Skip to main content
Log in

Differential expression of AP-1 transcription factors in human prostate LNCaP and PC-3 cells: role of Fra-1 in transition to CRPC status

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Androgen receptor (AR) signaling axis plays a vital role in the development of prostate and critical in the progression of prostate cancer. Androgen withdrawal initially regresses tumors but eventually develops into aggressive castration-resistant prostate cancer (CRPC). Activator Protein-1 (AP-1) transcription factors are most likely to be associated with malignant transformation in prostate cancer. Hence, to determine the implication of AR and AP-1 in promoting the transition of prostate cancer to the androgen-independent state, we used AR-positive LNCaP and AR-negative PC-3 cells as an in vitro model system. The effect of dihydrotestosterone or anti-androgen bicalutamide on the cell proliferation and viability was assessed by MTT assay. Expression studies on AR, marker genes-PSA, TMPRSS2, and different AP-1 factors were analyzed by semi-quantitative RT-PCR and expressions of AR and Fra-1 proteins were analyzed by Western blotting. Dihydrotestosterone induced the cell proliferation in LNCaP with no effect on PC-3 cells. Bicalutamide decreased the viability of both LNCaP and PC-3 cells. Dihydrotestosterone induced the expression of AR, PSA, c-Jun, and Fra-1 in LNCaP cells, and it was c-Jun and c-Fos in case of PC-3 cells, while bicalutamide decreased their expression. In addition, constitutive activation and non-regulation of Fra-1 by bicalutamide in PC-3 cells suggested that Fra-1, probably a key component, involved in transition of aggressive androgen-independent PC-3 cells with poor prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. American Cancer Society (ACS) (2010) Cancer facts and figures. American Cancer Society, Atlanta

    Google Scholar 

  2. Heinlein CA, Chang C (2004) Androgen receptor in prostate cancer. Endocr Rev 25:276–308. doi:10.1210/er.2002-0032

    Article  CAS  PubMed  Google Scholar 

  3. Lonergan PE, Tindall DJ (2011) Androgen receptor signaling in prostate cancer development and progression. J Carcinog 10:20. doi:10.4103/1477-3163.83937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Taplin ME, Ho SM (2001) Clinical review 134: The endocrinology of prostate cancer. J Clin Endocrinol Metab 86:3467–3477. doi:10.1210/jcem.86.8.7782

    Article  CAS  PubMed  Google Scholar 

  5. Dehm SM, Tindall DJ (2007) Androgen receptor structural and functional elements: role and regulation in prostate cancer. Mol Endocrinol 21:2855–2863. doi:10.1210/me.2007-0223

    Article  CAS  PubMed  Google Scholar 

  6. Attar RM, Takimoto CH, Gottardis MM (2009) Castration-resistant prostate cancer: locking up the molecular escape routes. Clin Cancer Res 15:3251–3255. doi:10.1158/1078-0432.ccr-08-1171

    Article  CAS  PubMed  Google Scholar 

  7. Bennett NC, Gardiner RA, Hooper JD, Johnson DW, Gobe GC (2010) Molecular cell biology of androgen receptor signalling. Int J Biochem Cell Biol 42:813–827. doi:10.1016/j.biocel.2009.11.013

    Article  CAS  PubMed  Google Scholar 

  8. Miyamoto H, Messing EM, Chang C (2004) Androgen deprivation therapy for prostate cancer: current status and future prospects. Prostate 61:332–353. doi:10.1002/pros.20115

    Article  CAS  PubMed  Google Scholar 

  9. Masiello D, Cheng S, Bubley GJ, Lu ML, Balk SP (2002) Bicalutamide functions as an androgen receptor antagonist by assembly of a transcriptionally inactive receptor. J Biol Chem 277:26321–26326. doi:10.1074/jbc.M203310200

    Article  CAS  PubMed  Google Scholar 

  10. Floyd MS Jr, Teahan SJ, Fitzpatrick JM, Watson RW (2009) Differential mechanisms of bicalutamide-induced apoptosis in prostate cell lines. Prostate Cancer Prostatic Dis 12:25–33. doi:10.1038/pcan.2008.23

    Article  PubMed  Google Scholar 

  11. Feldman BJ, Feldman D (2001) The development of androgen-independent prostate cancer. Nat Rev Cancer 1:34–45. doi:10.1038/35094009

    Article  CAS  PubMed  Google Scholar 

  12. Debes JD, Tindall DJ (2002) The role of androgens and the androgen receptor in prostate cancer. Cancer Lett 187:1–7

    Article  CAS  PubMed  Google Scholar 

  13. Shaulian E, Karin M (2002) AP-1 as a regulator of cell life and death. Nat Cell Biol 4:E131–E136. doi:10.1038/ncb0502-e131

    Article  CAS  PubMed  Google Scholar 

  14. Eferl R, Wagner EF (2003) AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 3:859–868. doi:10.1038/nrc1209

    Article  CAS  PubMed  Google Scholar 

  15. Angel P, Karin M (1991) The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta 1072:129–157

    CAS  PubMed  Google Scholar 

  16. Shaulian E, Karin M (2001) AP-1 in cell proliferation and survival. Oncogene 20:2390–2400. doi:10.1038/sj.onc.1204383

    Article  CAS  PubMed  Google Scholar 

  17. Hess J, Angel P, Schorpp-Kistner M (2004) AP-1 subunits: quarrel and harmony among siblings. J Cell Sci 117:5965–5973. doi:10.1242/jcs.01589

    Article  CAS  PubMed  Google Scholar 

  18. Kaminska B, Pyrzynska B, Ciechomska I, Wisniewska M (2000) Modulation of the composition of AP-1 complex and its impact on transcriptional activity. Acta Neurobiol Exp (Wars) 60:395–402

    CAS  Google Scholar 

  19. Wisdom R (1999) AP-1: one switch for many signals. Exp Cell Res 253:180–185. doi:10.1006/excr.1999.4685

    Article  CAS  PubMed  Google Scholar 

  20. Ripple MO, Henry WF, Rago RP, Wilding G (1997) Prooxidant-antioxidant shift induced by androgen treatment of human prostate carcinoma cells. J Natl Cancer Inst 89:40–48

    Article  CAS  PubMed  Google Scholar 

  21. Allen RG, Tresini M (2000) Oxidative stress and gene regulation. Free Radic Biol Med 28:463–499

    Article  CAS  PubMed  Google Scholar 

  22. Bubulya A, Wise SC, Shen XQ, Burmeister LA, Shemshedini L (1996) c-Jun can mediate androgen receptor-induced transactivation. J Biol Chem 271:24583–24589

    Article  CAS  PubMed  Google Scholar 

  23. Ouyang X, Jessen WJ, Al-Ahmadie H, Serio AM, Lin Y, Shih WJ, Reuter VE, Scardino PT, Shen MM, Aronow BJ, Vickers AJ, Gerald WL, Abate-Shen C (2008) Activator protein-1 transcription factors are associated with progression and recurrence of prostate cancer. Cancer Res 68:2132–2144. doi:10.1158/0008-5472.CAN-07-6055

    Article  CAS  PubMed  Google Scholar 

  24. Babu RL, Naveen Kumar M, Patil RH, Devaraju KS, Ramesh GT, Sharma SC (2013) Effect of estrogen and tamoxifen on the expression pattern of AP-1 factors in MCF-7 cells: role of c-Jun, c-Fos, and Fra-1 in cell cycle regulation. Mol Cell Biochem 380:143–151. doi:10.1007/s11010-013-1667-x

    Article  CAS  PubMed  Google Scholar 

  25. Patil RH, Babu RL, Naveen Kumar M, Kiran Kumar KM, Hegde SM, Nagesh R, Ramesh GT, Sharma SC (2016) Anti-inflammatory effect of apigenin on LPS-induced pro-inflammatory mediators and AP-1 factors in human lung epithelial cells. Inflammation 39:138–147. doi:10.1007/s10753-015-0232-z

    Article  CAS  PubMed  Google Scholar 

  26. Sharma SC, Clemens JW, Pisarska MD, Richards JS (1999) Expression and function of estrogen receptor subtypes in granulosa cells: regulation by estradiol and forskolin. Endocrinology 140:4320–4334. doi:10.1210/endo.140.9.6965

    Article  CAS  PubMed  Google Scholar 

  27. Patil RH, Babu RL, Naveen Kumar M, Kiran Kumar KM, Hegde SM, Ramesh GT, Chidananda Sharma S (2015) Apigenin inhibits PMA-induced expression of pro-inflammatory cytokines and AP-1 factors in A549 cells. Mol Cell Biochem 403:95–106. doi:10.1007/s11010-015-2340-3

    Article  CAS  PubMed  Google Scholar 

  28. Hegde SM, Kumar MN, Kavya K, Kumar KM, Nagesh R, Patil RH, Babu RL, Ramesh GT, Sharma SC (2016) Interplay of nuclear receptors (ER, PR, and GR) and their steroid hormones in MCF-7 cells. Mol Cell Biochem 422:109–120. doi:10.1007/s11010-016-2810-2

    Article  CAS  PubMed  Google Scholar 

  29. Arnold JT, Isaacs JT (2002) Mechanisms involved in the progression of androgen-independent prostate cancers: it is not only the cancer cell’s fault. Endocr Relat Cancer 9:61–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cunha GR, Donjacour AA, Cooke PS, Mee S, Bigsby RM, Higgins SJ, Sugimura Y (1987) The endocrinology and developmental biology of the prostate. Endocr Rev 8:338–362. doi:10.1210/edrv-8-3-338

    Article  CAS  PubMed  Google Scholar 

  31. Church DR, Lee E, Thompson TA, Basu HS, Ripple MO, Ariazi EA, Wilding G (2005) Induction of AP-1 activity by androgen activation of the androgen receptor in LNCaP human prostate carcinoma cells. Prostate 63:155–168. doi:10.1002/pros.20172

    Article  CAS  PubMed  Google Scholar 

  32. Shiota M, Yokomizo A, Naito S (2011) Increased androgen receptor transcription: a cause of castration-resistant prostate cancer and a possible therapeutic target. J Mol Endocrinol 47:R25–R41. doi:10.1530/jme-11-0018

    Article  CAS  PubMed  Google Scholar 

  33. Nakamura K, Yasunaga Y, Segawa T, Ko D, Moul JW, Srivastava S, Rhim JS (2002) Curcumin down-regulates AR gene expression and activation in prostate cancer cell lines. Int J Oncol 21:825–830

    CAS  PubMed  Google Scholar 

  34. Lorenzo PI, Saatcioglu F (2008) Inhibition of apoptosis in prostate cancer cells by androgens is mediated through downregulation of c-Jun N-terminal kinase activation. Neoplasia 10:418–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sato N, Sadar MD, Bruchovsky N, Saatcioglu F, Rennie PS, Sato S, Lange PH, Gleave ME (1997) Androgenic induction of prostate-specific antigen gene is repressed by protein-protein interaction between the androgen receptor and AP-1/c-Jun in the human prostate cancer cell line LNCaP. J Biol Chem 272:17485–17494

    Article  CAS  PubMed  Google Scholar 

  36. Chen SY, Cai C, Fisher CJ, Zheng Z, Omwancha J, Hsieh CL, Shemshedini L (2006) c-Jun enhancement of androgen receptor transactivation is associated with prostate cancer cell proliferation. Oncogene 25:7212–7223. doi:10.1038/sj.onc.1209705

    Article  CAS  PubMed  Google Scholar 

  37. Tan MH, Li J, Xu HE, Melcher K, Yong EL (2015) Androgen receptor: structure, role in prostate cancer and drug discovery. Acta Pharmacol Sin 36:3–23. doi:10.1038/aps.2014.18

    Article  CAS  PubMed  Google Scholar 

  38. Wirth MP, Hakenberg OW and Froehner M (2007) Antiandrogens in the treatment of prostate cancer. Eur Urol 51:306–313. doi:10.1016/j.eururo.2006.08.043 (discussion 314)

    Article  CAS  PubMed  Google Scholar 

  39. Horoszewicz JS, Leong SS, Kawinski E, Karr JP, Rosenthal H, Chu TM, Mirand EA, Murphy GP (1983) LNCaP model of human prostatic carcinoma. Cancer Res 43:1809–1818

    CAS  PubMed  Google Scholar 

  40. Li J, Xiang S, Zhang Q, Wu J, Tang Q, Zhou J, Yang L, Chen Z, Hann SS (2015) Combination of curcumin and bicalutamide enhanced the growth inhibition of androgen-independent prostate cancer cells through SAPK/JNK and MEK/ERK1/2-mediated targeting NF-kappaB/p65 and MUC1-C. J Exp Clin Cancer Res 34:46. doi:10.1186/s13046-015-0168-z

    Article  PubMed  PubMed Central  Google Scholar 

  41. Vicentini C, Festuccia C, Angelucci A, Gravina GL, Muzi P, Eleuterio E, Miano R, Marronaro A, Tubaro A, Bologna M (2002) Bicalutamide dose-dependently inhibits proliferation in human prostatic carcinoma cell lines and primary cultures. Anticancer Res 22:2917–2922

    CAS  PubMed  Google Scholar 

  42. Lee EC, Zhan P, Schallhom R, Packman K, Tenniswood M (2003) Antiandrogen-induced cell death in LNCaP human prostate cancer cells. Cell Death Differ 10:761–771. doi:10.1038/sj.cdd.4401228

    Article  CAS  PubMed  Google Scholar 

  43. Rajput AB, Miller MA, De Luca A, Boyd N, Leung S, Hurtado-Coll A, Fazli L, Jones EC, Palmer JB, Gleave ME, Cox ME, Huntsman DG (2007) Frequency of the TMPRSS2:ERG gene fusion is increased in moderate to poorly differentiated prostate cancers. J Clin Pathol 60:1238–1243. doi:10.1136/jcp.2006.043810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vaarala MH, Porvari K, Kyllonen A, Lukkarinen O, Vihko P (2001) The TMPRSS2 gene encoding transmembrane serine protease is overexpressed in a majority of prostate cancer patients: detection of mutated TMPRSS2 form in a case of aggressive disease. Int J Cancer 94:705–710

    Article  CAS  PubMed  Google Scholar 

  45. Andersen RJ, Mawji NR, Wang J, Wang G, Haile S, Myung JK, Watt K, Tam T, Yang YC, Banuelos CA, Williams DE, McEwan IJ, Wang Y, Sadar MD (2010) Regression of castrate-recurrent prostate cancer by a small-molecule inhibitor of the amino-terminus domain of the androgen receptor. Cancer Cell 17:535–546. doi:10.1016/j.ccr.2010.04.027

    Article  CAS  PubMed  Google Scholar 

  46. Chinenov Y, Kerppola TK (2001) Close encounters of many kinds: Fos-Jun interactions that mediate transcription regulatory specificity. Oncogene 20:2438–2452. doi:10.1038/sj.onc.1204385

    Article  CAS  PubMed  Google Scholar 

  47. Feng Z, Joos HJ, Vallan C, Muhlbauer R, Altermatt HJ, Jaggi R (1998) Apoptosis during castration-induced regression of the prostate is Fos dependent. Oncogene 17:2593–2600. doi:10.1038/sj.onc.1202195

    Article  CAS  PubMed  Google Scholar 

  48. Edwards J, Krishna NS, Mukherjee R, Bartlett JM (2004) The role of c-Jun and c-Fos expression in androgen-independent prostate cancer. J Pathol 204:153–158. doi:10.1002/path0.1605

    Article  CAS  PubMed  Google Scholar 

  49. Zerbini LF, Wang Y, Cho JY, Libermann TA (2003) Constitutive activation of nuclear factor kappaB p50/p65 and Fra-1 and JunD is essential for deregulated interleukin 6 expression in prostate cancer. Cancer Res 63:2206–2215

    CAS  PubMed  Google Scholar 

  50. Vaz M, Machireddy N, Irving A, Potteti HR, Chevalier K, Kalvakolanu D, Reddy SP (2012) Oxidant-induced cell death and Nrf2-dependent antioxidative response are controlled by Fra-1/AP-1. Mol Cell Biol 32:1694–1709. doi:10.1128/MCB.06390-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang S, Li Y, Gao J, Zhang T, Li S, Luo A, Chen H, Ding F, Wang X, Liu Z (2013) MicroRNA-34 suppresses breast cancer invasion and metastasis by directly targeting Fra-1. Oncogene 32:4294–4303. doi:10.1038/onc.2012.432

    Article  CAS  PubMed  Google Scholar 

  52. Pfarr CM, Mechta F, Spyrou G, Lallemand D, Carillo S, Yaniv M (1994) Mouse JunD negatively regulates fibroblast growth and antagonizes transformation by ras. Cell 76:747–760

    Article  CAS  PubMed  Google Scholar 

  53. Andreucci JJ, Grant D, Cox DM, Tomc LK, Prywes R, Goldhamer DJ, Rodrigues N, Bedard PA, McDermott JC (2002) Composition and function of AP-1 transcription complexes during muscle cell differentiation. J Biol Chem 277:16426–16432. doi:10.1074/jbc.M110891200

    Article  CAS  PubMed  Google Scholar 

  54. McCabe LR, Banerjee C, Kundu R, Harrison RJ, Dobner PR, Stein JL, Lian JB, Stein GS (1996) Developmental expression and activities of specific fos and jun proteins are functionally related to osteoblast maturation: role of Fra-2 and Jun D during differentiation. Endocrinology 137:4398–4408. doi:10.1210/endo.137.10.8828501

    Article  CAS  PubMed  Google Scholar 

  55. Lasky SR, Iwata K, Rosmarin AG, Caprio DG, Maizel AL (1995) Differential regulation of JunD by dihydroxycholecalciferol in human chronic myelogenous leukemia cells. J Biol Chem 270:19676–19679

    Article  CAS  PubMed  Google Scholar 

  56. Li L, Liu L, Rao JN, Esmaili A, Strauch ED, Bass BL, Wang JY (2002) JunD stabilization results in inhibition of normal intestinal epithelial cell growth through P21 after polyamine depletion. Gastroenterology 123:764–779

    Article  CAS  PubMed  Google Scholar 

  57. Gunthert AR, Grundker C, Hollmann K, Emons G (2002) Luteinizing hormone-releasing hormone induces JunD-DNA binding and extends cell cycle in human ovarian cancer cells. Biochem Biophys Res Commun 294:11–15. doi:10.1016/S0006-291X(02)00427-8

    Article  CAS  PubMed  Google Scholar 

  58. Balk SP, Knudsen KE (2008) AR, the cell cycle, and prostate cancer. Nucl Recept Signal 6:e001. doi:10.1621/nrs.06001

    PubMed  PubMed Central  Google Scholar 

  59. Comstock CE, Augello MA, Schiewer MJ, Karch J, Burd CJ, Ertel A, Knudsen ES, Jessen WJ, Aronow BJ, Knudsen KE (2011) Cyclin D1 is a selective modifier of androgen-dependent signaling and androgen receptor function. J Biol Chem 286:8117–8127. doi:10.1074/jbc.M110.170720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Edwards J, Bartlett JM (2005) The androgen receptor and signal-transduction pathways in hormone-refractory prostate cancer. Part 2: Androgen-receptor cofactors and bypass pathways. BJU Int 95:1327–1335. doi:10.1111/j.1464-410X.2005.05527.x

    Article  CAS  PubMed  Google Scholar 

  61. Burlacu A (2003) Regulation of apoptosis by Bcl-2 family proteins. J Cell Mol Med 7:249–257

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude to the Department of Science and Technology-Promotion of University Research and Scientific Excellence (DST-PURSE) [SR/59/Z-23/2010/38(c)] and University Grant Commission-Centre with Potential for Excellence in Particular Area (UGC-CPEPA) [8-2/2008(NS/PE)], New Delhi for providing financial support. The authors also wish to express their gratitude to the Department of Microbiology and Biotechnology, Bangalore University, Bengaluru for providing the DST-FIST, UGC-SAP, and department facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Chidananda Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavya, K., Kumar, M.N., Patil, R.H. et al. Differential expression of AP-1 transcription factors in human prostate LNCaP and PC-3 cells: role of Fra-1 in transition to CRPC status. Mol Cell Biochem 433, 13–26 (2017). https://doi.org/10.1007/s11010-017-3012-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3012-2

Keywords

Navigation