxis: a basic helix-loop-helix protein that prefigures skeletal formation during mouse embryogenesis. Development, 121(4): 1099–1110

    PubMed  CAS  Google Scholar 

  • Dahlgren L A, van der MeulenMC, Bertram J E, Starrak G S, Nixon A J (2002). Insulin-like growth factor-I improves cellular and molecular aspects of healing in a collagenase-induced model of flexor tendinitis. J Orthop Res, 20(5): 910–919

    Article  PubMed  CAS  Google Scholar 

  • Dorrell C, Erker L, Schug J, Kopp J L, Canaday P S, Fox A J, Smirnova O, Duncan A W, Finegold M J, Sander M, Kaestner K H, Grompe M (2011). Prospective isolation of a bipotential clonogenic liver progenitor cell in adult mice. Genes Dev, 25(11): 1193–1203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dyment N A, Breidenbach A P, Schwartz A G, Russell R P, Aschbacher-Smith L, Liu H, Hagiwara Y, Jiang R, Thomopoulos S, Butler D L, Rowe D W (2015). Gdf5 progenitors give rise to fibrocartilage cells that mineralize via hedgehog signaling to form the zonal enthesis. Dev Biol, 405(1): 96–107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dyment N A, Hagiwara Y, Matthews B G, Li Y, Kalajzic I, Rowe D W (2014). Lineage tracing of resident tendon progenitor cells during growth and natural healing. PLoS One, 9(4): e96113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Edom-Vovard F, Duprez D (2004). Signals regulating tendon formation during chick embryonic development. Dev Dyn, 229(3): 449–457

    Article  PubMed  CAS  Google Scholar 

  • Elliott D H (1965). Structure and Function of Mammalian Tendon. Biol Rev Camb Philos Soc, 40(3): 392–421

    Article  PubMed  CAS  Google Scholar 

  • Feil R, Wagner J, Metzger D, Chambon P (1997). Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun, 237(3): 752–757

    Article  PubMed  CAS  Google Scholar 

  • Feil R, Brocard J, Mascrez B, LeMeur M, Metzger D, Chambon P (1996). Ligand-activated site-specific recombination in mice. PNAS 93): 10887–10890

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Franchi M, Trirè A, Quaranta M, Orsini E, Ottani V (2007). Collagen structure of tendon relates to function. Sci World J, 7): 404–420

    Article  CAS  Google Scholar 

  • Frolova E G, Drazba J, Krukovets I, Kostenko V, Blech L, Harry C, Vasanji A, Drumm C, Sul P, Jenniskens G J, Plow E F, Stenina-Adognravi O (2014). Control of organization and function of muscle and tendon by thrombospondin-4. Matrix Biol, 37): 35–48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fukui N, Katsuragawa Y, Sakai H, Oda H, Nakamura K (1998). Effect of local application of basic fibroblast growth factor on ligament healing in rabbits. Rev Rhum Engl Ed, 65(6): 406–414

    PubMed  CAS  Google Scholar 

  • Gaut L, Duprez D (2016). Tendon development and diseases. Dev Biol, 5(1): 5–23

    CAS  Google Scholar 

  • Gaut L, Robert N, Delalande A, Bonnin M A, Pichon C, Duprez D (2016). EGR1 regulates transcription downstream of mechanical signals during tendon formation and healing. PLoS One, 11(11): e0166237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gjorevski N, Sachs N, Manfrin A, Giger S, Bragina M E, Ordóñez-Morán P, Clevers H, Lutolf M P (2016). Designer matrices for intestinal stem cell and organoid culture. Nature, 539(7630): 560–564

    Article  PubMed  CAS  Google Scholar 

  • Grcevic D, Pejda S, Matthews B G, Repic D, Wang L, Li H, Kronenberg M S, Jiang X, Maye P, Adams D J, Rowe D W, Aguila H L, Kalajzic I (2012). In vivo fate mapping identifies mesenchymal progenitor cells. Stem Cells, 30(2): 187–196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guerquin MJ, Charvet B, Nourissat G, Havis E, Ronsin O, Bonnin MA, Ruggiu M, Olivera-Martinez I, Robert N, Lu Y, Kadler K E, Baumberger T, Doursounian L, Berenbaum F, Duprez D (2013). Transcription factor EGR1 directs tendon differentiation and promotes tendon repair. J Clin Invest, 123(8): 3564–3576

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gumucio J P, Phan A C, Ruehlmann D G, Noah A C, Mendias C L (2014). Synergist ablation induces rapid tendon growth through the synthesis of a neotendon matrix. J Appl Physiol (1985), 117(11): 1287–1291

    Article  Google Scholar 

  • Hall T E, Bryson-Richardson R J, Berger S, Jacoby A S, Cole N J, Hollway G E, Berger J, Currie P D (2007). The zebrafish candyfloss mutant implicates extracellular matrix adhesion failure in laminin 2-deficient congenital muscular dystrophy. Proc Natl Acad Sci USA, 104(17): 7092–7

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hexter A T, Pendegrass C, Haddad F, Blunn G (2017). Demineralized Bone Matrix to Augment Tendon-Bone Healing: A Systematic Review. Orthop J Sports Med, 5(10): 2325967117734517

    Article  PubMed  PubMed Central  Google Scholar 

  • Hildebrand K A, Woo S L, Smith D W, Allen C R, Deie M, Taylor B J, Schmidt C C (1998). The effects of platelet-derived growth factor-BB on healing of the rabbit medial collateral ligament. An in vivo study. Am J Sports Med, 26(4): 549–554

    Article  CAS  Google Scholar 

  • Hoffman P N, Cleveland D W (1988). Neurofilament and tubulin expreßsion recapitulates the developmental program during axonal regeneration: induction of a specific β-tubulin isotype. Proc Natl Acad Sci USA, 85(12): 4530–4533

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Howell K, Chien C, Bell R, Laudier D, Tufa S F, Keene D R, Andarawis-Puri N, Huang A H (2017) Novel model of tendon regeneration reveals distinct cell mechanisms underlying regenerative and fibrotic tendon healing. Sci Rep, 7: 45238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang A H, Lu H H, Schweitzer R (2015). Molecular regulation of tendon cell fate during development. J Orthop Res, 33(6): 800–812

    Article  PubMed  Google Scholar 

  • Ibraghimov-Beskrovnaya O, Ervasti J M, Leveille C J, Slaughter C A, Sernett S W, Campbell K P (1992). Primary structure of dystrophinassociated glycoproteins linking dystrophin to the extracellular matrix. Nature, 355(6362): 696–702

    Article  PubMed  CAS  Google Scholar 

  • Imokawa Y, Yoshizato K (1997). Expression of Sonic hedgehog gene in regenerating newt limb blastemas recapitulates that in developing limb buds. Proc Natl Acad Sci USA, 94(17): 9159–9164

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ito Y, Toriuchi N, Yoshitaka T, Ueno-Kudoh H, Sato T, Yokoyama S, Nishida K, Akimoto T, Takahashi M, Miyaki S, Asahara H (2010). The Mohawk homeobox gene is a critical regulator of tendon differentiation. Proc Natl Acad Sci USA, 107(23): 10538–10542

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ivkovic S, Yoon B S, Popoff S N, Safadi F F, Libuda D E, Stephenson R C, Daluiski A, Lyons K M (2003). Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development, 130(12): 2779–2791

    Article  PubMed  CAS  Google Scholar 

  • Kajikawa Y, Morihara T, Sakamoto H, Matsuda K, Oshima Y, Yoshida A, Nagae M, Arai Y, Kawata M, Kubo T (2008). Platelet-rich plasma enhances the initial mobilization of circulation-derived cells for tendon healing. J Cell Physiol, 215(3): 837–845

    Article  PubMed  CAS  Google Scholar 

  • Kaux J F, Janssen L, Drion P, Nusgens B, Libertiaux V, Pascon F, Heyeres A, Hoffmann A, Lambert C, Le Goff C, Denoël V, Defraigne J O, Rickert M, Crielaard J M, Colige A (2014). Vascular Endothelial Growth Factor-111 (VEGF-111) and tendon healing: preliminary results in a rat model of tendon injury. Muscles Ligaments Tendons J, 4(1): 24–28

    PubMed  PubMed Central  Google Scholar 

  • Kirkendall D T and Garrett W E (1997). Function and biomechanics of tendons. Scand J Med Sci Sports, 7(2): 62–66

    Article  PubMed  CAS  Google Scholar 

  • Kretzschmar K and Watt F M (2012). Lineage tracing. Cell, 148(1-2): 33–45

    Article  PubMed  CAS  Google Scholar 

  • Kurth T B, Dell’Accio F, Crouch V, Augello A, Sharpe P T, De Bari C (2011). Functional mesenchymal stem cell niches in adult mouse knee joint synovium in vivo. Arthritis Rheum, 63(5): 1289–1300

    Article  PubMed  Google Scholar 

  • Kurtz C A, Loebig T G, Anderson D D, DeMeo P J, Campbell P G (1999). Insulin-like growth factor I accelerates functional recovery from Achilles tendon injury in a rat model. Am J Sports Med, 27(3): 363–369

    Article  PubMed  CAS  Google Scholar 

  • Lalley A L, Dyment N A, Kazemi N, Kenter K, Gooch C, Rowe D W, Butler D L, Shearn J T (2015). Improved biomechanical and biological outcomes in the MRL/MpJ murine strain following a fulllength patellar tendon injury. J Orthop Res, 33(11): 1693–1703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee C H, Lee F Y, Tarafder S, Kao K, Jun Y, Yang G, Mao J J (2015). Harnessing endogenous stem/progenitor cells for tendon regeneration. J Clin Invest, 125(7): 2690–2701

    Article  PubMed  PubMed Central  Google Scholar 

  • Léjard V, Blais F, Guerquin M J, Bonnet A, Bonnin M A, Havis E, Malbouyres M, Bidaud C B, Maro G, Gilardi-Hebenstreit P, Rossert J, Ruggiero F, Duprez D (2011). EGR1 and EGR2 involvement in vertebrate tendon differentiation. J Biol Chem, 286(7): 5855–5867

    Article  PubMed  CAS  Google Scholar 

  • Léjard V, Brideau G, Blais F, Salingcarnboriboon R, Wagner G, Roehrl MH, Noda M, Duprez D, Houillier P, Rossert J (2007). Scleraxis and NFATc regulate the expression of the pro-a1(I) collagen gene in tendon fibroblasts. J Biol Chem, 282(24): 17665–17675

    Article  PubMed  CAS  Google Scholar 

  • Leong D J, Sun H B (2016). Mesenchymal stem cells in tendon repair and regeneration: basic understanding and translational challenges. Ann N Y Acad Sci, 1383(1): 88–96

    Article  PubMed  Google Scholar 

  • Letson A K, Dahners L E (1994). The effect of combinations of growth factors on ligament healing. Clin Orthop Relat Res, (308): 207–212

    Google Scholar 

  • Levay A K, Peacock J D, Lu Y, Koch M, Hinton R B Jr, Kadler K E, Lincoln J (2008). Scleraxis is required for cell lineage differentiation and extracellular matrix remodeling during murine heart valve formation in vivo. Circ Res, 103(9): 948–956

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li L and Clevers H (2010). Coexistence of quiescent and active adult stem cells in mammals. Science, 327(5965): 542–545

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin T W, Cardenas L, Glaser D L, Soslowsky L J (2006). Tendon healing in interleukin-4 and interleukin-6 knockout mice. J Biomech, 39(1): 61–69

    Article  PubMed  Google Scholar 

  • Liu C F, Aschbacher-Smith L, Barthelery N J, Dyment N, Butler D, and Wylie C (2012). Spatial and temporal expression of molecular markers and cell signals during normal development of the mouse patellar tendon. Tissue Eng Part A, 18(5-6): 598–608

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Xu J, Liu C F, Lan Y, Wylie C, Jiang R (2015). Whole transcriptome expression profiling of mouse limb tendon development by using RNA-seq. J Orthop Res, 33(6): 840–848

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu R, Zhang Z, Xu Y (2010). Downregulation of nucleostemin causes G1 cell cycle arrest via a p53-independent pathway in prostate cancer PC-3 cells. Urol Int, 85(2): 221–227

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Martin L J (2003). Olfactory bulb core is a rich source of neural progenitor and stem cells in adult rodent and human. J Comp Neurol, 459(4): 368–391

    Article  PubMed  Google Scholar 

  • Lu H H, Thomopoulos S (2013). Functional attachment of soft tissues to bone: development, healing, and tissue engineering. Annu Rev Biomed Eng, 15(1): 201–226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lui P, Zhang P, Chan K, Qin L (2010). Biology and augmentation of tendon-bone insertion repair. J Orthop Surg, 5(1): 59

    Article  Google Scholar 

  • Lyras D N, Kazakos K, Verettas D, Botaitis S, Agrogiannis G, Kokka A, Pitiakoudis M, Kotzakaris A (2009). The effect of platelet-rich plasma gel in the early phase of patellar tendon healing. Arch Orthop Trauma Surg, 129(11): 1577–1582

    Article  PubMed  Google Scholar 

  • Maeda T, Sakabe T, Sunaga A, Sakai K, Rivera A L, Keene D R, Sasaki T, Stavnezer E, Iannotti J, Schweitzer R, Ilic D, Baskaran H, Sakai T (2011). Conversion of mechanical force into TGF-ß-mediated biochemical signals. Curr Biol, 21(11): 933–941

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mendias C L, Gumucio J P, Bakhurin K I, Lynch E B, Brooks S V (2012). Physiological loading of tendons induces scleraxis expression in epitenon fibroblasts. J Orthop Res, 30(4): 606–612

    Article  PubMed  CAS  Google Scholar 

  • Miosge N, Klenczar C, Herken R, Willem M, Mayer U (1999). Organization of the myotendinous junction is dependent on the presence of alpha7beta1 integrin. Lab Invest, 79(12): 1591–1599

    PubMed  CAS  Google Scholar 

  • Molloy T, Wang Y, Murrell G (2003). The roles of growth factors in tendon and ligament healing. Sports Med, 33(5): 381–394

    Article  PubMed  Google Scholar 

  • Murchison N D, Price B A, Conner D A, Keene D R, Olson E N, Tabin C J, Schweitzer R (2007). Regulation of tendon differentiation by scleraxis distinguishes force-transmitting tendons from muscleanchoring tendons. Development, 134): 2697–2708

    Article  PubMed  CAS  Google Scholar 

  • Paxton J Z, Donnelly K, Keatch R P, Baar K (2009). Engineering the bone-ligament interface using polyethylene glycol diacrylate incorporated with hydroxyapatite. Tissue Eng Part A, 15(6): 1201–1209

    Article  PubMed  CAS  Google Scholar 

  • Paxton J Z, Grover L M, Baar K (2010). Engineering an in vitro model of a functional ligament from bone to bone. Tissue Eng Part A, 16(11): 3515–3525

    Article  PubMed  CAS  Google Scholar 

  • Perez A V, Perrine M, Brainard N, Vogel K G (2003). Scleraxis (Scx) directs lacZ expression in tendon of transgenic mice. Mech Dev, 120 (10): 1153–1163

    Article  PubMed  CAS  Google Scholar 

  • Petersen J R, Agarwal S, Brownley R C, Loder S J, Ranganathan K, Cederna P S, Mishina Y, Wang S C, Levi B (2015). Direct mouse trauma/burn model for heterotopic ossification. J Vis Exp (102): 52880

    Google Scholar 

  • Petersen W, Fink C, Kopf S (2017). Return to sports after ACL reconstruction: a paradigm shift from time to function. Knee Surg Sports Traumatol Arthrosc, 25(5): 1353–1355

    Article  PubMed  Google Scholar 

  • Potten C S, Hendry J H (1975). Differential regeneration of intestinal proliferative cells and cryptogenic cells after irradiation. Int J Radiat Biol Relat Stud Phys Chem Med, 27(5): 413–424

    Article  PubMed  CAS  Google Scholar 

  • Pryce B A, Brent A E, Murchison N D, Tabin C J, Schweitzer R (2007). Generation of transgenic tendon reporters, ScxGFP and ScxAP, using regulatory elements of the scleraxis gene. Dev Dyn, 236(6): 1677–1682

    Article  PubMed  CAS  Google Scholar 

  • Pryce B A, Watson S S, Murchison N D, Staverosky J A, Dünker N, Schweitzer R (2009). Recruitment and maintenance of tendon progenitors by TGFbeta signaling are essential for tendon formation. Development, 136(8): 1351–1361

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rees S G, Waggett A D, Kerr B C, Probert J, Gealy E C, Dent C M, Caterson B, Hughes C E (2009). Immunolocalisation and expression of keratocan in tendon. Osteoarthritis Cartilage, 17(2): 276–279

    Article  PubMed  CAS  Google Scholar 

  • Richardson S H, Starborg T, Lu Y, Humphries S M, Meadows R S, Kadler K E (2007). Tendon development requires regulation of cell condensation and cell shape via cadherin-11-mediated cell-cell junctions. Mol Cell Biol, 27(17): 6218–6228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rickert M, Jung M, Adiyaman M, Richter W, and Simank H G (2001). A growth and differentiation factor-5 (GDF-5)-coated suture stimulates tendon healing in an Achilles tendon model in rats. Growth Factors, 19(2): 115–126

    Article  PubMed  CAS  Google Scholar 

  • Rountree R B, Schoor M, Chen H, Marks M E, Harley V, Mishina Y, Kingsley D M (2004). BMP receptor signaling is required for postnatal maintenance of articular cartilage. PLoS Biol, 2(11): e355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rubio-Azpeitia E, Sánchez P, Delgado D, Andia I (2015). Threedimensional platelet rich plasma hydrogel model to study early tendon healing. Cells Tissues Organs, 200(6): 394–404

    Article  PubMed  CAS  Google Scholar 

  • Runesson E, Ackermann P, Brisby H, Karlsson J, Eriksson B I (2013). Detection of slow-cycling and stem/progenitor cells in different regions of rat Achilles tendon: response to treadmill exercise. Knee Surg Sports Traumatol Arthrosc, 21(7): 1694–1703

    Article  PubMed  Google Scholar 

  • Runesson E, Ackermann P, Karlsson J, Eriksson B I (2015). Nucleostemin-and Oct 3/4-positive stem/progenitor cells exhibit disparate anatomical and temporal expression during rat Achilles tendon healing. BMC Musculoskelet Disord, 16(212): 1

    Google Scholar 

  • Sato T, Vries R G, Snippert H J, van de Wetering M, Barker N, Stange D E, van Es J H, Abo A, Kujala P, Peters P J, Clevers H (2009). Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature, 459(7244): 262–265

    Article  PubMed  CAS  Google Scholar 

  • Schwartz A G, Galatz L M, Thomopoulos S (2017). Enthesis regeneration: a role for Gli1 + progenitor cells. Development, 144 (7): 1159–1164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schwartz Y, Viukov S, Krief S, Zelzer E (2016). Joint development involves a continuous influx of Gdf5-positive cells. Cell Reports, 15 (12): 2577–2587

    Article  CAS  Google Scholar 

  • Schweitzer R, Chyung J H, Murtaugh L C, Brent A E, Rosen V, Olson E N, Lassar A, Tabin C J (2001). Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments. Development, 128(19): 3855–3866

    PubMed  CAS  Google Scholar 

  • Shah R R, Nerurkar N L, Wang C C, Galloway J L (2015). Tensile properties of craniofacial tendons in the mature and aged zebrafish. J Orthop Res, 33(6): 867–873

    Article  PubMed  PubMed Central  Google Scholar 

  • Shih I M (1999). The role of CD146 (Mel-CAM) in biology and pathology. J Pathol, 189(1): 4–11

    Article  PubMed  CAS  Google Scholar 

  • Shukunami C, Takimoto A, Oro M, Hiraki Y (2006). Scleraxis positively regulates the expression of tenomodulin, a differentiation marker of tenocytes. Dev Biol, 298(1): 234–247

    Article  PubMed  CAS  Google Scholar 

  • Snippert H J, van der Flier L G, Sato T, van Es J H, van den Born M, Kroon-Veenboer C, Barker N, Klein A M, van Rheenen J, Simons B D, Clevers H (2010). Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell, 143(1): 134–144

    Article  PubMed  CAS  Google Scholar 

  • Soriano P (1999). Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet, 21(1): 70–71

    Article  PubMed  CAS  Google Scholar 

  • Starborg T, Kalson N S, Lu Y, Mironov A, Cootes T F, Holmes D F, Kadler K E (2013). Using transmission electron microscopy and 3View to determine collagen fibril size and three-dimensional organization. Nat Protoc, 8(7): 1433–1448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Staverosky J A, Pryce B A, Watson S S, Schweitzer R (2009). Tubulin polymerization-promoting protein family member 3, Tppp3, is a specific marker of the differentiating tendon sheath and synovial joints. Dev Dyn, 238(3): 685–692

    Article  PubMed  CAS  Google Scholar 

  • Subramanian A and Schilling T F (2014). Thrombospondin-4 controls matrix assembly during development and repair of myotendinous junctions. eLife, 3: e02372

    Article  PubMed Central  CAS  Google Scholar 

  • Subramanian A and Schilling T F (2015). Tendon development and musculoskeletal assembly: emerging roles for the extracellular matrix. Development, 142(24): 4191–4204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Subramanian A, Wayburn B, Bunch T, Volk T (2007). Thrombospondinmediated adhesion is essential for the formation of the myotendinous junction in Drosophila. Development, 134(7): 1269–1278

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto Y, Takimoto A, Hiraki Y, Shukunami C (2013). Generation and characterization of ScxCre transgenic mice. Genesis, 51(4): 275–283

    Article  PubMed  CAS  Google Scholar 

  • Sundar S, Pendegrass C J, Blunn G W (2009). Tendon bone healing can be enhanced by demineralized bone matrix: a functional and histological study. J Biomed Mater Res B Appl Biomater, 88B(1): 115–122

    Article  CAS  Google Scholar 

  • Tan Q, Lui P P Y, Lee Y W (2013). In vivo identity of tendon stem cells and the roles of stem cells in tendon healing. Stem Cells Dev, 22(23): 3128–3140

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomopoulos S, Williams G R, Gimbel J A, Favata M, Soslowsky L J (2003). Variation of biomechanical, structural, and compositional properties along the tendon to bone insertion site. J Orthop Res, 21 (3): 413–419

    Article  PubMed  Google Scholar 

  • Tidball J G, Lin C (1989). Structural changes at the myogenic cell surface during the formation of myotendinous junctions. Cell Tissue Res, 257(1): 77–84

    Article  PubMed  CAS  Google Scholar 

  • Urdzikova L M, Sedlacek R, Suchy T, Amemori T, Ruzicka J, Lesny P, Havlas V, Sykova E, Jendelova P (2014). Human multipotent mesenchymal stem cells improve healing after collagenase tendon injury in the rat. Biomed Eng Online, 13(42): 1–15

    Google Scholar 

  • Veronesi F, Salamanna F, Tschon M, Maglio M, Nicoli Aldini N, Fini M (2017). Mesenchymal stem cells for tendon healing: what is on the horizon? J Tissue Eng Regen Med, 11(11): 3202–3219

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Zhang X, Huang H, Xia Y, Yao Y, Mak A F, Yung P S, Chan K M, Wang L, Zhang C, Huang Y, Mak K K (2017). Osteocalcin expressing cells from tendon sheaths in mice contribute to tendon repair by activating Hedgehog signaling. eLife, 6: e30474

    Article  PubMed  PubMed Central  Google Scholar 

  • Watson S S, Riordan T J, Pryce B A, Schweitzer R (2009). Tendons and muscles of the mouse forelimb during embryonic development. Dev Dyn, 238(3): 693–700

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolfman N M, Hattersley G, Cox K, Celeste A J, Nelson R, Yamaji N, Dube J L, DiBlasio-Smith E, Nove J, Song J J, Wozney J M, Rosen V (1997). Ectopic induction of tendon and ligament in rats by growth and differentiation factors 5, 6, and 7, members of the TGF-beta gene family. J Clin Invest, 100(2): 321–330

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu Y, Wang Z, Ying Hsi Fuh J, San Wong Y, Wang W, San Thian E (2017). Direct E-jet printing of three-dimensional fibrous scaffold for tendon tissue engineering. J Biomed Mater Res B Appl Biomater, 105(3): 616–627

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Wong Y S, Fuh J Y H (2017). Degradation behaviors of geometric cues and mechanical properties in a 3D scaffold for tendon repair. J Biomed Mater Res A, 105(4): 1138–1149

    Article  PubMed  CAS  Google Scholar 

  • Yin H, Yan Z, Bauer R J, Peng J, Schieker M, Nerlich M, Docheva D (2018). Functionalized thermosensitive hydrogel combined with tendon stem/progenitor cells as injectable cell delivery carrier for tendon tissue engineering. Biomed Mater, 13(3): 034107

    Article  PubMed  Google Scholar 

  • Yoshimoto Y, Takimoto A, Watanabe H, Hiraki Y, Kondoh G, Shukunami C (2017). Scleraxis is required for maturation of tissue domains for proper integration of the musculoskeletal system. Sci Rep, 7: 1–16

    Article  CAS  Google Scholar 

  • Zampeli F, Terzidis I, Espregueiera-Mendes J, Georgoulis J D, Bernard M, Pappas E, Georgoulis A D (2017). Restoring tibiofemoral alignment during ACL reconstruction results in better knee biomechanics. Knee Surg Sports Traumatol Arthrosc, 25(6): 1367–1374

    Google Scholar 

  • Zhang J and Wang J H C (2010). Characterization of differential properties of rabbit tendon stem cells and tenocytes. BMC Musculoskelet Disord, 11(10): 1

    CAS  Google Scholar 

  • Zhang Y, Kao W W Y, Hayashi Y, Zhang L, Call M, Dong F, Yuan Y, Zhang J, Wang Y C, Yuka O, Shiraishi A, Liu C Y (2017). Generation and characterization of a novel mouse line, Keratocan-rtTA (KeraRT), for corneal stroma and tendon research. Invest Ophthalmol Vis Sci, 58(11): 4800–4808

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zheng G X Y, Terry J M, Belgrader P, Ryvkin P, Bent Z W, Wilson R, Ziraldo S B, Wheeler T D, McDermott G P, Zhu J, Gregory M T, Shuga J, Montesclaros L, Underwood J G, Masquelier D A, Nishimura S Y, Schnall-Levin M, Wyatt P W, Hindson C M, Bharadwaj R, Wong A, Ness K D, Beppu L W, Deeg H J, McFarland C, Loeb K R, Valente W J, Ericson N G, Stevens E A, Radich J P, Mikkelsen T S, Hindson B J, Bielas J H (2017). Massively parallel digital transcriptional profiling of single cells. Nat Commun, 8: 1–12

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen-Ming Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harvey, T., Fan, CM. Origin of tendon stem cells in situ. Front. Biol. 13, 263–276 (2018). https://doi.org/10.1007/s11515-018-1504-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-018-1504-4

Keywords

Navigation