Skip to main content
Log in

CBP/p300: intramolecular and intermolecular regulations

  • Review
  • Published:
Frontiers in Biology

Abstract

Background

CREB binding protein (CBP) and its close paralogue p300 are transcriptional coactivators with intrinsic acetyltransferase activity. Both CBP/p300 play critical roles in development and diseases. The enzymatic and biological functions of CBP/p300 are tightly regulated by themselves and by external factors. However, a comprehensive up-to-date review of the intramolecular and intermolecular regulations is lacking.

Objective

To summarize the molecular mechanisms regulating CBP/p300s functions.

Methods

A systematic literature search was conducted using the PubMed (https://doi.org/www.ncbi.nlm.nih.gov/pubmed/) for literatures published during 1985–2018. Keywords “CBP regulation” or “p300 regulation” were used for the search.

Results

The functions of CBP/p300, especially their acetyltransferase activity and chromatin association, are regulated both intramolecularly by their autoinhibitory loop (AIL), bromodomain, and PHD-RING region and intermolecularly by their interacting partners. The intramolecular mechanisms equip CBP/p300 with the capability of self-regulation while the intermolecular mechanisms allow them to respond to various cell signaling pathways.

Conclusion

Investigations into those regulation mechanisms are crucial to our understanding of CBP/p300s role in development and pathogenesis. Pharmacological interventions targeting these regulatory mechanisms have therapeutic potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arany Z, Sellers W R, Livingston D M, Eckner R (1994). E1Aassociated p300 and CREB-associated CBP belong to a conserved family of coactivators. Cell, 77(6): 799–800

    Article  PubMed  CAS  Google Scholar 

  • Bannister A J, Kouzarides T (1996). The CBP co-activator is a histone acetyltransferase. Nature, 384(6610): 641–643

    Article  PubMed  CAS  Google Scholar 

  • Berk A J (2005). Recent lessons in gene expression, cell cycle control, and cell biology from adenovirus. Oncogene, 24(52): 7673–7685

    Article  PubMed  CAS  Google Scholar 

  • Best J L, Amezcua C A, Mayr B, Flechner L, Murawsky C M, Emerson B, Zor T, Gardner K H, Montminy M (2004). Identification of small-molecule antagonists that inhibit an activator: coactivator interaction. Proc Natl Acad Sci USA, 101(51): 17622–17627

    Article  PubMed  CAS  Google Scholar 

  • Black J C, Choi J E, Lombardo S R, Carey M (2006). A mechanism for coordinating chromatin modification and preinitiation complex assembly. Mol Cell, 23(6): 809–818

    Article  PubMed  CAS  Google Scholar 

  • Block K M, Wang H, Szabó L Z, Polaske NW, Henchey L K, Dubey R, Kushal S, László C F, Makhoul J, Song Z, Meuillet E J, Olenyuk B Z (2009). Direct inhibition of hypoxia-inducible transcription factor complex with designed dimeric epidithiodiketopiperazine. J Am Chem Soc, 131(50): 18078–18088

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bose D A, Donahue G, Reinberg D, Shiekhattar R, Bonasio R, Berger S L (2017). RNA Binding to CBP Stimulates Histone Acetylation and Transcription. Cell 168, 135–149 e122

    Google Scholar 

  • Bowers E M, Yan G, Mukherjee C, Orry A, Wang L, Holbert M A, Crump N T, Hazzalin C A, Liszczak G, Yuan H, Larocca C, Saldanha S A, Abagyan R, Sun Y, Meyers D J, Marmorstein R, Mahadevan L C, Alani R M, Cole P A (2010). Virtual ligand screening of the p300/CBP histone acetyltransferase: identification of a selective small molecule inhibitor. Chem Biol, 17(5): 471–482

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ceschin D G, Walia M, Wenk S S, Duboé C, Gaudon C, Xiao Y, Fauquier L, Sankar M, Vandel L, Gronemeyer H (2011). Methylation specifies distinct estrogen-induced binding site repertoires of CBP to chromatin. Genes Dev, 25(11): 1132–1146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chakravarti D, La Morte V J, Nelson MC, Nakajima T, Schulman I G, Juguilon H, Montminy M, Evans RM (1996). Role of CBP/P300 in nuclear receptor signalling. Nature, 383(6595): 99–103

    Article  PubMed  CAS  Google Scholar 

  • Chakravarti D, Ogryzko V, Kao H Y, Nash A, Chen H, Nakatani Y, Evans R M (1999). A viral mechanism for inhibition of p300 and PCAF acetyltransferase activity. Cell, 96(3): 393–403

    Article  PubMed  CAS  Google Scholar 

  • Chan H M, La Thangue N B (2001). p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J Cell Sci, 114(Pt 13): 2363–2373

    PubMed  CAS  Google Scholar 

  • Chen C C, Carson J J, Feser J, Tamburini B, Zabaronick S, Linger J, Tyler J K (2008). Acetylated lysine 56 on histone H3 drives chromatin assembly after repair and signals for the completion of repair. Cell, 134(2): 231–243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen, J., and Li, Q. (2011). Life and death of transcriptional co-activator p300. Epigenetics: official journal of the DNA Methylation Society 6, 957–961.

    Article  CAS  Google Scholar 

  • Chen Y J, Wang Y N, Chang W C (2007). ERK2-mediated C-terminal serine phosphorylation of p300 is vital to the regulation of epidermal growth factor-induced keratin 16 gene expression. J Biol Chem, 282 (37): 27215–27228

    Article  PubMed  CAS  Google Scholar 

  • Chevillard-Briet M, Trouche D, Vandel L (2002). Control of CBP coactivating activity by arginine methylation. EMBO J, 21(20): 5457–5466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chrivia J C, Kwok R P, Lamb N, Hagiwara M, Montminy M R, Goodman R H (1993). Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature, 365(6449): 855–859

    Article  PubMed  CAS  Google Scholar 

  • Conery A R, Centore R C, Neiss A, Keller P J, Joshi S, Spillane K L, Sandy P, Hatton C, Pardo E, Zawadzke L (2016). Bromodomain inhibition of the transcriptional coactivators CBP/EP300 as a therapeutic strategy to target the IRF4 network in multiple myeloma. eLife, 5: e10483

    Article  PubMed  PubMed Central  Google Scholar 

  • Contreras-Martos S, Piai A, Kosol S, Varadi M, Bekesi A, Lebrun P, Volkov A N, Gevaert K, Pierattelli R, Felli I C, Tompa P (2017). Linking functions: an additional role for an intrinsically disordered linker domain in the transcriptional coactivator CBP. Sci Rep, 7(1): 4676

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dancy B M, Cole P A (2015). Protein lysine acetylation by p300/CBP. Chem Rev, 115(6): 2419–2452

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Das C, Lucia MS, Hansen K C, Tyler J K (2009). CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature, 459(7243): 113–117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Das C, Roy S, Namjoshi S, Malarkey C S, Jones D N, Kutateladze T G, Churchill M E, Tyler J K (2014). Binding of the histone chaperone ASF1 to the CBP bromodomain promotes histone acetylation. Proc Natl Acad Sci USA, 111(12): E1072–E1081

    Article  PubMed  CAS  Google Scholar 

  • Debes J D, Sebo T J, Lohse C M, Murphy L M, Haugen D A, Tindall D J (2003). p300 in prostate cancer proliferation and progression. Cancer Res, 63(22): 7638–7640

    PubMed  CAS  Google Scholar 

  • Delvecchio M, Gaucher J, Aguilar-Gurrieri C, Ortega E, Panne D (2013). Structure of the p300 catalytic core and implications for chromatin targeting and HAT regulation. Nat Struct Mol Biol, 20(9): 1040–1046

    Article  PubMed  CAS  Google Scholar 

  • Dyson H J, Wright P E (2016). Role of Intrinsic Protein Disorder in the Function and Interactions of the Transcriptional Coactivators CREBbinding Protein (CBP) and p300. J Biol Chem, 291(13): 6714–6722

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eckner R, Ewen M E, Newsome D, Gerdes M, DeCaprio J A, Lawrence J B, Livingston D M (1994). Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev, 8(8): 869–884

    Article  PubMed  CAS  Google Scholar 

  • Fonte C, Grenier J, Trousson A, Chauchereau A, Lahuna O, Baulieu E E, Schumacher M, Massaad C (2005). Involvement of betacatenin and unusual behavior of CBP and p300 in glucocorticosteroid signaling in Schwann cells. Proc Natl Acad Sci USA, 102(40): 14260–14265

    Article  PubMed  CAS  Google Scholar 

  • Fryer C J, Lamar E, Turbachova I, Kintner C, Jones K A (2002). Mastermind mediates chromatin-specific transcription and turnover of the Notch enhancer complex. Genes Dev, 16(11): 1397–1411

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghosh S, Taylor A, Chin M, Huang H R, Conery A R, Mertz J A, Salmeron A, Dakle P J, Mele D, Cote A, Jayaram H, Setser J W, Poy F, Hatzivassiliou G, DeAlmeida-Nagata D, Sandy P, Hatton C, Romero F A, Chiang E, Reimer T, Crawford T, Pardo E, Watson V G, Tsui V, Cochran A G, Zawadzke L, Harmange J C, Audia J E, Bryant B M, Cummings R T, Magnuson S R, Grogan J L, Bellon S F, Albrecht B K, Sims R J 3rd, Lora J M (2016). Regulatory T Cell Modulation by CBP/EP300 Bromodomain Inhibition. J Biol Chem, 291(25): 13014–13027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giotopoulos G, Chan WI, Horton S J, Ruau D, Gallipoli P, Fowler A, Crawley C, Papaemmanuil E, Campbell P J, Göttgens B, Van Deursen J M, Cole P A, Huntly B J (2016). The epigenetic regulators CBP and p300 facilitate leukemogenesis and represent therapeutic targets in acute myeloid leukemia. Oncogene, 35(3): 279–289

    Article  PubMed  CAS  Google Scholar 

  • Girdwood D, Bumpass D, Vaughan O A, Thain A, Anderson L A, Snowden A W, Garcia-Wilson E, Perkins N D, Hay R T (2003). P300 transcriptional repression is mediated by SUMO modification. Mol Cell, 11(4): 1043–1054

    Article  PubMed  CAS  Google Scholar 

  • Goodman R H, Smolik S (2000). CBP/p300 in cell growth, transformation, and development. Genes Dev, 14(13): 1553–1577

    PubMed  CAS  Google Scholar 

  • Hamamori Y, Sartorelli V, Ogryzko V, Puri P L, Wu H Y, Wang J Y, Nakatani Y, Kedes L (1999). Regulation of histone acetyltransferases p300 and PCAF by the bHLH protein twist and adenoviral oncoprotein E1A. Cell, 96(3): 405–413

    Article  PubMed  CAS  Google Scholar 

  • Hammitzsch A, Tallant C, Fedorov O, O’Mahony A, Brennan P E, Hay D A, Martinez F O, Al-Mossawi M H, de Wit J, Vecellio M, Wells C, Wordsworth P, Müller S, Knapp S, Bowness P (2015). CBP30, a selective CBP/p300 bromodomain inhibitor, suppresses human Th17 responses. Proc Natl Acad Sci USA, 112(34): 10768–10773

    Article  PubMed  CAS  Google Scholar 

  • Hansson M L, Popko-Scibor A E, Saint Just Ribeiro M, Dancy B M, Lindberg M J, Cole P A, Wallberg A E (2009). The transcriptional coactivator MAML1 regulates p300 autoacetylation and HAT activity. Nucleic Acids Res, 37(9): 2996–3006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heintzman N D, Stuart R K, Hon G, Fu Y, Ching CW, Hawkins R D, Barrera L O, Van Calcar S, Qu C, Ching K A, Wang W, Weng Z, Green R D, Crawford G E, Ren B (2007). Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet, 39(3): 311–318

    Article  PubMed  CAS  Google Scholar 

  • Hong L, Schroth G P, Matthews H R, Yau P, Bradbury E M (1993). Studies of the DNA binding properties of histone H4 amino terminus. Thermal denaturation studies reveal that acetylation markedly reduces the binding constant of the H4 “tail” to DNA. J Biol Chem, 268(1): 305–314

    PubMed  CAS  Google Scholar 

  • Horton S J, Giotopoulos G, Yun H, Vohra S, Sheppard O, Bashford-Rogers R, Rashid M, Clipson A, Chan W I, Sasca D, Yiangou L, Osaki H, Basheer F, Gallipoli P, Burrows N, Erdem A, Sybirna A, Foerster D, Zhao W, Sustic T, Petrunkina Harrison A, Laurenti E, Okosun J, Hodson D, Wright P, Smith K G, Maxwell P, Fitzgibbon J, Du M Q, Adams D J, Huntly B J P (2017). Early loss of Crebbp confers malignant stem cell properties on lymphoid progenitors. Nat Cell Biol, 19(9): 1093–1104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Horwitz G A, Zhang K, McBrian M A, Grunstein M, Kurdistani S K, Berk A J (2008). Adenovirus small e1a alters global patterns of histone modification. Science, 321(5892): 1084–1085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang W C, Chen C C (2005). Akt phosphorylation of p300 at Ser-1834 is essential for its histone acetyltransferase and transcriptional activity. Mol Cell Biol, 25(15): 6592–6602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jang E R, Choi J D, Jeong G, Lee J S (2010). Phosphorylation of p300 by ATM controls the stability of NBS1. Biochem Biophys Res Commun, 397(4): 637–643

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Ortega-Molina A, Geng H, Ying H Y, Hatzi K, Parsa S, McNally D, Wang L, Doane A S, Agirre X, Teater M, Meydan C, Li Z, Poloway D, Wang S, Ennishi D, Scott D W, Stengel K R, Kranz J E, Holson E, Sharma S, Young J W, Chu C S, Roeder R G, Shaknovich R, Hiebert S W, Gascoyne R D, Tam W, Elemento O, Wendel H G, Melnick A M (2017). CREBBP Inactivation Promotes the Development of HDAC3-Dependent Lymphomas. Cancer Discov, 7(1): 38–53

    Article  PubMed  CAS  Google Scholar 

  • Jin Q, Yu L R, Wang L, Zhang Z, Kasper L H, Lee J E, Wang C, Brindle P K, Dent S Y, Ge K (2011). Distinct roles of GCN5/PCAFmediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation. EMBO J, 30(2): 249–262

    Article  PubMed  CAS  Google Scholar 

  • Kalkhoven E (2004). CBP and p300: HATs for different occasions. Biochem Pharmacol, 68(6): 1145–1155

    Article  PubMed  CAS  Google Scholar 

  • Karanam B, Jiang L, Wang L, Kelleher N L, Cole P A (2006). Kinetic and mass spectrometric analysis of p300 histone acetyltransferase domain autoacetylation. J Biol Chem, 281(52): 40292–40301

    Article  PubMed  CAS  Google Scholar 

  • Kasper L H, Boussouar F, Ney P A, Jackson C W, Rehg J, van Deursen J M, Brindle P K (2002). A transcription-factor-binding surface of coactivator p300 is required for haematopoiesis. Nature, 419(6908): 738–743

    Article  PubMed  CAS  Google Scholar 

  • Kasper L H, Fukuyama T, Biesen M A, Boussouar F, Tong C, de Pauw A, Murray P J, van Deursen J M, Brindle P K (2006). Conditional knockout mice reveal distinct functions for the global transcriptional coactivators CBP and p300 in T-cell development. Mol Cell Biol, 26(3): 789–809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kawasaki H, Eckner R, Yao T P, Taira K, Chiu R, Livingston D M, Yokoyama K K (1998). Distinct roles of the co-activators p300 and CBP in retinoic-acid-induced F9-cell differentiation. Nature, 393 (-): 284–289

    Article  PubMed  CAS  Google Scholar 

  • Kim T K, Hemberg M, Gray J M, Costa A M, Bear D M, Wu J, Harmin D A, Laptewicz M, Barbara-Haley K, Kuersten S, Markenscoff-Papadimitriou E, Kuhl D, Bito H, Worley P F, Kreiman G, Greenberg M E (2010). Widespread transcription at neuronal activity-regulated enhancers. Nature, 465(7295): 182–187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Korzus E (2017). Rubinstein-Taybi Syndrome and Epigenetic Alterations. Adv Exp Med Biol, 978: 39–62

    Article  PubMed  CAS  Google Scholar 

  • Kouzarides T (2007). Chromatin modifications and their function. Cell, 128(4): 693–705

    Article  PubMed  CAS  Google Scholar 

  • Kraus W L, Manning E T, Kadonaga J T (1999). Biochemical analysis of distinct activation functions in p300 that enhance transcription initiation with chromatin templates. Mol Cell Biol, 19(12): 8123–8135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kung A L, Rebel V I, Bronson R T, Ch’ng L E, Sieff C A, Livingston D M, Yao T P (2000). Gene dose-dependent control of hematopoiesis and hematologic tumor suppression by CBP. Genes Dev, 14(3): 272–277

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kung A L, Zabludoff S D, France D S, Freedman S J, Tanner E A, Vieira A, Cornell-Kennon S, Lee J, Wang B, Wang J, Memmert K, Naegeli H U, Petersen F, Eck M J, Bair K W, Wood A W, Livingston D M (2004). Small molecule blockade of transcriptional coactivation of the hypoxia-inducible factor pathway. Cancer Cell, 6 (1): 33–43

    Article  PubMed  CAS  Google Scholar 

  • Kuo H Y, Chang C C, Jeng J C, Hu H M, Lin D Y, Maul G G, Kwok R P, Shih H M (2005). SUMO modification negatively modulates the transcriptional activity of CREB-binding protein via the recruitment of Daxx. Proc Natl Acad Sci USA, 102(47): 16973–16978

    Article  PubMed  CAS  Google Scholar 

  • Kwok R P, Lundblad J R, Chrivia J C, Richards J P, Bächinger H P, Brennan R G, Roberts S G, Green M R, Goodman R H (1994). Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature, 370(6486): 223–226

    Article  PubMed  CAS  Google Scholar 

  • Lasko L M, Jakob C G, Edalji R P, Qiu W, Montgomery D, Digiammarino E L, Hansen T M, Risi R M, Frey R, Manaves V, Shaw B, Algire M, Hessler P, Lam L T, Uziel T, Faivre E, Ferguson D, Buchanan F G, Martin R L, Torrent M, Chiang G G, Karukurichi K, Langston JW, Weinert B T, Choudhary C, de Vries P, Van Drie J H, McElligott D, Kesicki E, Marmorstein R, Sun C, Cole P A, Rosenberg S H, Michaelides MR, Lai A, Bromberg K D (2017). Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours. Nature, 550(7674): 128–132

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lau O D, Kundu T K, Soccio R E, Ait-Si-Ali S, Khalil E M, Vassilev A, Wolffe A P, Nakatani Y, Roeder R G, Cole P A (2000). HATs off: selective synthetic inhibitors of the histone acetyltransferases p300 and PCAF. Mol Cell, 5(3): 589–595

    Article  PubMed  CAS  Google Scholar 

  • Lee Y H, Coonrod S A, Kraus W L, Jelinek M A, Stallcup M R (2005). Regulation of coactivator complex assembly and function by protein arginine methylation and demethylimination. Proc Natl Acad Sci USA, 102(10): 3611–3616

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Wang L, Zhao K, Thompson P R, Hwang Y, Marmorstein R, Cole P A (2008). The structural basis of protein acetylation by the p300/CBP transcriptional coactivator. Nature, 451(7180): 846–850

    Article  PubMed  CAS  Google Scholar 

  • Madison D L, Yaciuk P, Kwok R P, Lundblad J R (2002). Acetylation of the adenovirus-transforming protein E1A determines nuclear localization by disrupting association with importin-alpha. J Biol Chem, 277(41): 38755–38763

    Article  PubMed  CAS  Google Scholar 

  • Martincorena I, Campbell P J (2015). Somatic mutation in cancer and normal cells. Science, 349(6255): 1483–1489

    Article  PubMed  CAS  Google Scholar 

  • Mayr B, Montminy M (2001). Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol, 2 (8): 599–609

    Article  PubMed  CAS  Google Scholar 

  • Michaelides MR, Kluge A, Patane M, Van Drie J H, Wang C, Hansen T M, Risi R M, Mantei R, Hertel C, Karukurichi K, Nesterov A, McElligott D, de Vries P, Langston JW, Cole P A, Marmorstein R, Liu H, Lasko L, Bromberg K D, Lai A, Kesicki E A (2017). Discovery of Spiro Oxazolidinediones as Selective, Orally Bioavailable Inhibitors of p300/CBP Histone Acetyltransferases. ACS Med Chem Lett, 9(1): 28–33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morin R D, Mendez-Lago M, Mungall A J, Goya R, Mungall K L, Corbett R D, Johnson N A, Severson T M, Chiu R, Field M, Jackman S, Krzywinski M, Scott DW, Trinh D L, Tamura-Wells J, Li S, Firme M R, Rogic S, Griffith M, Chan S, Yakovenko O, Meyer I M, Zhao E Y, Smailus D, Moksa M, Chittaranjan S, Rimsza L, Brooks-Wilson A, Spinelli J J, Ben-Neriah S, Meissner B, Woolcock B, Boyle M, McDonald H, Tam A, Zhao Y, Delaney A, Zeng T, Tse K, Butterfield Y, Birol I, Holt R, Schein J, Horsman D E, Moore R, Jones S J, Connors J M, Hirst M, Gascoyne R D, Marra MA (2011). Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature, 476(7360): 298–303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mullighan C G, Zhang J, Kasper L H, Lerach S, Payne-Turner D, Phillips L A, Heatley S L, Holmfeldt L, Collins-Underwood J R, Ma J, Buetow K H, Pui C H, Baker S D, Brindle P K, Downing J R (2011). CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature, 471(7337): 235–239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nguyen U T, Bittova L, Müller M M, Fierz B, David Y, Houck-Loomis B, Feng V, Dann G P, Muir T W (2014). Accelerated chromatin biochemistry using DNA-barcoded nucleosome libraries. Nat Methods, 11(8): 834–840

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ogryzko V V, Schiltz R L, Russanova V, Howard B H, Nakatani Y (1996). The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell, 87(5): 953–959

    Article  PubMed  CAS  Google Scholar 

  • Oike Y, Takakura N, Hata A, Kaname T, Akizuki M, Yamaguchi Y, Yasue H, Araki K, Yamamura K, Suda T (1999). Mice homozygous for a truncated form of CREB-binding protein exhibit defects in hematopoiesis and vasculo-angiogenesis. Blood, 93(9): 2771–2779

    PubMed  CAS  Google Scholar 

  • Park S, Martinez-Yamout M A, Dyson H J, Wright P E (2013). The CH2 domain of CBP/p300 is a novel zinc finger. FEBS Lett, 587(16): 2506–2511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park S, Stanfield R L, Martinez-Yamout MA, Dyson H J, Wilson I A, Wright P E (2017). Role of the CBP catalytic core in intramolecular SUMOylation and control of histone H3 acetylation. Proc Natl Acad Sci USA, 114(27): E5335–E5342

    Article  PubMed  CAS  Google Scholar 

  • Pasqualucci L, Dominguez-Sola D, Chiarenza A, Fabbri G, Grunn A, Trifonov V, Kasper L H, Lerach S, Tang H, Ma J, Rossi D, Chadburn A, Murty V V, Mullighan C G, Gaidano G, Rabadan R, Brindle P K, Dalla-Favera R (2011). Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature, 471(7337): 189–195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peifer M, Fernández-Cuesta L, Sos M L, George J, Seidel D, Kasper L H, Plenker D, Leenders F, Sun R, Zander T, Menon R, Koker M, Dahmen I, Müller C, Di Cerbo V, Schildhaus H U, Altmüller J, Baessmann I, Becker C, de Wilde B, Vandesompele J, Böhm D, Ansén S, Gabler F, Wilkening I, Heynck S, Heuckmann J M, Lu X, Carter S L, Cibulskis K, Banerji S, Getz G, Park K S, Rauh D, Grütter C, Fischer M, Pasqualucci L, Wright G, Wainer Z, Russell P, Petersen I, Chen Y, Stoelben E, Ludwig C, Schnabel P, Hoffmann H, Muley T, Brockmann M, Engel-Riedel W, Muscarella L A, Fazio V M, Groen H, Timens W, Sietsma H, Thunnissen E, Smit E, Heideman D A, Snijders P J, Cappuzzo F, Ligorio C, Damiani S, Field J, Solberg S, Brustugun O T, Lund- Iversen M, Sänger J, Clement J H, Soltermann A, Moch H, Weder W, Solomon B, Soria J C, Validire P, Besse B, Brambilla E, Brambilla C, Lantuejoul S, Lorimier P, Schneider P M, Hallek M, Pao W, Meyerson M, Sage J, Shendure J, Schneider R, Büttner R, Wolf J, Nürnberg P, Perner S, Heukamp L C, Brindle P K, Haas S, Thomas R K (2012). Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat Genet, 44 (10): 1104–1110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perissi V, Dasen J S, Kurokawa R, Wang Z, Korzus E, Rose D W, Glass C K, Rosenfeld M G (1999). Factor-specific modulation of CREB-binding protein acetyltransferase activity. Proc Natl Acad Sci USA, 96(7): 3652–3657

    Article  PubMed  CAS  Google Scholar 

  • Petrij F, Giles R H, Dauwerse H G, Saris J J, Hennekam R C, Masuno M, Tommerup N, van Ommen G J, Goodman R H, Peters D J (1995). Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature, 376(6538): 348–351

    Article  PubMed  CAS  Google Scholar 

  • Picaud S, Fedorov O, Thanasopoulou A, Leonards K, Jones K, Meier J, Olzscha H, Monteiro O, Martin S, Philpott M, Tumber A, Filippakopoulos P, Yapp C, Wells C, Che K H, Bannister A, Robson S, Kumar U, Parr N, Lee K, Lugo D, Jeffrey P, Taylor S, Vecellio ML, Bountra C, Brennan P E, O’Mahony A, Velichko S, Müller S, Hay D, Daniels D L, Urh M, La Thangue N B, Kouzarides T, Prinjha R, Schwaller J, Knapp S (2015). Generation of a Selective Small Molecule Inhibitor of the CBP/p300 Bromodomain for Leukemia Therapy. Cancer Res, 75(23): 5106–5119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Plotnikov A N, Yang S, Zhou T J, Rusinova E, Frasca A, Zhou M M (2014). Structural insights into acetylated-histone H4 recognition by the bromodomain-PHD finger module of human transcriptional coactivator CBP. Structure, 22(2): 353–360

    Article  PubMed  CAS  Google Scholar 

  • Rack J G M, Lutter T, Kjæreng Bjerga G E, Guder C, Ehrhardt C, Värv S, Ziegler M, Aasland R (2014). The PHD finger of p300 influences its ability to acetylate histone and non-histone targets. J Mol Biol, 426(24): 3960–3972

    Article  PubMed  CAS  Google Scholar 

  • Radhakrishnan I, Pérez-Alvarado G C, Parker D, Dyson H J, Montminy M R, Wright P E (1997). Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: a model for activator:coactivator interactions. Cell, 91(6): 741–752

    Article  PubMed  CAS  Google Scholar 

  • Rebel V I, Kung A L, Tanner E A, Yang H, Bronson R T, Livingston D M (2002). Distinct roles for CREB-binding protein and p300 in hematopoietic stem cell self-renewal. Proc Natl Acad Sci USA, 99 (23): 14789–14794

    Article  PubMed  CAS  Google Scholar 

  • Roe J S, Mercan F, Rivera K, Pappin D J, Vakoc C R (2015). BET Bromodomain Inhibition Suppresses the Function of Hematopoietic Transcription Factors in Acute Myeloid Leukemia. Mol Cell, 58(6): 1028–1039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rojas J R, Trievel R C, Zhou J, Mo Y, Li X, Berger S L, Allis C D, Marmorstein R (1999). Structure of Tetrahymena GCN5 bound to coenzyme A and a histone H3 peptide. Nature, 401(6748): 93–98

    Article  PubMed  CAS  Google Scholar 

  • Roth S Y, Allis C D (1996). Histone acetylation and chromatin assembly: a single escort, multiple dances? Cell, 87(1): 5–8

    Article  PubMed  CAS  Google Scholar 

  • Saint Just Ribeiro M, Hansson M L, Wallberg A E (2007). A proline repeat domain in the Notch co-activator MAML1 is important for the p300-mediated acetylation of MAML1. Biochem J, 404(2): 289–298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanchez R, Zhou M M (2011). The PHD finger: a versatile epigenome reader. Trends Biochem Sci, 36(7): 364–372

    PubMed  PubMed Central  CAS  Google Scholar 

  • Schiltz R L, Mizzen C A, Vassilev A, Cook R G, Allis C D, Nakatani Y (1999). Overlapping but distinct patterns of histone acetylation by the human coactivators p300 and PCAF within nucleosomal substrates. J Biol Chem, 274(3): 1189–1192

    Article  PubMed  CAS  Google Scholar 

  • Shi X, Hong T, Walter K L, Ewalt M, Michishita E, Hung T, Carney D, Peña P, Lan F, Kaadige M R, Lacoste N, Cayrou C, Davrazou F, Saha A, Cairns B R, Ayer D E, Kutateladze T G, Shi Y, Côté J, Chua K F, Gozani O (2006). ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature, 442(7098): 96–99

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie J R, Peterson C L (2006). Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science, 311(5762): 844–847

    Article  PubMed  CAS  Google Scholar 

  • Solomon B D, Bodian D L, Khromykh A, Mora G G, Lanpher B C, Iyer R K, Baveja R, Vockley J G, Niederhuber J E (2015). Expanding the phenotypic spectrum in EP300-related Rubinstein- Taybi syndrome. Am J Med Genet A, 167A(5): 1111–1116

    Article  PubMed  CAS  Google Scholar 

  • Stein R W, Corrigan M, Yaciuk P, Whelan J, Moran E (1990). Analysis of E1A-mediated growth regulation functions: binding of the 300-kilodalton cellular product correlates with E1A enhancer repression function and DNA synthesis-inducing activity. J Virol, 64 (9): 4421–4427

    PubMed  PubMed Central  CAS  Google Scholar 

  • Szerlong H J, Prenni J E, Nyborg J K, Hansen J C (2010). Activatordependent p300 acetylation of chromatin in vitro: enhancement of transcription by disruption of repressive nucleosome-nucleosome interactions. J Biol Chem, 285(42): 31954–31964

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tanaka Y, Naruse I, Hongo T, Xu M, Nakahata T, Maekawa T, Ishii S (2000). Extensive brain hemorrhage and embryonic lethality in a mouse null mutant of CREB-binding protein. Mech Dev, 95(1-2): 133–145

    Article  PubMed  CAS  Google Scholar 

  • Tanaka Y, Naruse I, Maekawa T, Masuya H, Shiroishi T, Ishii S (1997). Abnormal skeletal patterning in embryos lacking a single Cbp allele: a partial similarity with Rubinstein-Taybi syndrome. Proc Natl Acad Sci USA, 94(19): 10215–10220

    Article  PubMed  CAS  Google Scholar 

  • Tang Z, Chen W Y, Shimada M, Nguyen U T, Kim J, Sun X J, Sengoku T, McGinty R K, Fernandez J P, Muir T W, Roeder R G (2013). SET1 and p300 act synergistically, through coupled histone modifications, in transcriptional activation by p53. Cell, 154(2): 297–310

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tessarz P, Kouzarides T (2014). Histone core modifications regulating nucleosome structure and dynamics. Nat Rev Mol Cell Biol, 15(11): 703–708

    Article  PubMed  CAS  Google Scholar 

  • Thompson P R, Kurooka H, Nakatani Y, Cole P A (2001). Transcriptional coactivator protein p300. Kinetic characterization of its histone acetyltransferase activity. J Biol Chem, 276(36): 33721–33729

    Article  PubMed  CAS  Google Scholar 

  • Thompson P R, Wang D, Wang L, Fulco M, Pediconi N, Zhang D, An W, Ge Q, Roeder R G, Wong J, Levrero M, Sartorelli V, Cotter R J, Cole P A (2004). Regulation of the p300 HAT domain via a novel activation loop. Nat Struct Mol Biol, 11(4): 308–315

    Article  PubMed  CAS  Google Scholar 

  • Trievel R C, Rojas J R, Sterner D E, Venkataramani R N, Wang L, Zhou J, Allis C D, Berger S L, Marmorstein R (1999). Crystal structure and mechanism of histone acetylation of the yeast GCN5 transcriptional coactivator. Proc Natl Acad Sci USA, 96(16): 8931–8936

    Article  PubMed  CAS  Google Scholar 

  • Tse C, Sera T, Wolffe A P, Hansen J C (1998). Disruption of higherorder folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III. Mol Cell Biol, 18(8): 4629–4638

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vempati R K, Jayani R S, Notani D, Sengupta A, Galande S, Haldar D (2010). p300-mediated acetylation of histone H3 lysine 56 functions in DNA damage response in mammals. J Biol Chem, 285 (37): 28553–28564

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Visel A, Blow M J, Li Z, Zhang T, Akiyama J A, Holt A, Plajzer-Frick I, Shoukry M, Wright C, Chen F, Afzal V, Ren B, Rubin E M, Pennacchio L A (2009). ChIP-seq accurately predicts tissuespecific activity of enhancers. Nature, 457(7231): 854–858

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vo N, Goodman R H (2001). CREB-binding protein and p300 in transcriptional regulation. J Biol Chem, 276(17): 13505–13508

    Article  PubMed  CAS  Google Scholar 

  • Wan W, You Z, Xu Y, Zhou L, Guan Z, Peng C, Wong C C L, Su H, Zhou T, Xia H (2017). mTORC1 Phosphorylates Acetyltransferase p300 to Regulate Autophagy and Lipogenesis. Molecular cell 68, 323–335 e326.

    Google Scholar 

  • Wang F, Marshall C B, Ikura M (2013a). Transcriptional/epigenetic regulator CBP/p300 in tumorigenesis: structural and functional versatility in target recognition. Cell Mol Life Sci, 70(21): 3989–4008

    Article  PubMed  CAS  Google Scholar 

  • Wang Q E, Han C, Zhao R, Wani G, Zhu Q, Gong L, Battu A, Racoma I, Sharma N, Wani A A (2013b). p38 MAPK- and Aktmediated p300 phosphorylation regulates its degradation to facilitate nucleotide excision repair. Nucleic Acids Res, 41(3): 1722–1733

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Zang C, Cui K, Schones D E, Barski A, Peng W, Zhao K (2009). Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell, 138(5): 1019–1031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Whyte P, Williamson N M, Harlow E (1989). Cellular targets for transformation by the adenovirus E1A proteins. Cell, 56(1): 67–75

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Cheng A, Huang M, Zhang J, Jiang Y, Wang C, Li F, Bao H, Gao J, Wang N, Liu J, Wu J, Wong C C L, Ruan K (2017). Structural insight into the recognition of acetylated histone H3K56ac mediated by the bromodomain of CREB-binding protein. FEBS J, 284(20): 3422–3436

    Article  PubMed  CAS  Google Scholar 

  • Xu W, Chen H, Du K, Asahara H, Tini M, Emerson B M, Montminy M, Evans RM (2001). A transcriptional switch mediated by cofactor methylation. Science, 294(5551): 2507–2511

    Article  PubMed  CAS  Google Scholar 

  • Yao T P, Oh S P, Fuchs M, Zhou N D, Ch’ng L E, Newsome D, Bronson R T, Li E, Livingston D M, Eckner R (1998). Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell, 93(3): 361–372

    Article  PubMed  CAS  Google Scholar 

  • Yee S P, Branton P E (1985). Detection of cellular proteins associated with human adenovirus type 5 early region 1A polypeptides. Virology, 147(1): 142–153

    Article  PubMed  CAS  Google Scholar 

  • Yuan L W, Soh J W, Weinstein I B (2002). Inhibition of histone acetyltransferase function of p300 by PKCdelta. Biochim Biophys Acta, 1592(2): 205–211

    Article  PubMed  CAS  Google Scholar 

  • Zeng L, Zhang Q, Gerona-Navarro G, Moshkina N, Zhou M M (2008). Structural basis of site-specific histone recognition by the bromodomains of human coactivators PCAF and CBP/p300. Structure, 16(4): 643–652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang J, Vlasevska S, Wells V A, Nataraj S, Holmes A B, Duval R, Meyer S N, Mo T, Basso K, Brindle P K, Hussein S, Dalla-Favera R, Pasqualucci L (2017a). The CREBBP Acetyltransferase Is a Haploinsufficient Tumor Suppressor in B-cell Lymphoma. Cancer Discov, 7(3): 322–337

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang R, Erler J, Langowski J (2017b). Histone Acetylation Regulates Chromatin Accessibility: Role of H4K16 in Inter-nucleosome Interaction. Biophys J, 112(3): 450–459

    Article  PubMed  CAS  Google Scholar 

  • Zhong J, Ding L, Bohrer L R, Pan Y, Liu P, Zhang J, Sebo T J, Karnes R J, Tindall D J, van Deursen J, Huang H (2014). p300 acetyltransferase regulates androgen receptor degradation and PTENdeficient prostate tumorigenesis. Cancer Res, 74(6): 1870–1880

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu P, Li G (2016). Structural insights of nucleosome and the 30-nm chromatin fiber. Curr Opin Struct Biol, 36: 106–115

    Article  PubMed  CAS  Google Scholar 

  • Zucconi B E, Luef B, Xu W, Henry R A, Nodelman I M, Bowman G D, Andrews A J, Cole P A (2016). Modulation of p300/CBP Acetylation of Nucleosomes by Bromodomain Ligand I-CBP112. Biochemistry, 55(27): 3727–3734

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We thank members of the Shi laboratory for discussions. This work was supported in part by grants from NIH/NCI (CA204020) and Leukemia & Lymphoma Society (1339-17) to X.S.. X.S. is a Scientific Advisory Board member of EpiCypher.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongming Xue or Xiaobing Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Y., Wen, H. & Shi, X. CBP/p300: intramolecular and intermolecular regulations. Front. Biol. 13, 168–179 (2018). https://doi.org/10.1007/s11515-018-1502-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-018-1502-6

Keywords

Navigation