Skip to main content
Log in

CLE peptide-mediated signaling in shoot and vascular meristem development

  • Review
  • Published:
Frontiers in Biology

Abstract

Background

Multicellular organisms rely on the transmission of information between cells to coordinate various biological processes during growth and development. Plants, like animals, utilize small peptide ligands as signaling molecules to transmit information between cells. These polypeptides typically act as extracellular messengers that are perceived by membrane-bound receptors, which then transduce the signal into the recipient cell to modify downstream gene transcription. The CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) proteins represent one of the largest and best understood families of small polypeptides in plants. Members of the CLE family play critical roles in mediating cell fate decisions during plant development, particularly within the unique meristem structures that contain stem cell reservoirs acting as sources of cells for continuous organ formation.

Objective

Here we review the roles of CLE family members in regulating the activity of the shoot apical meristems that generate the aerial parts of the plants, and of the vascular meristems that produce the sugar- and water-conducting tissues.

Methods

A systematic literature search was performed using the Google Scholar and PubMed search engines. The keywords “CLE”, “CLV3”, “TDIF”, “meristem”, and “plant stem cells” were used as search terms. The 95 retrieved articles, dating from 1992, were organized by topic and their key findings incorporated into the text.

Results

We summarize our current understanding of how the CLE peptide CLV3 orchestrates the activity of shoot apical meristems, describing its expression, processing and movement, as well as its intracellular signal transduction pathways, key target genes and downstream gene regulatory networks. We also discuss the roles of CLE peptide signaling in the vascular meristems to promote procambial cell proliferation and suppress xylem differentiation.

Conclusions

Signaling pathways mediated by CLE peptides are critical for stem cell maintenance and differentiation in shoot apical and vascular meristems in plants, exposing CLE genes as potential targets for increasing yield and biomass production. While large numbers of CLE genes are being discovered in plants, only a few have been functionally characterized. We anticipate that future research will continue to elucidate the roles of the CLE family in plant development, and their potential impacts on agriculture and commerce.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bedford M T, Clarke S G (2009). Protein arginine methylation in mammals: who, what, and why. Mol Cell, 33(1): 1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergeron J J M, Di Guglielmo G M, Dahan S, Dominguez M, Posner B I (2016). Spatial and temporal regulation of receptor tyrosine kinase activation and intracellular signal transduction. Annu Rev Biochem, 85(1): 573–597

    Article  CAS  PubMed  Google Scholar 

  • Betsuyaku S, Takahashi F, Kinoshita A, Miwa H, Shinozaki K, Fukuda H, Sawa S (2011). Mitogen-activated protein kinase regulated by the CLAVATA receptors contributes to shoot apical meristem homeostasis. Plant Cell Physiol, 52(1): 14–29

    Article  CAS  PubMed  Google Scholar 

  • Blackwell T K, Kretzner L, Blackwood E M, Eisenman R N, Weintraub H (1990). Sequence-specific DNA binding by the c-Myc protein. Science, 250(4984): 1149–1151

    Article  CAS  PubMed  Google Scholar 

  • Bleckmann A, Weidtkamp-Peters S, Seidel C A M, Simon R (2010). Stem cell signaling in Arabidopsis requires CRN to localize CLV2 to the plasma membrane. Plant Physiol, 152(1): 166–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bommert P, Nagasawa N S, Jackson D (2013). Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus. Nat Genet, 45(3): 334–337

    Article  CAS  PubMed  Google Scholar 

  • Bowe L M, Coat G, de Pamphilis C W (2000). Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and Gnetales’ closest relatives are conifers. Proc Natl Acad Sci USA, 97(8): 4092–4097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brand U, Fletcher J C, Hobe M, Meyerowitz E M, Simon R (2000). Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science, 289(5479): 617–619

    Article  CAS  PubMed  Google Scholar 

  • Breuninger H, Rikirsch E, Hermann M, Ueda M, Laux T (2008). Differential expression of WOX genes mediates apical-basal axis formation in the Arabidopsis embryo. Dev Cell, 14(6): 867–876

    Article  CAS  PubMed  Google Scholar 

  • Busch W, Miotk A, Ariel F D, Zhao Z, Forner J, Daum G, Suzaki T, Schuster C, Schultheiss S J, Leibfried A, Haubeiss S, Ha N, Chan R L, Lohmann J U (2010). Transcriptional control of a plant stem cell niche. Dev Cell, 18(5): 849–861

    Article  CAS  PubMed  Google Scholar 

  • Cadigan K M, Fish M P, Rulifson E J, Nusse R (1998). Wingless repression of Drosophila frizzled 2 expression shapes the Wingless morphogen gradient in the wing. Cell, 93(5): 767–777

    Article  CAS  PubMed  Google Scholar 

  • Caño-Delgado A, Yin Y, Yu C, Vafeados D, Mora-García S, Cheng J C, Nam K H, Li J, Chory J (2004). BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development, 131(21): 5341–5351

    Article  PubMed  CAS  Google Scholar 

  • Casamitjana-Martínez E, Hofhuis H F, Xu J, Liu C M, Heidstra R, Scheres B (2003). Root-specific CLE19 overexpression and the sol1/2 suppressors implicate a CLV-like pathway in the control of Arabidopsis root meristem maintenance. Curr Biol, 13(16): 1435–1441

    Article  PubMed  CAS  Google Scholar 

  • Chen M K, Wilson R L, Palme K, Ditengou F A, Shpak E D (2013). ERECTA family genes regulate auxin transport in the shoot apical meristem and forming leaf primordia. Plant Physiol, 162(4): 1978–1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark S E, Running M P, Meyerowitz E M (1993). CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development, 119(2): 397–418

    CAS  PubMed  Google Scholar 

  • Clark S E, Running M P, Meyerowitz E M (1995). CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1. Development, 121: 2057–2067

    CAS  Google Scholar 

  • Clark S E, Williams RW, Meyerowitz EM(1997). The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell, 89(4): 575–585

    Article  CAS  PubMed  Google Scholar 

  • Cock J M, McCormick S (2001). A large family of genes that share homology with CLAVATA3. Plant Physiol, 126(3): 939–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daum G, Medzihradszky A, Suzaki T, Lohmann J U (2014). A mechanistic framework for noncell autonomous stem cell induction in Arabidopsis. Proc Natl Acad Sci USA, 111(40): 14619–14624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeYoung B J, Bickle K L, Schrage K J, Muskett P, Patel K, Clark S E (2006). The CLAVATA1-related BAM1, BAM2 and BAM3 receptor kinase-like proteins are required for meristem function in Arabidopsis. Plant J, 45(1): 1–16

    Article  CAS  PubMed  Google Scholar 

  • DeYoung B J, Clark S E (2008). BAM receptors regulate stem cell specification and organ development through complex interactions with CLAVATA signaling. Genetics, 180(2): 895–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diévart A, Dalal M, Tax F E, Lacey A D, Huttly A, Li J, Clark S E (2003). CLAVATA1 dominant-negative alleles reveal functional overlap between multiple receptor kinases that regulate meristem and organ development. Plant Cell, 15(5): 1198–1211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dobrenel T, Caldana C, Hanson J, Robaglia C, Vincentz M, Veit B, Meyer C (2016). Tor signaling and nutrient sensing. Ann Rev Plant Biol, 67 (1): 261

    Article  CAS  Google Scholar 

  • Doebley J F, Gaut B S, Smith B D (2006). The molecular genetics of crop domestication. Cell, 127(7): 1309–1321

    Article  CAS  PubMed  Google Scholar 

  • Dolzblasz A, Nardmann J, Clerici E, Causier B, van der Graaff E, Chen J, Davies B, Werr W, Laux T (2016). Stem cell regulation by Arabidopsis WOX genes. Mol Plant, 9(7): 1028–1039

    Article  CAS  PubMed  Google Scholar 

  • Durbak A R, Tax F E (2011). CLAVATA signaling pathway receptors of Arabidopsis regulate cell proliferation in fruit organ formation as well as in meristems. Genetics, 189(1): 177–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engstrom E M, Andersen C M, Gumulak-Smith J, Hu J, Orlova E, Sozzani R, Bowman J L (2011). Arabidopsis homologs of the petunia HAIRY MERISTEM gene are required for maintenance of shoot and root indeterminacy. Plant Physiol, 155(2): 735–750

    Article  CAS  PubMed  Google Scholar 

  • Etchells J P, Mishra L S, Kumar M, Campbell L, Turner S R (2015). Wood formation in trees is increased by manipulating PXY-regulated cell division. Curr Biol, 25(8): 1050–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Etchells J P, Provost C M, Mishra L, Turner S R (2013). WOX4 and WOX14 act downstream of the PXY receptor kinase to regulate plant vascular proliferation independently of any role in vascular organisation. Development, 140(10): 2224–2234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Etchells J P, Turner S R (2010). The PXY-CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division. Development, 137(5): 767–774

    Article  CAS  PubMed  Google Scholar 

  • Fan C, Wu Y, Yang Q, Yang Y, Meng Q, Zhang K, Li J, Wang J, Zhou Y (2014). A novel single-nucleotide mutation in a CLAVATA3 gene homolog controls a multilocular silique trait in Brassica rapa L. Mol Plant, 7(12): 1788–1792

    Article  CAS  PubMed  Google Scholar 

  • Feng Z, Zhang B, Ding W, Liu X, Yang D L, Wei P, Cao F, Zhu S, Zhang F, Mao Y, Zhu J K (2013). Efficient genome editing in plants using a CRISPR/Cas system. Cell Res, 23(10): 1229–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher K, Turner S (2007). PXY, a receptor-like kinase essential for maintaining polarity during plant vascular-tissue development. Curr Biol, 17(12): 1061–1066

    Article  CAS  PubMed  Google Scholar 

  • Fletcher J C, Brand U, Running MP, Simon R, Meyerowitz EM (1999). Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science, 283(5409): 1911–1914

    Article  CAS  PubMed  Google Scholar 

  • Furner I J, Pumfrey J E (1992). Cell fate in the shoot apical meristem of Arabidopsis thaliana. Development, 115: 755–764

    Google Scholar 

  • Gifford E M (1954). The shoot apex in angiosperms. Bot Rev, 20(8): 429–447

    Article  Google Scholar 

  • Goad D M, Zhu C, Kellogg E A (2017). Comprehensive identification and clustering of CLV3/ESR-related (CLE) genes in plants finds groups with potentially shared function. New Phytol, 216(2):605–616

    Article  CAS  PubMed  Google Scholar 

  • Gordon S P, Chickarmane V S, Ohno C, Meyerowitz E M (2009). Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. Proc Natl Acad Sci USA, 106(38): 16529–16534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grooteclaes M L, Frisch S M (2000). Evidence for a function of CtBP in epithelial gene regulation and anoikis. Oncogene, 19(33): 3823–3828

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Han L, Hymes M, Denver R, Clark S E (2010). CLAVATA2 forms a distinct CLE-binding receptor complex regulating Arabidopsis stem cell specification. Plant J, 63(6): 889–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han H, Zhang G, Wu M, Wang G (2016). Identification and characterization of the Populus trichocarpa CLE family. BMC Genomics, 17(1): 174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hastwell A H, Gresshoff P M, Ferguson B J (2015). Genome-wide annotation and characterization of CLAVATA/ESR (CLE) peptide hormones of soybean (Glycine max) and common bean (Phaseolus vulgaris), and their orthologues of Arabidopsis thaliana. J Exp Bot, 66(17): 5271–5287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirakawa Y, Kondo Y, Fukuda H (2010). TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in Arabidopsis. Plant Cell, 22(8): 2618–2629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirakawa Y, Shinohara H, Kondo Y, Inoue A, Nakanomyo I, Ogawa M, Sawa S, Ohashi-Ito K, Matsubayashi Y, Fukuda H (2008). Non-cellautonomous control of vascular stem cell fate by a CLE peptide/ receptor system. Proc Natl Acad Sci USA, 105(39): 15208–15213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda M, Mitsuda N, Ohme-Takagi M (2009). Arabidopsis WUSCHEL is a bifunctional transcription factor that acts as a repressor in stem cell regulation and as an activator in floral patterning. Plant Cell, 21 (11): 3493–3505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irish V F, Sussex I M (1992). A fate map of the Arabidopsis embryonic shoot apical meristem. Development, 115: 745–753

    Google Scholar 

  • Ishida T, Tabata R, Yamada M, Aida M, Mitsumasu K, Fujiwara M, Yamaguchi K, Shigenobu S, Higuchi M, Tsuji H, Shimamoto K, Hasebe M, Fukuda H, Sawa S (2014). Heterotrimeric G proteins control stem cell proliferation through CLAVATA signaling in Arabidopsis. EMBO Rep, 15(11): 1202–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito Y, Nakanomyo I, Motose H, Iwamoto K, Sawa S, Dohmae N, Fukuda H (2006). Dodeca-CLE peptides as suppressors of plant stem cell differentiation. Science, 313(5788): 842–845

    Article  CAS  PubMed  Google Scholar 

  • Je B I, Gruel J, Lee Y K, Bommert P, Arevalo E D, Eveland A L, Wu Q, Goldshmidt A, Meeley R, Bartlett M, Komatsu M, Sakai H, Jönsson H, Jackson D (2016). Signaling from maize organ primordia via FASCIATED EAR3 regulates stem cell proliferation and yield traits. Nat Genet, 48(7): 785–791

    Article  CAS  PubMed  Google Scholar 

  • Jeong S, Trotochaud A E, Clark S E (1999). The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase. Plant Cell, 11(10): 1925–1934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji J, Strable J, Shimizu R, Koenig D, Sinha N, Scanlon M J (2010). WOX4 promotes procambial development. Plant Physiol, 152(3): 1346–1356

    Article  CAS  PubMed  Google Scholar 

  • Jun J, Fiume E, Roeder A H K, Meng L, Sharma V K, Osmont K S, Baker C, Ha C M, Meyerowitz E M, Feldman L J, Fletcher J C (2010). Comprehensive analysis of CLE polypeptide signaling gene expression and overexpression activity in Arabidopsis. Plant Physiol, 154(4): 1721–1736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kayes J M, Clark S E (1998). CLAVATA2, a regulator of meristem and organ development in Arabidopsis. Development, 125(19): 3843–3851

    CAS  PubMed  Google Scholar 

  • Kieffer M, Stern Y, Cook H, Clerici E, Maulbetsch C, Laux T, Davies B (2006). Analysis of the transcription factor WUSCHEL and its functional homologue in Antirrhinum reveals a potential mechanism for their roles in meristem maintenance. Plant Cell, 18(3): 560–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinoshita A, Betsuyaku S, Osakabe Y, Mizuno S, Nagawa S, Stahl Y, Simon R, Yamaguchi-Shinozaki K, Fukuda H, Sawa S (2010). RPK2 is an essential receptor-like kinase that transmits the CLV3 signal in Arabidopsis. Development, 137(22): 3911–3920

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita A, Seo M, Kamiya Y, Sawa S (2015). Mystery in genetics: PUB4 gives a clue to the complex mechanism of CLV signaling pathway in the shoot apical meristem. Plant Signal Behav, 10(6): e1028707

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kondo T, Sawa S, Kinoshita A, Mizuno S, Kakimoto T, Fukuda H, Sakagami Y (2006). A plant peptide encoded by CLV3 identified by in situ MALDI-TOF MS analysis. Science, 313(5788): 845–848

    Article  CAS  PubMed  Google Scholar 

  • Kondo Y, Ito T, Nakagami H, Hirakawa Y, Saito M, Tamaki T, Shirasu K, Fukuda H (2014). Plant GSK3 proteins regulate xylem cell differentiation downstream of TDIF-TDR signalling. Nat Commun, 5: 3504

    Article  PubMed  CAS  Google Scholar 

  • Kuittinen H, Aguadé M (2000). Nucleotide variation at the CHALCONE ISOMERASE locus in Arabidopsis thaliana. Genetics, 155(2): 863–872

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laux T, Mayer K F X, Berger J, Jürgens G (1996). The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development, 122(1): 87–96

    CAS  PubMed  Google Scholar 

  • Lease K A, Walker J C (2006). The Arabidopsis unannotated secreted peptide database, a resource for plant peptidomics. Plant Physiol, 142 (3): 831–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leibfried A, To J P C, Busch W, Stehling S, Kehle A, Demar M, Kieber J J, Lohmann J U (2005). WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature, 438(7071): 1172–1175

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Chakraborty S, Xu G (2017). Differential CLE peptide perception by plant receptors implicated from structural and functional analyses of TDIF-TDR interactions. PLoS One, 12(4): e0175317

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Long J A, Ohno C, Smith Z R, Meyerowitz E M (2006). TOPLESS regulates apical embryonic fate in Arabidopsis. Science, 312(5779): 1520–1523

    Article  CAS  PubMed  Google Scholar 

  • Mandel T, Candela H, Landau U, Asis L, Zelinger E, Carles C C, Williams L E (2016). Differential regulation of meristem size, morphology and organization by the ERECTA, CLAVATA and class III HD-ZIP pathways. Development, 143(9): 1612–1622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandel T, Moreau F, Kutsher Y, Fletcher J C, Carles C C, Eshed Williams L (2014). The ERECTA receptor kinase regulates Arabidopsis shoot apical meristem size, phyllotaxy and floral meristem identity. Development, 141(4): 830–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsubayashi Y (2014). Posttranslationally modified small-peptide signals in plants. Annu Rev Plant Biol, 65(1): 385–413

    Article  PubMed  CAS  Google Scholar 

  • Mayer K F X, Schoof H, Haecker A, Lenhard M, Jürgens G, Laux T (1998). Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell, 95(6): 805–815

    Article  CAS  PubMed  Google Scholar 

  • McCallum C M, Comai L, Greene E A, Henikoff S (2000). Targeting Induced Local Lesions IN Genomes (TILLING) for plant functional genomics. Plant Physiol, 123(2): 439–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng L, Ruth K C, Fletcher J C, Feldman L (2010). The roles of different CLE domains in Arabidopsis CLE polypeptide activity and functional specificity. Mol Plant, 3(4): 760–772

    Article  CAS  PubMed  Google Scholar 

  • Morita J, Kato K, Nakane T, Kondo Y, Fukuda H, Nishimasu H, Ishitani R, Nureki O (2016). Crystal structure of the plant receptor-like kinase TDR in complex with the TDIF peptide. Nat Comm, 7:12383

    Google Scholar 

  • Müller R, Bleckmann A, Simon R (2008). The receptor kinase CORYNE of Arabidopsis transmits the stem cell-limiting signal CLAVATA3 independently of CLAVATA1. Plant Cell, 20(4): 934–946

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nekrasov V, Staskawicz B, Weigel D, Jones J D G, Kamoun S (2013). Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol, 31(8): 691–693

    Article  CAS  PubMed  Google Scholar 

  • Ni J, Clark S E (2006). Evidence for functional conservation, sufficiency, and proteolytic processing of the CLAVATA3 CLE domain. Plant Physiol, 140(2): 726–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni J, Guo Y, Jin H, Hartsell J, Clark S E (2011). Characterization of a CLE processing activity. Plant Mol Biol, 75(1-2): 67–75

    Article  CAS  PubMed  Google Scholar 

  • Nimchuk Z L (2017). CLAVATA1 controls distinct signaling outputs that buffer shoot stem cell proliferation through a two-step transcriptional compensation loop. PLoS Genet, 13(3): e1006681

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nimchuk Z L, Tarr P T, Meyerowitz E M (2011a). An evolutionarily conserved pseudokinase mediates stem cell production in plants. Plant Cell, 23(3): 851–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nimchuk Z L, Tarr P T, Ohno C, Qu X, Meyerowitz E M (2011b). Plant stem cell signaling involves ligand-dependent trafficking of the CLAVATA1 receptor kinase. Curr Biol, 21(5): 345–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nimchuk Z L, Zhou Y, Tarr P T, Peterson B A, Meyerowitz E M(2015). Plant stem cell maintenance by transcriptional cross-regulation of related receptor kinases. Development, 142(6): 1043–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oelkers K, Goffard N, Weiller G F, Gresshoff PM, Mathesius U, Frickey T (2008). Bioinformatic analysis of the CLE signaling peptide family. BMC Plant Biol, 8(1): 1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ogawa M, Shinohara H, Sakagami Y, Matsubayashi Y (2008). Arabidopsis CLV3 peptide directly binds CLV1 ectodomain. Science, 319(5861): 294

    Article  CAS  PubMed  Google Scholar 

  • Ohta M, Matsui K, Hiratsu K, Shinshi H, Ohme-Takagi M (2001). Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell, 13(8): 1959–1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohyama K, Shinohara H, Ogawa-Ohnishi M, Matsubayashi Y (2009). A glycopeptide regulating stem cell fate in Arabidopsis thaliana. Nat Chem Biol, 5(8): 578–580

    Article  CAS  PubMed  Google Scholar 

  • Perales M, Rodriguez K, Snipes S, Yadav R K, Diaz-Mendoza M, Reddy G V (2016). Threshold-dependent transcriptional discrimination underlies stem cell homeostasis. Proc Natl Acad Sci USA, 113(41): e6298–E6306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfeiffer A, Janocha D, Dong Y, Medzihradszky A, Schöne S, Daum G, Suzaki T, Forner J, Langenecker T, Rempel E, Schmid M, Wirtz M, Hell R, Lohmann J U (2016). Integration of light and metabolic signals for stem cell activation at the shoot apical meristem. eLife, 5: e17023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Poethig R S (1987). Clonal analysis of cell lineage patterns in plant development. Am J Bot, 74(4): 581–194

    Article  Google Scholar 

  • Poethig R S, Coe E H J Jr, Johri M M (1986). Cell lineage patterns in maize Zea mays embryogenesis: A clonal analysis. Dev Biol, 117(2): 392–404

    Article  Google Scholar 

  • Poethig R S, Sussex I M (1985a). The cellular parameters of leaf development in tobacco: a clonal analysis. Planta, 165(2): 170–184

    Article  CAS  PubMed  Google Scholar 

  • Poethig R S, Sussex I M (1985b). The developmental morphology and growth dynamics of the tobacco leaf. Planta, 165(2): 158–169

    Article  CAS  PubMed  Google Scholar 

  • Prigge M J, Otsuga D, Alonso J M, Ecker J R, Drews G N, Clark S E (2005). Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. Plant Cell, 17(1): 61–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy G V, Meyerowitz E M (2005). Stem-cell homeostasis and growth dynamics can be uncoupled in the Arabidopsis shoot apex. Science, 310(5748): 663–667

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez K, Perales M, Snipes S, Yadav R K, Diaz-Mendoza M, Reddy G V (2016). DNA-dependent homodimerization, sub-cellular partitioning, and protein destabilization control WUSCHEL levels and spatial patterning. Proc Natl Acad Sci USA, 113(41): e6307–E6315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rojo E, Sharma V K, Kovaleva V, Raikhel N V, Fletcher J C (2002). CLV3 is localized to the extracellular space, where it activates the Arabidopsis CLAVATA stem cell signaling pathway. Plant Cell, 14 (5): 969–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satina S, Blakeslee A F, Avery A G (1940). Demonstration of the three germ layers in the shoot apex of Datura by means of induced polyploidy in periclinal chimeras. Am J Bot, 27(10): 895–905

    Article  Google Scholar 

  • Schoof H, Lenhard M, Haecker A, Mayer K F X, Jürgens G, Laux T (2000). The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell, 100(6): 635–644

    Article  CAS  PubMed  Google Scholar 

  • Schuster C, Gaillochet C, Medzihradszky A, Busch W, Daum G, Krebs M, Kehle A, Lohmann J U (2014). A regulatory framework for shoot stem cell control integrating metabolic, transcriptional, and phytohormone signals. Dev Cell, 28(4): 438–449

    Article  CAS  PubMed  Google Scholar 

  • Sharma V K, Ramirez J, Fletcher J C (2003). The Arabidopsis CLV3- like (CLE) genes are expressed in diverse tissues and encode secreted proteins. Plant Mol Biol, 51(3): 415–425

    Article  CAS  PubMed  Google Scholar 

  • Shimizu N, Ishida T, Yamada M, Shigenobu S, Tabata R, Kinoshita A, Yamaguchi K, Hasebe M, Mitsumasu K, Sawa S (2015). BAM 1 and RECEPTOR-LIKE PROTEIN KINASE 2 constitute a signaling pathway and modulate CLE peptide-triggered growth inhibition in Arabidopsis root. New Phytol, 208(4): 1104–1113

    Article  CAS  PubMed  Google Scholar 

  • Shinohara H, Matsubayashi Y (2013). Chemical synthesis of Arabidopsis CLV3 glycopeptide reveals the impact of hydroxyproline arabinosylation on peptide conformation and activity. Plant Cell Physiol, 54(3): 369–374

    Article  CAS  PubMed  Google Scholar 

  • Shinohara H, Matsubayashi Y (2015). Reevaluation of the CLV3- receptor interaction in the shoot apical meristem: dissection of the CLV3 signaling pathway from a direct ligand-binding point of view. Plant J, 82(2): 328–336

    Article  CAS  PubMed  Google Scholar 

  • Shiu S H, Bleecker A B (2001). Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci USA, 98(19): 10763–10768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith Z R, Long J A (2010). Control of Arabidopsis apical-basal embryo polarity by antagonistic transcription factors. Nature, 464(7287): 423–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somssich M, Je B I, Simon R, Jackson D (2016). CLAVATAWUSCHEL signaling in the shoot meristem. Development, 143 (18): 3238–3248

    Article  CAS  PubMed  Google Scholar 

  • Somssich M, Ma Q, Weidtkamp-Peters S, Stahl Y, Felekyan S, Bleckmann A, Seidel C A M, Simon R (2015). Real-time dynamics of peptide ligand-dependent receptor complex formation in planta. Sci Signal, 8(388): ra76

    Article  PubMed  CAS  Google Scholar 

  • Song S K, Lee M M, Clark S E (2006). POL and PLL1 phosphatases are CLAVATA1 signaling intermediates required for Arabidopsis shoot and floral stem cells. Development, 133(23): 4691–4698

    Article  CAS  PubMed  Google Scholar 

  • Song X F, Xu T T, Ren S C, Liu C M (2013). Individual amino acid residues in CLV3 peptide contribute to its stability in vitro. Plant Signal Behav, 8(9): 8

    Article  Google Scholar 

  • Song X F, Yu D L, Xu T T, Ren S C, Guo P, Liu C M (2012). Contributions of individual amino acid residues to the endogenous CLV3 function in shoot apical meristem maintenance in Arabidopsis. Mol Plant, 5(2): 515–523

    Article  CAS  PubMed  Google Scholar 

  • Steeves T A, Sussex I M (1989). Patterns in Plant Development. New York: Cambridge University Press.

    Book  Google Scholar 

  • Strabala T J, Phillips L, West M, Stanbra L (2014). Bioinformatic and phylogenetic analysis of the CLAVATA3/EMBRYO-SURROUNDING REGION (CLE) and the CLE-LIKE signal peptide genes in the Pinophyta. BMC Plant Biol, 14(1): 47

    Article  PubMed  PubMed Central  Google Scholar 

  • Stuurman J, Jäggi F, Kuhlemeier C (2002). Shoot meristem maintenance is controlled by a GRAS-gene mediated signal from differentiating cells. Genes Dev, 16(17): 2213–2218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suer S, Agusti J, Sanchez P, Schwarz M, Greb T (2011). WOX4 imparts auxin responsiveness to cambium cells in Arabidopsis. Plant Cell, 23 (9): 3247–3259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sussex IM (1954). Experiments on the cause of dorsiventrality in leaves. Nature, 174(4425): 351–352

    Article  Google Scholar 

  • Szemenyei H, Hannon M, Long J A (2008). TOPLESS mediates auxindependent transcriptional repression during Arabidopsis embryogenesis. Science, 319(5868): 1384–1386

    Article  CAS  PubMed  Google Scholar 

  • Tavormina P, De Coninck B, Nikonorova N, De Smet I, Cammue B P (2015). The plant peptidome: an expanding repertoire of structural features and biological functions. Plant Cell, 27(8): 2095–2118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • To J P C, Haberer G, Ferreira F J, Deruère J, Mason M G, Schaller G E, Alonso J M, Ecker J R, Kieber J J (2004). Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell, 16(3): 658–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trotochaud A E, Hao T, Wu G, Yang Z, Clark S E (1999). The CLAVATA1 receptor-like kinase requires CLAVATA3 for its assembly into a signaling complex that includes KAPP and a Rhorelated protein. Plant Cell, 11(3): 393–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchida N, Shimada M, Tasaka M (2013). ERECTA-family receptor kinases regulate stem cell homeostasis via buffering its cytokinin responsiveness in the shoot apical meristem. Plant Cell Physiol, 54 (3): 343–351

    Article  CAS  PubMed  Google Scholar 

  • Urano D, Jones A M (2014). Heterotrimeric G protein-coupled signaling in plants. Annu Rev Plant Biol, 65(1): 365–384

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Mitchum M G, Gao B, Li C, Diab H, Baum T J, Hussey R S, Davis E L (2005). A parasitism gene from a plant-parasitic nematode with function similar to CLAVATA3/ESR (CLE) of Arabidopsis thaliana. Mol Plant Pathol, 6(2): 187–191

    Article  PubMed  Google Scholar 

  • Whitford R, Fernandez A, De Groodt R, Ortega E, Hilson P (2008). Plant CLE peptides from two distinct functional classes synergistically induce division of vascular cells. Proc Natl Acad Sci USA, 105(47): 18625–18630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams RW, Wilson J M, Meyerowitz E M (1997). A possible role for kinase-associated protein phosphatase in the Arabidopsis CLAVATA1 signaling pathway. Proc Natl Acad Sci USA, 94(19): 10467–10472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu C, Liberatore K L, MacAlister C A, Huang Z, Chu Y H, Jiang K, Brooks C, Ogawa-Ohnishi M, Xiong G, Pauly M, Van Eck J, Matsubayashi Y, van der Knaap E, Lippman Z B (2015). A cascade of arabinosyltransferases controls shoot meristem size in tomato. Nat Genet, 47(7): 784–792

    Article  CAS  PubMed  Google Scholar 

  • Xu T T, Song X F, Ren S C, Liu C M (2013). The sequence flanking the N-terminus of the CLV3 peptide is critical for its cleavage and activity in stem cell regulation in Arabidopsis. BMC Plant Biol, 13 (1): 225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yadav R K, Perales M, Gruel J, Girke T, Jönsson H, Reddy G V (2011). WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex. Genes Dev, 25(19): 2025–2030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav R K, Perales M, Gruel J, Ohno C, Heisler M, Girke T, Jönsson H, Reddy G V (2013). Plant stem cell maintenance involves direct transcriptional repression of differentiation program. Mol Syst Biol, 9 (1): 654

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamamoto R, Fujioka S, Iwamoto K, Demura T, Takatsuto S, Yoshida S, Fukuda H (2007). Co-regulation of brassinosteroid biosynthesisrelated genes during xylem cell differentiation. Plant Cell Physiol, 48 (1): 74–83

    Article  PubMed  CAS  Google Scholar 

  • Yue M, Li Q, Zhang Y, Zhao Y, Zhang Z, Bao S (2013). Histone H4R3 methylation catalyzed by SKB1/PRMT5 is required for maintaining shoot apical meristem. PLoS One, 8(12): e83258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang H, Lin X, Han Z, Qu L J, Chai J (2016). Crystal structure of PXYTDIF complex reveals a conserved recognition mechanism among CLE peptide-receptor pairs. Cell Res, 26(5): 543–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Tucker E, Hermann M, Laux T (2017). A molecular framework for the embryonic initiation of shoot meristem stem cells. Dev Cell, 40(3): 264–277.e4

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Liu X, Engstrom EM, Nimchuk Z L, Pruneda-Paz J L, Tarr P T, Yan A, Kay S A, Meyerowitz E M (2015). Control of plant stem cell function by conserved interacting transcriptional regulators. Nature, 517(7534): 377–380

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Wang Y, Li R, Song X, Wang Q, Huang S, Jin J B, Liu CM, Lin J (2010). Analysis of interactions among the CLAVATA3 receptors reveals a direct interaction between CLAVATA2 and CORYNE in Arabidopsis. Plant J, 61(2): 223–233

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer C. Fletcher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dao, T.Q., Fletcher, J.C. CLE peptide-mediated signaling in shoot and vascular meristem development. Front. Biol. 12, 406–420 (2017). https://doi.org/10.1007/s11515-017-1468-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-017-1468-9

Keywords

Navigation