Skip to main content
Log in

Succinate dehydrogenase in Parkinson’s disease

  • Review
  • Published:
Frontiers in Biology

Abstract

Background

The prevalence of neurodegenerative disorders such as Parkinson’s disease (PD) is increased by age. Alleviation of their symptoms and protection of normal neurons against degeneration are the main aspects of the researches to establish novel therapeutic strategies. Many studies have shown that mitochondria as the most important organelles in the brain which show impairment in PD models. Succinate dehydrogenase (SDH) as a component of the oxidative phosphorylation system in mitochondria connects Krebs cycle to the electron transport chain. Dysfunction or inhibition of the SDH can trigger mitochondrial impairment and disruption in ATP generation. Excessive in lipid synthesis and induction of the excitotoxicity as inducers in PD are controlled by SDH activity directly and indirectly. On the other hand, mutation in subunits of the SDH correlates with the onset of neurodegenerative disorders. Therefore, SDH could behave as one of the main regulators in neuroprotection.

Objective

In this review we will consider contribution of the SDH and its related mechanisms in PD.

Methods

Pubmed search engine was used to find published studies from 1977 to 2016. “Succinate dehydrogenase”, “lipid and brain”, “mitochondria and Parkinson’s disease” were the main keywords for searching in the engine.

Results

Wide ranges of studies (59 articles) in neurodegenerative disorders especially Parkinson’s disease like genetics of the Parkinson’s disease, effects of the mutant SDH on cell activity and physiology and lipid alteration in neurodegenerative disorders have been used in this review.

Conclusion

Mitochondria as key organelles in the energy generation plays crucial roles in PD. ETC complex in this organelle consists four complexes which alteration in their activities cause ROS generation and ATP depletion. Most of complexes are encoded by mtDNA while complex II is the only part of the ETC which is encoded by nuclear genome. So, focusing on the SDH and related pathways which have important role in neuronal survival and SDH has a potential to further studies as a novel neuroprotective agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali S F, David S N, Newport G D, Cadet J L, Slikker W Jr (1994). MPTPinduced oxidative stress and neurotoxicity are age-dependent: evidence from measures of reactive oxygen species and striatal dopamine levels. Synapse, 18(1): 27–34

    Article  CAS  PubMed  Google Scholar 

  • Beal M F, Brouillet E, Jenkins B, Henshaw R, Rosen B, Hyman B T (1993). Age-dependent striatal excitotoxic lesions produced by the endogenous mitochondrial inhibitor malonate. J Neurochem, 61(3): 1147–1150

    Article  CAS  PubMed  Google Scholar 

  • Berliocchi L, Bano D, Nicotera P (2005). Ca2+ signals and death programmes in neurons. Philos Trans R Soc Lond B Biol Sci, 360(1464): 2255–2258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonifati V (2007). Genetics of parkinsonism. Parkinsonism Relat Disord, 13(Suppl 3): S233–S241

    Article  PubMed  Google Scholar 

  • Cecchini G (2003). Function and structure of complex II of the respiratory chain. Annu Rev Biochem, 72(1): 77–109

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Zhang S M, Hernán M A, Willett W C, Ascherio A (2003). Dietary intakes of fat and risk of Parkinson’s disease. Am J Epidemiol, 157(11): 1007–1014

    Article  PubMed  Google Scholar 

  • Cole N B, Murphy D D, Grider T, Rueter S, Brasaemle D, Nussbaum R L (2002). Lipid droplet binding and oligomerization properties of the Parkinson’s disease protein alpha-synuclein. J Biol Chem, 277(8): 6344–6352

    Article  CAS  PubMed  Google Scholar 

  • Davis R E, Williams M (2012). Mitochondrial function and dysfunction: an update. J Pharmacol Exp Ther, 342(3): 598–607

    Article  CAS  PubMed  Google Scholar 

  • de Lau L M, Breteler M M (2006). Epidemiology of Parkinson’s disease. Lancet Neurol, 5(6): 525–535

    Article  PubMed  Google Scholar 

  • de Rijk MC, Breteler MM, Graveland G A, Ott A, Grobbee D E, van der Meché F G, Hofman A (1995). Prevalence of Parkinson’s disease in the elderly: the Rotterdam Study. Neurology, 45(12): 2143–2146

    Article  PubMed  Google Scholar 

  • Eberlé D, Hegarty B, Bossard P, Ferré P, Foufelle F (2004). SREBP transcription factors: master regulators of lipid homeostasis. Biochimie, 86(11): 839–848

    Article  PubMed  Google Scholar 

  • Etschmaier K, Becker T, Eichmann T O, Schweinzer C, Scholler M, Tam-Amersdorfer C, Poeckl M, Schuligoi R, Kober A, Chirackal Manavalan A P, Rechberger G N, Streith I E, Zechner R, Zimmermann R, Panzenboeck U (2011). Adipose triglyceride lipase affects triacylglycerol metabolism at brain barriers. J Neurochem, 119(5): 1016–1028

    Article  CAS  PubMed  Google Scholar 

  • Exner N, Lutz A K, Haass C, Winklhofer K F (2012). Mitochondrial dysfunction in Parkinson’s disease: molecular mechanisms and pathophysiological consequences. EMBO J, 31(14): 3038–3062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahy E, Subramaniam S, Brown H A, Glass C K, Merrill A H Jr, Murphy R C, Raetz C R, Russell D W, Seyama Y, Shaw W, Shimizu T, Spener F, van Meer G, VanNieuwenhze M S, White S H, Witztum J L, Dennis E A (2005). A comprehensive classification system for lipids. J Lipid Res, 46(5): 839–861

    Article  CAS  PubMed  Google Scholar 

  • Fernández A, Llacuna L, Fernández-Checa J C, Colell A (2009). Mitochondrial cholesterol loading exacerbates amyloid beta peptideinduced inflammation and neurotoxicity. J Neurosci, 29(20): 6394–6405

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Gomez F J, Galindo M F, Gómez-Lázaro M, Yuste V J, Comella J X, Aguirre N, Jordán J (2005). Malonate induces cell death via mitochondrial potential collapse and delayed swelling through an ROS-dependent pathway. Br J Pharmacol, 144(4): 528–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujimoto T, Parton R G (2011). Not just fat: the structure and function of the lipid droplet. Cold Spring Harb Perspect Biol, 3(3): 3

    Article  Google Scholar 

  • Gitler A D, Bevis B J, Shorter J, Strathearn K E, Hamamichi S, Su L J, Caldwell K A, Caldwell G A, Rochet J C, McCaffery J M, Barlowe C, Lindquist S (2008). The Parkinson’s disease protein alphasynuclein disrupts cellular Rab homeostasis. Proc Natl Acad Sci USA, 105(1): 145–150

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Shestov A A, Worth A J, Nath K, Nelson D S, Leeper D B, Glickson J D, Blair I A (2016). Inhibition of mitochondrial complex II by the anticancer agent lonidamine. J Biol Chem, 291(1): 42–57

    Article  CAS  PubMed  Google Scholar 

  • Gutman M, Kearney E B, Singer T P (1971). Control of succinate dehydrogenase in mitochondria. Biochemistry, 10(25): 4763–4770

    Article  CAS  PubMed  Google Scholar 

  • Hallett P J, Standaert D G (2004). Rationale for and use of NMDA receptor antagonists in Parkinson’s disease. Pharmacol Ther, 102(2): 155–174

    Article  CAS  PubMed  Google Scholar 

  • Hanagasi H A, Ayribas D, Baysal K, Emre M (2005). Mitochondrial complex I, II/III, and IV activities in familial and sporadic Parkinson’s disease. Int J Neurosci, 115(4): 479–493

    Article  CAS  PubMed  Google Scholar 

  • Hattori N, Tanaka M, Ozawa T, Mizuno Y (1991). Immunohistochemical studies on complexes I, II, III, and IV of mitochondria in Parkinson’s disease. Ann Neurol, 30(4): 563–571

    Article  CAS  PubMed  Google Scholar 

  • Horton J D, Goldstein J L, Brown MS (2002). SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest, 109(9): 1125–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishii T, Miyazawa M, Onodera A, Yasuda K, Kawabe N, Kirinashizawa M, Yoshimura S, Maruyama N, Hartman P S, Ishii N (2011). Mitochondrial reactive oxygen species generation by the SDHC V69E mutation causes low birth weight and neonatal growth retardation. Mitochondrion. 11(1): 155–165

    Article  CAS  PubMed  Google Scholar 

  • Ivatt R M, Whitworth A J (2014). SREBF1 links lipogenesis to mitophagy and sporadic Parkinson disease. Autophagy, 10(8): 1476–1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenner P (2003). Oxidative stress in Parkinson’s disease. Ann Neurol, 53(Suppl 3): S26–36; discussion S36–28

    Article  CAS  PubMed  Google Scholar 

  • Jodeiri Farshbaf M, Ghaedi K, Megraw T L, Curtiss J, Shirani Faradonbeh M, Vaziri P, Nasr-Esfahani M H (2016). Does PGC1/FNDC5/BDNF elicit the beneficial effects of exercise on neurodegenerative Disorders? Neuromolecular Med, 18(1): 1–15

    Article  CAS  PubMed  Google Scholar 

  • Jung K H, Chu K, Lee S T, Park H K, Kim J H, Kang K M, Kim M, Lee S K, Roh J K (2009). Augmentation of nitrite therapy in cerebral ischemia by NMDA receptor inhibition. Biochem Biophys Res Commun, 378(3): 507–512

    Article  CAS  PubMed  Google Scholar 

  • Khatchadourian A, Bourque S D, Richard V R, Titorenko V I, Maysinger D (2012). Dynamics and regulation of lipid droplet formation in lipopolysaccharide (LPS)-stimulated microglia. Biochim Biophys Acta, 1821(4): 607–617

    Article  CAS  PubMed  Google Scholar 

  • Kühlbrandt W (2015). Structure and function of mitochondrial membrane protein complexes. BMC Biol, 13(1): 89

    Article  PubMed  PubMed Central  Google Scholar 

  • Langston J W, Ballard P, Tetrud J W, Irwin I (1983). Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science, 219(4587): 979–980

    Article  CAS  PubMed  Google Scholar 

  • Legros F, Malka F, Frachon P, Lombès A, Rojo M (2004). Organization and dynamics of human mitochondrial DNA. J Cell Sci, 117(Pt 13): 2653–2662

    Article  CAS  PubMed  Google Scholar 

  • Linderholm H, Essén-Gustavsson B, Thornell L E (1990). Low succinate dehydrogenase (SDH) activity in a patient with a hereditary myopathy with paroxysmal myoglobinuria. J Intern Med, 228(1): 43–52

    Article  CAS  PubMed  Google Scholar 

  • Liot G, Bossy B, Lubitz S, Kushnareva Y, Sejbuk N, Bossy-Wetzel E (2009). Complex II inhibition by 3-NP causes mitochondrial fragmentation and neuronal cell death via an NMDA- and ROSdependent pathway. Cell Death Differ, 16(6): 899–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipton J O, Sahin M (2014). The neurology of mTOR. Neuron, 84(2): 275–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Zhang K, Sandoval H, Yamamoto S, Jaiswal M, Sanz E, Li Z, Hui J, Graham B H, Quintana A, Bellen H J (2015). Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration. Cell, 160(1-2): 177–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lodge D (2009). The history of the pharmacology and cloning of ionotropic glutamate receptors and the development of idiosyncratic nomenclature. Neuropharmacology, 56(1): 6–21

    Article  CAS  PubMed  Google Scholar 

  • Martin L J (2010). Mitochondrial and Cell Death Mechanisms in Neurodegenerative Diseases. Pharmaceuticals (Basel), 3(4): 839–915

    Article  CAS  Google Scholar 

  • Meijer A J (2003). Amino acids as regulators and components of nonproteinogenic pathways. J Nutr, 133(6 Suppl 1): 2057S–2062S

    CAS  PubMed  Google Scholar 

  • Okamoto K, Kimura A, Donishi T, Imbe H, Goda K, Kawanishi K, Tamai Y, Senba E (2006). Persistent monoarthritis of the temporomandibular joint region enhances nocifensive behavior and lumbar spinal Fos expression after noxious stimulation to the hindpaw in rats. Exp Brain Res, 170(3): 358–367

    Article  PubMed  Google Scholar 

  • Owen O E, Kalhan S C, Hanson RW (2002). The key role of anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem, 277(34): 30409–30412

    Article  CAS  PubMed  Google Scholar 

  • Perier C, Vila M (2012). Mitochondrial biology and Parkinson’s disease. Cold Spring Harb Perspect Med, 2(2): a009332

    Article  PubMed  PubMed Central  Google Scholar 

  • Porstmann T, Santos C R, Griffiths B, Cully M, Wu M, Leevers S, Griffiths J R, Chung Y L, Schulze A (2008). SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab, 8(3): 224–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Przedborski S (2005). Pathogenesis of nigral cell death in Parkinson’s disease. Parkinsonism Relat Disord, 11(Suppl 1): S3–S7

    Article  PubMed  Google Scholar 

  • Ralph S J, Moreno-Sánchez R, Neuzil J, Rodríguez-Enríquez S (2011). Inhibitors of succinate: quinone reductase/Complex II regulate production of mitochondrial reactive oxygen species and protect normal cells from ischemic damage but induce specific cancer cell death. Pharm Res, 28(11): 2695–2730

    Article  CAS  PubMed  Google Scholar 

  • Recchia A, Debetto P, Negro A, Guidolin D, Skaper S D, Giusti P (2004). Alpha-synuclein and Parkinson’s disease. FASEB J, 18(6): 617–626

    Article  CAS  PubMed  Google Scholar 

  • Risson V, Mazelin L, Roceri M, Sanchez H, Moncollin V, Corneloup C, Richard-Bulteau H, Vignaud A, Baas D, Defour A, Freyssenet D, Tanti J F, Le-Marchand-Brustel Y, Ferrier B, Conjard-Duplany A, Romanino K, Bauché S, Hantaï D, Mueller M, Kozma S C, Thomas G, Rüegg MA, Ferry A, Pende M, Bigard X, Koulmann N, Schaeffer L, Gangloff Y G (2009). Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy. J Cell Biol, 187(6): 859–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothstein J D (1996). Excitotoxicity hypothesis. Neurology, 47: S19–25; discussion S26

    Article  CAS  PubMed  Google Scholar 

  • Rottenberg H, Gutman M (1977). Control of the rate of reverse electron transport in submitochondrial particles by the free energy. Biochemistry, 16(14): 3220–3227

    Article  CAS  PubMed  Google Scholar 

  • Schapira A H, Cooper J M, Dexter D, Clark J B, Jenner P, Marsden C D (1990). Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem, 54(3): 823–827

    Article  CAS  PubMed  Google Scholar 

  • Schmitt M, Dehay B, Bezard E, Garcia-Ladona F J (2016). Harnessing the trophic and modulatory potential of statins in a dopaminergic cell line. Synapse, 70(3): 71–86

    Article  CAS  PubMed  Google Scholar 

  • Schulz J B (2005). Neuronal pathology in Parkinson’s disease. Cell Tissue Res, 320(1): 211

    Article  PubMed  Google Scholar 

  • Schulz J B, Falkenburger B H (2004). Neuronal pathology in Parkinson’s disease. Cell Tissue Res, 318(1): 135–147

    Article  PubMed  Google Scholar 

  • Schwall C T, Greenwood V L, Alder N N (2012). The stability and activity of respiratory Complex II is cardiolipin-dependent. Biochim Biophys Acta, 1817(9): 1588–1596

    Article  CAS  PubMed  Google Scholar 

  • Selman C, Tullet J M, Wieser D, Irvine E, Lingard S J, Choudhury A I, Claret M, Al-Qassab H, Carmignac D, Ramadani F, Woods A, Robinson I C, Schuster E, Batterham R L, Kozma S C, Thomas G, Carling D, Okkenhaug K, Thornton J M, Partridge L, Gems D, Withers D J (2009). Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science, 326(5949): 140–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun F, Huo X, Zhai Y, Wang A, Xu J, Su D, Bartlam M, Rao Z (2005). Crystal structure of mitochondrial respiratory membrane protein complex II. Cell, 121(7): 1043–1057

    Article  CAS  PubMed  Google Scholar 

  • Van Vranken J G, Bricker D K, Dephoure N, Gygi S P, Cox J E, Thummel C S, Rutter J (2014). SDHAF4 promotes mitochondrial succinate dehydrogenase activity and prevents neurodegeneration. Cell Metab, 20(2): 241–252

    Article  PubMed  PubMed Central  Google Scholar 

  • Villa-Cuesta E, Holmbeck MA, Rand DM (2014). Rapamycin increases mitochondrial efficiency by mtDNA-dependent reprogramming of mitochondrial metabolism in Drosophila. J Cell Sci, 127(Pt 10): 2282–2290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wübbeler J H, Hiessl S, Meinert C, Poehlein A, Schuldes J, Daniel R, Steinbüchel A (2015). The genome of Variovorax paradoxus strain TBEA6 provides new understandings for the catabolism of 3,3′-thiodipropionic acid and hence the production of polythioesters. J Biotechnol, 209: 85–95

    Article  PubMed  Google Scholar 

  • Yasuda T, Nakata Y, Mochizuki H (2013). α-Synuclein and neuronal cell death. Mol Neurobiol, 47(2): 466–483

    Article  CAS  PubMed  Google Scholar 

  • Younce C, Kolattukudy P (2012). MCP-1 induced protein promotes adipogenesis via oxidative stress, endoplasmic reticulum stress and autophagy. Cell Physiol Biochem, 30(2): 307–320

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Sheng M (2013). NMDA receptors in nervous system diseases. Neuropharmacology, 74: 69–75

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Jodeiri Farshbaf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farshbaf, M.J. Succinate dehydrogenase in Parkinson’s disease. Front. Biol. 12, 175–182 (2017). https://doi.org/10.1007/s11515-017-1450-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-017-1450-6

Keywords

Navigation