Skip to main content
Log in

Evaluation of miR-21 and miR-150 expression in immune thrombocytopenic purpura pathogenesis: a case-control study

  • Research Article
  • Published:
Frontiers in Biology

Abstract

Background

Immune thrombocytopenic purpura (ITP) is a common autoimmune disorder diagnosed with thrombocytopenia and bleeding symptoms due to production of autoantibodies (Abs) against platelets. Nowadays, microRNAs are known as novel biomarkers for diagnosis of diseases. The aim of this study was to investigate the expression levels of miR-21 and miR-150 in ITP patients and determine the role of these miRNAs in ITP pathogenesis.

Materials and Methods

Thirty newly diagnosed patients with acute ITP and 30 healthy subjects( age and sex matched) as controls were enrolled in this study. The expression level of miR-21 and miR-150 was investigated using Real-time-PCR. Comparison of demographic characteristics of the cases was done using independent t-test and chi-square test. Comparison of the expression level of miR-21 and miR-150 with the related parameters was done using independent t-test or Mann–Whitney and Kruskal–Wallis test. Spearman rho correlation coefficient was used to investigate the relationship between the expression of miR-21 and miR-150 with demographic characteristics.

Results

The expression of miR-21, 150 in the patients was not different compared with the control group in general. A significant relationship between the expression of miR-21 with hemoglobin, hematocrit and red blood cell hemoglobin concentration was observed.

Discussion

Expression of miR-21 and miR-150 is not associated with pathogenesis of acute ITP and can involve the synergistic role of other miRNAs. Investigation of miR-21 and miR-150 expression along with other miRNAs and cytokines can be helpful in diagnosis and pathogenesis of ITP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anindo M I, Yaqinuddin A (2012). Insights into the potential use of microRNAs as biomarker in cancer. Int J Surg, 10(9): 443–449

    Article  PubMed  Google Scholar 

  • Babashah S, Sadeghizadeh M, Tavirani M R, Farivar S, Soleimani M (2012). Aberrant microRNA expression and its implications in the pathogenesis of leukemias. Cell Oncol (Dordr), 35(5): 317–334

    Article  CAS  Google Scholar 

  • Bai H, Xu R, Cao Z, Wei D, Wang C (2011). Involvement of miR-21 in resistance to daunorubicin by regulating PTEN expression in the leukaemia K562 cell line. FEBS Lett, 585(2): 402–408

    Article  CAS  PubMed  Google Scholar 

  • Bay A, Coskun E, Oztuzcu S, Ergun S, Yilmaz F, Aktekin E (2014). Plasma microRNA profiling of pediatric patients with immune thrombocytopenic purpura. Blood Coagul Fibrinolysis, 25(4): 379–383

    Article  CAS  PubMed  Google Scholar 

  • Bustin S A, Benes V, Garson J A, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl M W, Shipley G L, Vandesompele J, Wittwer C T (2009). The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem, 55(4): 611–622

    Article  CAS  PubMed  Google Scholar 

  • Dai Y, Huang Y S, Tang M, Lv T Y, Hu C X, Tan Y H, Xu ZM, Yin Y B (2007). Microarray analysis of microRNA expression in peripheral blood cells of systemic lupus erythematosus patients. Lupus, 16(12): 939–946

    Article  CAS  PubMed  Google Scholar 

  • Edelstein L C, Bray P F (2011). MicroRNAs in platelet production and activation. Blood, 117(20): 5289–5296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edelstein L C, Bray P F (2011). MicroRNAs in platelet production and activation. Blood, 117(20): 5289–5296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghisi M, Corradin A, Basso K, Frasson C, Serafin V, Mukherjee S, Mussolin L, Ruggero K, Bonanno L, Guffanti A, De Bellis G, Gerosa G, Stellin G, D’Agostino D M, Basso G, Bronte V, Indraccolo S, Amadori A, Zanovello P (2011). Modulation of microRNA expression in human T-cell development: targeting of NOTCH3 by miR-150. Blood, 117(26): 7053–7062

    Article  CAS  PubMed  Google Scholar 

  • Gordon J E, Wong J J, Rasko J E (2013). MicroRNAs in myeloid malignancies. Br J Haematol, 162(2): 162–176

    Article  CAS  PubMed  Google Scholar 

  • Heyns Adu P, Badenhorst P N, Lötter M G, Pieters H, Wessels P, Kotzé H F (1986). Platelet turnover and kinetics in immune thrombocytopenic purpura: results with autologous 111In-labeled platelets and homologous 51Cr-labeled platelets differ. Blood, 67(1): 86–92

    PubMed  Google Scholar 

  • Hussein K, Theophile K, Büsche G, Schlegelberger B, Göhring G, Kreipe H, Bock O (2010). Significant inverse correlation of microRNA-150/MYB and microRNA-222/p27 in myelodysplastic syndrome. Leuk Res, 34(3): 328–334

    Article  CAS  PubMed  Google Scholar 

  • Jernås M, Nookaew I, Wadenvik H, Olsson B (2013). MicroRNA regulate immunological pathways in T-cells in immune thrombocytopenia (ITP). Blood, 121(11): 2095–2098

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnsen J(2012). Pathogenesis in immune thrombocytopenia: new insights. Hematology Am Soc Hematol Educ Program, 2012(1): 306–312

    Google Scholar 

  • Khodadi E, Asnafi A A, Shahrabi S, Shahjahani M, Saki N (2016). Bone marrow niche in immune thrombocytopenia: a focus on megakaryopoiesis. Ann Hematol, 95(11): 1765–1776

    Article  CAS  PubMed  Google Scholar 

  • Ku F C, Tsai C R, Der Wang J, Wang C H, Chang T K, Hwang W L (2013). Stromal-derived factor-1 gene variations in pediatric patients with primary immune thrombocytopenia. Eur J Haematol, 90(1): 25–30

    Article  CAS  PubMed  Google Scholar 

  • Li H, Zhao H, Wang D, Yang R (2011). microRNA regulation in megakaryocytopoiesis. Br J Haematol, 155(3): 298–307

    Article  CAS  PubMed  Google Scholar 

  • Machlus K R, Thon J N, Italiano J E Jr(2014). Interpreting the developmental dance of the megakaryocyte: a review of the cellular and molecular processes mediating platelet formation. Br J Haematol, 165(2): 227–236

    Article  PubMed  Google Scholar 

  • Naderi M, Abdul T H, Soleimani M, Shabani I, Hashemi S M (2015). A Home-brew Real-time PCR Assay for Reliable Detection and Quantification of Mature miR-122. Appl Immunohistochem Mol Morphol, 23(8): 601–606

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl M W, Horgan G W, Dempfle L (2002). Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res, 30(9): e36

    Article  PubMed  PubMed Central  Google Scholar 

  • Rank A, Weigert O, Ostermann H (2010). Management of chronic immune thrombocytopenic purpura: targeting insufficient megakaryopoiesis as a novel therapeutic principle. Biologics, 4: 139–145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodeghiero F, Stasi R, Gernsheimer T, Michel M, Provan D, Arnold D M, Bussel J B, Cines D B, Chong B H, Cooper N, Godeau B, Lechner K, Mazzucconi M G, McMillan R, Sanz M A, Imbach P, Blanchette V, Kühne T, Ruggeri M, George J N (2009). Standardization of terminology, definitions and outcome criteria in immune thrombo-cytopenic purpura of adults and children: report from an international working group. Blood, 113(11): 2386–2393

    Article  CAS  PubMed  Google Scholar 

  • Rossi S, Shimizu M, Barbarotto E, Nicoloso MS, Dimitri F, Sampath D, Fabbri M, Lerner S, Barron L L, Rassenti L Z, Jiang L, Xiao L, Hu J, Secchiero P, Zauli G, Volinia S, Negrini M, Wierda W, Kipps T J, Plunkett W, Coombes K R, Abruzzo L V, Keating M J, Calin G A (2010). microRNA fingerprinting of CLL patients with chromosome 17p deletion identify a miR-21 score that stratifies early survival. Blood, 116(6): 945–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saki N, Abroun S, Soleimani M, Mortazavi Y, Kaviani S, Arefian E (2014). The roles of miR-146a in the differentiation of Jurkat Tlymphoblasts. Hematology, 19(3): 141–147

    Article  CAS  PubMed  Google Scholar 

  • Shah P P, Hutchinson L E, Kakar S S (2009). Emerging role of microRNAs in diagnosis and treatment of various diseases including ovarian cancer. J Ovarian Res, 2(1): 11

    Article  PubMed  PubMed Central  Google Scholar 

  • Stasi R (2012). Immune thrombocytopenia: Pathophysiologic and clinical update. Semin Thromb Hemost, 38: 454–462

    Article  CAS  PubMed  Google Scholar 

  • Tavakoli F, Jaseb K, Jalali Far M A, Soleimani M, Khodadi E, Saki N (2016). Evaluation of MicroRNA-146a expression in acute lymphoblastic Leukemia. Front Biol, 22: 1–6

    Google Scholar 

  • Wang M, Tan L P, Dijkstra M K, van Lom K, Robertus J L, Harms G, Blokzijl T, Kooistra K, van T’veer M B, Rosati S, Visser L, Jongen-Lavrencic M, Kluin P M, van den Berg A (2008). miRNA analysis in B-cell chronic lymphocytic leukaemia: proliferation centres characterized by low miR-150 and high BIC/miR-155 expression. J Pathol, 215(1): 13–20

    Article  CAS  PubMed  Google Scholar 

  • Zhou B, Zhao H, Yang R C, Han Z C (2005). Multi-dysfunctional pathophysiology in ITP. Crit Rev Oncol Hematol, 54(2): 107–116

    Article  PubMed  Google Scholar 

  • Zhu C, Wang Y, Kuai W, Sun X, Chen H, Hong Z (2013). Prognostic value of miR-29a expression in pediatric acute myeloid leukemia. Clin Biochem, 46(1-2): 49–53

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This paper is issued from thesis of Elahe Khodadi, MSc student of hematology and blood banking. This work was financially supported by grant TH94/1 from vice chancellor for research affairs of Ahvaz Jundishapur University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Najmaldin Saki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodadi, E., Asnafi, A.A., Mohammadi-Asl, J. et al. Evaluation of miR-21 and miR-150 expression in immune thrombocytopenic purpura pathogenesis: a case-control study. Front. Biol. 12, 361–369 (2017). https://doi.org/10.1007/s11515-017-1466-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-017-1466-y

Keywords

Navigation