Skip to main content
Log in

Midostaurin inhibits hormone-refractory prostate cancer PC-3 cells by modulating nPKCs and AP-1 transcription factors and their target genes involved in cell cycle

  • Research Article
  • Published:
Frontiers in Biology

Abstract

Background

The development of prostate cancer from a clinically localized, hormone-naive state to a hormonerefractory phenotype involves a complex interplay of protein kinase C (PKC) and activator protein-1 (AP-1). Therefore, the present study aimed to uncover the roles of PKC and AP-1 through midostaurin-mediated regulation—a multi-target protein kinase inhibitor.

Methods

Androgen Receptor-negative, hormone-refractory prostate cancer cells (PC-3) were used as an in-vitro model system. The effect of midostaurin on cell viability was assessed by an MTT assay. Expression studies on PKC-α, PKC-d, different AP-1 transcription factors, and AP-1 regulating genes were analyzed by semiquantitative RT-PCR, and protein levels of Bcl-2 were evaluated by western blotting.

Results

Midostaurin decreased the viability of hormone-refractory PC-3 cells. Furthermore, midostaurin significantly induced the transcripts of apoptotic-mediated PKC-d, tumor suppressor p53, cell cycle inhibitor p21cip1/waf1, death receptor TNF-α, pro-apoptotic Bax, and Caspase-8, and eventually inhibited the expression of pro-survival PKC-ε, pro-oncogene c-Jun, c-Fos, Fra-1, positive growth regulator cyclin D1, and anti-apoptotic Bcl-2. In addition, midostaurin also decreased the protein expression of anti-apoptotic Bcl-2.

Conclusion

The present study provided evidence that midostaurin suppresses tumor growth and induces apoptosis in hormone-refractory PC-3 cells via modulation of PKC-d and PKC-ε expression, and regulation of PMA-altered c-Jun, c-Fos, and Fra-1 AP-1 transcription factors and their target genes involved in cell cycle regulation (cyclin D1, p53, p21, Bcl-2, and TNF-α). Thus, pharmacological targeting of PKC and AP-1 factors may have therapeutic potential against hormone-refractory prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angel P, Imagawa M, Chiu R, Stein B, Imbra R J, Rahmsdorf H J, Jonat C, Herrlich P, Karin M (1987). Phorbol ester-inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor. Cell, 49(6): 729–739

    Article  CAS  PubMed  Google Scholar 

  • Aziz M H, Manoharan H T, Church D R, Dreckschmidt N E, Zhong W, Oberley T D, Wilding G, Verma A K (2007). Protein kinase Cepsilon interacts with signal transducers and activators of transcription 3 (Stat3), phosphorylates Stat3Ser727, and regulates its constitutive activation in prostate cancer. Cancer Res, 67(18): 8828–8838

    Article  CAS  PubMed  Google Scholar 

  • Babu R L, Naveen Kumar M, Patil R H, Devaraju K S, Ramesh G T, Sharma S C (2013). Effect of estrogen and tamoxifen on the expression pattern of AP-1 factors in MCF-7 cells: role of c-Jun, c- Fos, and Fra-1 in cell cycle regulation. Mol Cell Biochem, 380(1-2): 143–151

    Article  CAS  PubMed  Google Scholar 

  • Bahlis N J, Miao Y, Koc O N, Lee K, Boise L H, Gerson S L (2005). Nbenzoylstaurosporine (PKC412) inhibits Akt kinase inducing apoptosis in multiple myeloma cells. Leuk Lymphoma, 46(6): 899–908

    Article  CAS  PubMed  Google Scholar 

  • Basu A, Sivaprasad U (2007). Protein kinase Cepsilon makes the life and death decision. Cell Signal, 19(8): 1633–1642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blumberg P M, Jaken S, König B, Sharkey N A, Leach K L, Jeng A Y, Yeh E (1984). Mechanism of action of the phorbol ester tumor promoters: specific receptors for lipophilic ligands. Biochem Pharmacol, 33(6): 933–940

    Article  CAS  PubMed  Google Scholar 

  • Bradford M M (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Anal Biochem, 72(1-2): 248–254

    Article  CAS  PubMed  Google Scholar 

  • Brodie C, Blumberg P M (2003). Regulation of cell apoptosis by protein kinase c delta. Apoptosis, 8(1): 19–27

    Article  CAS  PubMed  Google Scholar 

  • Carter C A, Kane C J M (2004). Therapeutic potential of natural compounds that regulate the activity of protein kinase C. Curr Med Chem, 11(21): 2883–2902

    Article  CAS  PubMed  Google Scholar 

  • da Rocha A B, Mans D R A, Regner A, Schwartsmann G (2002). Targeting protein kinase C: new therapeutic opportunities against high-grade malignant gliomas? Oncologist, 7(1): 17–33

    Article  PubMed  Google Scholar 

  • Edwards J, Bartlett J M S (2005). The androgen receptor and signaltransduction pathways in hormone-refractory prostate cancer. Part 2: Androgen-receptor cofactors and bypass pathways. BJU Int, 95(9): 1327–1335

    CAS  Google Scholar 

  • El Fitori J, Su Y, Büchler P, Ludwig R, Giese N A, Büchler M W, Quentmeier H, Hines O J, Herr I, Friess H (2007). PKC 412 smallmolecule tyrosine kinase inhibitor: single-compound therapy for pancreatic cancer. Cancer, 110(7): 1457–1468

    Article  PubMed  Google Scholar 

  • Fabbro D, Ruetz S, Bodis S, Pruschy M, Csermak K, Man A, Campochiaro P, Wood J, O’Reilly T, Meyer T (2000). PKC412–a protein kinase inhibitor with a broad therapeutic potential. Anticancer Drug Des, 15(1): 17–28

    CAS  PubMed  Google Scholar 

  • Fischer T, Stone R M, Deangelo D J, Galinsky I, Estey E, Lanza C, Fox E, Ehninger G, Feldman E J, Schiller G J, Klimek V M, Nimer S D, Gilliland D G, Dutreix C, Huntsman-Labed A, Virkus J, Giles F J (2010). Phase IIB trial of oral Midostaurin (PKC412), the FMS-like tyrosine kinase 3 receptor (FLT3) and multi-targeted kinase inhibitor, in patients with acute myeloid leukemia and high-risk myelodysplastic syndrome with either wild-type or mutated FLT3. J Clin Oncol, 28(28): 4339–4345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griner E M, Kazanietz M G (2007). Protein kinase C and other diacylglycerol effectors in cancer. Nat Rev Cancer, 7(4): 281–294

    Article  CAS  PubMed  Google Scholar 

  • Hegde S M, Kumar MN, Kavya K, Kumar KMK, Nagesh R, Patil R H, Babu R L, Ramesh G T, Sharma S C (2016). Interplay of nuclear receptors (ER, PR, and GR) and their steroid hormones in MCF-7 cells. Mol Cell Biochem, 422(1-2): 109–120

    Article  CAS  PubMed  Google Scholar 

  • Hess J, Angel P, Schorpp-Kistner M (2004). AP-1 subunits: quarrel and harmony among siblings. J Cell Sci, 117(Pt 25): 5965–5973

    Article  CAS  PubMed  Google Scholar 

  • Kavya K, Kumar M N, Patil R H, Hegde S M, Kiran Kumar K M, Nagesh R, Babu R L, Ramesh G T, Chidananda Sharma S (2017). Differential expression of AP-1 transcription factors in human prostate LNCaP and PC-3 cells: role of Fra-1 in transition to CRPC status. Mol Cell Biochem, 433(1–2): 13–26

    Article  CAS  PubMed  Google Scholar 

  • Kawai M, Nakashima A, Kamada S, Kikkawa U (2015). Midostaurin preferentially attenuates proliferation of triple-negative breast cancer cell lines through inhibition of Aurora kinase family. J Biomed Sci, 22

  • Koren R, Ben Meir D, Langzam L, Dekel Y, Konichezky M, Baniel J, Livne PM, Gal R, Sampson S R (2004). Expression of protein kinase C isoenzymes in benign hyperplasia and carcinoma of prostate. Oncol Rep, 11(2): 321–326

    CAS  PubMed  Google Scholar 

  • Meshki J, Caino MC, von Burstin V A, Griner E, Kazanietz MG (2010). Regulation of prostate cancer cell survival by protein kinase Cepsilon involves bad phosphorylation and modulation of the TNFalpha/JNK pathway. J Biol Chem, 285(34): 26033–26040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa M, Oliva J L, Kothapalli D, Fournier A, Assoian R K, Kazanietz M G (2005). Phorbol ester-induced G1 phase arrest selectively mediated by protein kinase Cdelta-dependent induction of p21. J Biol Chem, 280(40): 33926–33934

    Article  CAS  PubMed  Google Scholar 

  • Ouyang X, Jessen W J, Al-Ahmadie H, Serio A M, Lin Y, Shih W J, Reuter V E, Scardino P T, Shen M M, Aronow B J, Vickers A J, Gerald W L, Abate-Shen C (2008). Activator protein-1 transcription factors are associated with progression and recurrence of prostate cancer. Cancer Res, 68(7): 2132–2144

    Article  CAS  PubMed  Google Scholar 

  • Patil R H, Babu R L, Naveen Kumar M, Kiran Kumar K M, Hegde S M, Nagesh R, Ramesh G T, Sharma S C (2016). Anti-inflammatory effect of apigenin on LPS-induced Pro-inflammatory mediators and AP-1 factors in human lung epithelial cells. Inflammation, 39(1): 138–147

    Article  CAS  PubMed  Google Scholar 

  • Propper D J, McDonald A C, Man A, Thavasu P, Balkwill F, Braybrooke J P, Caponigro F, Graf P, Dutreix C, Blackie R, Kaye S B, Ganesan T S, Talbot D C, Harris A L, Twelves C (2001). Phase Iand pharmacokinetic study of PKC412, an inhibitor of protein kinase C. J Clin Oncol, 19(5): 1485–1492

    Article  CAS  PubMed  Google Scholar 

  • Schenk P W, Snaar-Jagalska B E (1999). Signal perception and transduction: the role of protein kinases. Biochim Biophys Acta, 1449(1): 1–24

    Article  CAS  PubMed  Google Scholar 

  • Seger R, Krebs E G (1995). The MAPK signaling cascade. FASEB J, 9 (9): 726–735

    Article  CAS  PubMed  Google Scholar 

  • Shaulian E, Karin M (2001). AP-1 in cell proliferation and survival. Oncogene, 20(19): 2390–2400

    Article  CAS  PubMed  Google Scholar 

  • Teicher B A (2006). Protein kinase C as a therapeutic target. Clin Cancer Res, 12(18): 5336–5345

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Foreman T L, Gregory CW, McJiltonMA,Wescott G G, Ford O H, Alvey R F, Mohler J L, Terrian D M (2002). Protein kinase cepsilon has the potential to advance the recurrence of human prostate cancer. Cancer Res, 62(8): 2423–2429

    CAS  PubMed  Google Scholar 

  • Xiao L, Eto M, Kazanietz M G (2009). ROCK mediates phorbol esterinduced apoptosis in prostate cancer cells via p21Cip1 up-regulation and JNK. J Biol Chem, 284(43): 29365–29375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude to the Department of Science and Technology-Promotion of University Research and Scientific Excellence [DST-PURSE; SR/59/Z- 23/2010/38(c)] and the University Grant Commission-Centre with Potential for Excellence in Particular Area [UGC-CPEPA; 8-2/2008(NS/PE)], New Delhi for providing financial support. The authors also wish to express their gratitude to the Department of Microbiology and Biotechnology, Bangalore University, Bengaluru for providing DST-FIST, UGC-SAP, and department facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kavya Krishnappa or Doddamane Manjulakumari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnappa, K., Mallesh, N.K., Sharma, S.C. et al. Midostaurin inhibits hormone-refractory prostate cancer PC-3 cells by modulating nPKCs and AP-1 transcription factors and their target genes involved in cell cycle. Front. Biol. 12, 421–429 (2017). https://doi.org/10.1007/s11515-017-1475-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-017-1475-x

Keywords

Navigation