Skip to main content
Log in

CREB acts as a common transcription factor for major epigenetic repressors; DNMT3B, EZH2, CUL4B and E2F6

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

CREB signaling is known for several decades, but how it regulates both positive and negative regulators of cell proliferation is not well understood. On the other hand functions of major epigenetic repressors such as DNMT3B, EZH2 and CUL4B for their repressive epigenetic modifications on chromatin have also been well studied. However, there is very limited information available on how these repressors are regulated at their transcriptional level. Here, using computational tools and molecular techniques including site directed mutagenesis, promoter reporter assay, chromatin immunoprecipitation (ChIP), we identified that CREB acts as a common transcription factor for DNMT3B, EZH2, CUL4B and E2F6. ChIP assay revealed that pCREB binds to promoters of these repressors at CREs and induce their transcription. As expected, the expression of these repressors and their associated repressive marks particularly H3K27me3 and H2AK119ub are increased and decreased upon CREB overexpression and knock-down conditions respectively in the cancer cells indicating that CREB regulates the functions of these repressors by activating their transcription. Since CREB and these epigenetic repressors are overexpressed in various cancer types, our findings showed the molecular relationship between them and indicate that CREB is an important therapeutic target for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Renz M, Verrier B, Kurz C, Müller R. Chromatin association and DNAbinding properties of the c-fos proto-oncogene product. Nucleic Acids Res. 1987;15:277–92.

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Schütte J, Minna JD, Birrer MJ. Deregulated expression of human c-jun transforms primary rat embryo cells in cooperation with an activated c-Ha-ras gene and transforms rat-1a cells as a single gene. Proc Natl Acad Sci. 1989;86:2257–61.

    PubMed  PubMed Central  Google Scholar 

  3. Chrivia JC, Kwok RP, Lamb N, Hagiwara M, Montminy MR, Goodman RH. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature. 1993;365:855.

    PubMed  CAS  Google Scholar 

  4. Eckner R, Ewen ME, Newsome D, Gerdes M, DeCaprio JA, Lawrence JB, Livingston DM. Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev. 1994;8:869–84.

    PubMed  CAS  Google Scholar 

  5. Hu H, Yang Y, Ji Q, Zhao W, Jiang B, Liu R, Yuan J, Liu Q, Li X, Zou Y. CRL4B catalyzes H2AK119 monoubiquitination and coordinates with PRC2 to promote tumorigenesis. Cancer Cell. 2012;22:781–95.

    PubMed  CAS  Google Scholar 

  6. Viré E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, Morey L, Van Eynde A, Bernard D, Vanderwinden J-M. The Polycomb group protein EZH2 directly controls DNA methylation. Nature. 2006;439:871.

    PubMed  Google Scholar 

  7. Velasco G, Hubé F, Rollin J, Neuillet D, Philippe C, Bouzinba-Segard H, Galvani A, Viegas-Péquignot E, Francastel C. Dnmt3b recruitment through E2F6 transcriptional repressor mediates germ-line gene silencing in murine somatic tissues. Proc Natl Acad Sci. 2010;107:9281–6.

    PubMed  PubMed Central  Google Scholar 

  8. Attwooll C, Oddi S, Cartwright P, Prosperini E, Agger K, Steensgaard P, Wagener C, Sardet C, Moroni MC, Helin K. A novel repressive E2F6 complex containing the polycomb group protein, EPC1, that interacts with EZH2 in a proliferation-specific manner. J Biol Chem. 2005;280:1199–208.

    PubMed  CAS  Google Scholar 

  9. Lee JM, Lee JS, Kim H, Kim K, Park H, Kim J-Y, Lee SH, Kim IS, Kim J, Lee M. EZH2 generates a methyl degron that is recognized by the DCAF1/DDB1/CUL4 E3 ubiquitin ligase complex. Mol Cell. 2012;48:572–86.

    PubMed  CAS  Google Scholar 

  10. Zhang Y, Reinberg D. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev. 2001;15:2343–60.

    PubMed  CAS  Google Scholar 

  11. O'Carroll D, Erhardt S, Pagani M, Barton SC, Surani MA, Jenuwein T. The polycomb-group Gene Ezh2 is required for early mouse development. Mol Cell Biol. 2001;21:4330–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Ueda Y, Okano M, Williams C, Chen T, Georgopoulos K, Li E. Roles for Dnmt3b in mammalian development: a mouse model for the ICF syndrome. Development. 2006;133:1183–92.

    PubMed  CAS  Google Scholar 

  13. Jiang B, Zhao W, Yuan J, Qian Y, Sun W, Zou Y, Guo C, Chen B, Shao C, Gong Y. Lack of Cul4b, an E3 ubiquitin ligase component, leads to embryonic lethality and abnormal placental development. PLoS ONE. 2012;7:e37070.

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Gan L, Yang Y, Li Q, Feng Y, Liu T, Guo W. Epigenetic regulation of cancer progression by EZH2: from biological insights to therapeutic potential. Biomark Res. 2018;6:10.

    PubMed  PubMed Central  Google Scholar 

  15. Oberley MJ, Inman DR, Farnham PJ. E2F6 negatively regulates BRCA1 in human cancer cells without methylation of histone H3 on lysine 9. J Biol Chem. 2003;278:42466–76.

    PubMed  CAS  Google Scholar 

  16. Xiao X, Li BX, Mitton B, Ikeda A, Sakamoto KM. Targeting CREB for cancer therapy: friend or foe. Curr Cancer Drug Targets. 2010;10:384–91.

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Parker D, Ferreri K, Nakajima T, LaMorte V, Evans R, Koerber S, Hoeger C, Montminy M. Phosphorylation of CREB at Ser-133 induces complex formation with CREB-binding protein via a direct mechanism. Mol Cell Biol. 1996;16:694–703.

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Gu T, Zhang Z, Wang J, Guo J, Shen WH, Yin Y. CREB is a novel nuclear target of PTEN phosphatase. Cancer Res. 2011;71:2821–5.

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Hagiwara M, Alberts A, Brindle P, Meinkoth J, Feramisco J, Deng T, Karin M, Shenolikar S, Montminy M. Transcriptional attenuation following cAMP induction requires PP-1-mediated dephosphorylation of CREB. Cell. 1992;70:105–13.

    PubMed  CAS  Google Scholar 

  20. Wadzinski B, Wheat W, Jaspers S, Peruski L, Lickteig R, Johnson G, Klemm D. Nuclear protein phosphatase 2A dephosphorylates protein kinase A-phosphorylated CREB and regulates CREB transcriptional stimulation. Mol Cell Biol. 1993;13:2822–34.

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Xie Z, Geiger TR, Johnson EN, Nyborg JK, Druey KM. RGS13 acts as a nuclear repressor of CREB. Mol Cell. 2008;31:660–70.

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Huang Y-S, Chang C-C, Huang T-C, Hsieh Y-L, Shih H-M. Daxx interacts with and modulates the activity of CREB. Cell Cycle. 2012;11:99–108.

    PubMed  Google Scholar 

  23. Beier F, Lee RJ, Taylor AC, Pestell RG, LuValle P. Identification of the cyclin D1 gene as a target of activating transcription factor 2 in chondrocytes. Proc Natl Acad Sci. 1999;96:1433–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  24. White P, Shore A, Clement M, McLaren J, Soeiro I, Lam EW, Brennan P. Regulation of cyclin D2 and the cyclin D2 promoter by protein kinase A and CREB in lymphocytes. Oncogene. 2006;25:2170.

    PubMed  CAS  Google Scholar 

  25. Xing L, Gopal VK, Quinn PG. cAMP response element-binding protein (CREB) interacts with transcription factors IIB and IID. J Biol Chem. 1995;270:17488–93.

    PubMed  CAS  Google Scholar 

  26. Wilson BE, Mochon E, Boxer LM. Induction of bcl-2 expression by phosphorylated CREB proteins during B-cell activation and rescue from apoptosis. Mol Cell Biol. 1996;16:5546–56.

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Thiel G, Al Sarraj J, Stefano L. cAMP response element binding protein (CREB) activates transcription via two distinct genetic elements of the human glucose-6-phosphatase gene. BMC Mol Biol. 2005;6:2.

    PubMed  PubMed Central  Google Scholar 

  28. Magenta A, Cenciarelli C, De Santa F, Fuschi P, Martelli F, Caruso M, Felsani A. MyoD stimulates RB promoter activity via the CREB/p300 nuclear transduction pathway. Mol Cell Biol. 2003;23:2893–906.

    PubMed  PubMed Central  CAS  Google Scholar 

  29. Zhou Q, Gedrich RW, Engel DA. Transcriptional repression of the c-fos gene by YY1 is mediated by a direct interaction with ATF/CREB. J Virol. 1995;69:4323–30.

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Topper JN, DiChiara MR, Brown JD, Williams AJ, Falb D, Collins T, Gimbrone MA. CREB binding protein is a required coactivator for Smad-dependent, transforming growth factor β transcriptional responses in endothelial cells. Proc Natl Acad Sci. 1998;95:9506–11.

    PubMed  CAS  PubMed Central  Google Scholar 

  31. Impey S, McCorkle SR, Cha-Molstad H, Dwyer JM, Yochum GS, Boss JM, et al. Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell. 2004;119:1041–54.

    PubMed  CAS  Google Scholar 

  32. Ashok C, Owais S, Srijyothi L, Selvam M, Ponne S, Baluchamy S. A feedback regulation of CREB activation through the CUL4A and ERK signaling. Med Oncol. 2019;36:20.

    PubMed  Google Scholar 

  33. Benbrook DM, Jones NC. Heterodimer formation between CREB and JUN proteins. Oncogene. 1990;5:295–302.

    PubMed  CAS  Google Scholar 

  34. Muir T, Wilson-Rawls J, Stevens JD, Rawls A, Schweitzer R, Kang C, et al. Integration of CREB and bHLH transcriptional signaling pathways through direct heterodimerization of the proteins: role in muscle and testis development. Mol Reprod Dev. 2008;75:1637–52.

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Jinawath A, Miyake S, Yanagisawa Y, Akiyama Y, Yuasa Y. Transcriptional regulation of the human DNA methyltransferase 3A and 3B genes by Sp3 and Sp1 zinc finger proteins. Biochem J. 2005;385:557.

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Palakurthy RK, Wajapeyee N, Santra MK, Gazin C, Lin L, Gobeil S, et al. Epigenetic silencing of the RASSF1A tumor suppressor gene through HOXB3-mediated induction of DNMT3B expression. Mol Cell. 2009;36:219–30.

    PubMed  PubMed Central  CAS  Google Scholar 

  37. Bracken AP, Pasini D, Capra M, Prosperini E, Colli E, Helin K. EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J. 2003;22:5323–35.

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Koh CM, Iwata T, Zheng Q, Bethel C, Yegnasubramanian S, De Marzo AM. Myc enforces overexpression of EZH2 in early prostatic neoplasia via transcriptional and post-transcriptional mechanisms. Oncotarget. 2011;2:669.

    PubMed  PubMed Central  Google Scholar 

  39. Garipov A, Li H, Bitler BG, Thapa RJ, Balachandran S, Zhang R. NF-YA underlies EZH2 upregulation and is essential for proliferation of human epithelial ovarian cancer cells. Mol Cancer Res. 2013;11:360–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Tiwari N, Tiwari VK, Waldmeier L, Balwierz PJ, Arnold P, Pachkov M, et al. Sox4 is a master regulator of epithelial-mesenchymal transition by controlling Ezh2 expression and epigenetic reprogramming. Cancer Cell. 2013;23:768–83.

    PubMed  CAS  Google Scholar 

  41. Qi M, Hu J, Cui Y, Jiao M, Feng T, Li X, et al. CUL4B promotes prostate cancer progression by forming positive feedback loop with SOX4. Oncogenesis. 2019;8:23.

    PubMed  PubMed Central  Google Scholar 

  42. Kherrouche Z, De Launoit Y, Monte D. The NRF-1/α-PAL transcription factor regulates human E2F6 promoter activity. Biochem J. 2004;383:529.

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Lyons TE, Salih M, Tuana BS. Activating E2Fs mediate transcriptional regulation of human E2F6 repressor. Am J Physiol Cell Physiol. 2006;290:C189–C199199.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of Prof. Sudhakar Baluchamy laboratory for the technical assistance and helpful discussion. We are grateful to Dr. Arunkumar Dhayalan for valuable suggestions and critical reading of the manuscript. This study was supported by DBT (Department of Biotechnology) INDIA; 6242-P78/RGCB/PMD/DBT/BSKR/2015 and SERB (Science and Engineering Research Board) INDIA; SB/EMEQ-038/2013 to Prof. Sudhakar Baluchamy. Fellowships from CSIR-UGC to CA, UGC-NFOBC to MS, DST-SERB-NPDF (2739) to Dr. SP are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhakar Baluchamy.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 105 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashok, C., Selvam, M., Ponne, S. et al. CREB acts as a common transcription factor for major epigenetic repressors; DNMT3B, EZH2, CUL4B and E2F6. Med Oncol 37, 68 (2020). https://doi.org/10.1007/s12032-020-01395-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-020-01395-5

Keywords

Navigation