Skip to main content

Advertisement

Log in

Inhibitors of Succinate: Quinone Reductase/Complex II Regulate Production of Mitochondrial Reactive Oxygen Species and Protect Normal Cells from Ischemic Damage but Induce Specific Cancer Cell Death

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

An Erratum to this article was published on 13 September 2011

ABSTRACT

Succinate:quinone reductase (SQR) of Complex II, occupying a unique central point in the mitochondrial respiratory system as a major source of electrons driving reactive oxygen species (ROS) production, is an ideal pharmaceutical target for modulating ROS levels in normal cells to prevent oxidative stress-induced damage or increase ROS in cancer cells, inducing cell death. Value of drugs like diazoxide to prevent ROS production, protecting normal cells, while vit. E analogues promote ROS in cancer cells to kill them, is highlighted. As pharmaceuticals, agents may prevent degenerative disease; their modes of action are being fully explored. Evidence that SDH/Complex II is tightly coupled to NADH/NAD+ ratio in all cells, impacted by available supplies of Krebs cycle intermediates as essential NAD-linked substrates, and NAD+-dependent regulation of SDH/Complex II are reviewed, as are links to NAD+-dependent dehydrogenases, Complex I and E3 dihiydrolipoamide dehydrogenase to produce ROS. We collate and discuss diverse sources of information relating to ROS production in different biological systems, focussing on evidence for SQR as main source of ROS production in mitochondria, particularly its relevance to protection from oxidative stress and to mitochondrial-targeted anticancer drugs (mitocans) as novel cancer therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

α-TOS:

alpha-tocopheryl succinate

∆μH + :

electrochemical H+ gradient across the inner mitocondrial membrane

2-OG:

2-oxoglutarate

2-OGDH:

2-oxoglutarate dehydrogenase

3-BrPyr:

3-bromopyruvate

ANT:

adenine nucleotide translocator

DCA:

dichloroacetate

DCPIP:

dichlorophenolindophenol

DLD:

dihydrolipoamide dehydrogenase

FFAs:

free fatty acids

FH:

fumarate hydratase

MCA:

metabolic control analysis

MPTP:

mitochondrial permeability transition pore

O2 •:

superoxide

OAA:

oxaloacetate

OXPHOS:

oxidative phosphorylation

PDH:

pyruvate dehydrogenase

SDH:

succinate dehydrogenase

SMPs:

submitochondrial particles

SOD:

superoxide dismutase

SQR:

succinate quinone reductase

TTFA:

thenoyltrifluoroacetone

UQ:

ubiquinone

UQH:

semiquinone

UQH2 :

ubiquinol

REFERENCES

  1. Sun F, Huo X, Zhai Y, Wang A, Xu J, Su D, et al. Crystal structure of mitochondrial respiratory membrane protein complex II. Cell. 2005;121:1043–57.

    PubMed  CAS  Google Scholar 

  2. Maklashina E, Cecchini G. The quinone-binding and catalytic site of complex II. Biochim Biophys Acta. 2010;1797:1877–82.

    PubMed  CAS  Google Scholar 

  3. Xiong Y, Petersen PL, Lee C-P. Polarographic assays of mitochondrial functions. In: Celis JE, editor. Cell biology: a laboratory handbook. Oxford: Elsevier Academic Press; 2006. p. 259–64.

    Google Scholar 

  4. Brand MD. Measurement of the intramitochondrial P/O ratio. Biochem Biophys Res Commun. 1979;91:592–8.

    PubMed  CAS  Google Scholar 

  5. E.Gnaiger. Mitochondrial Pathways through Complexes I and II: Convergent Electron Transfer at the Q-Junction and Additive Effects of Substrate Combinations. In E.Gnaiger (ed.), Mitochondrial Pathways and Respiratory Control, OROBOROS MiPNet publications, Innsbruck, 2007, pp. 1–13.

  6. Garcia-Palmer FJ. Lack of functional assembly in mitochondrial supercomplexes: a new insight into impaired mitochondrial function? Cardiovasc Res. 2008;80:3–4.

    PubMed  CAS  Google Scholar 

  7. Lenaz G, Baracca A, Barbero G, Bergamini C, Dalmonte ME, Del SM, et al. Mitochondrial respiratory chain super-complex I-III in physiology and pathology. Biochim Biophys Acta. 2010;1797:633–40.

    PubMed  CAS  Google Scholar 

  8. Lenaz G, Genova ML. Structure and organization of mitochondrial respiratory complexes: a new understanding of an old subject. Antioxid Redox Signal. 2010;12:961–1008.

    PubMed  CAS  Google Scholar 

  9. Schagger H, Pfeiffer K. Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J. 2000;19:1777–83.

    PubMed  CAS  Google Scholar 

  10. Lenaz G, Genova ML. Mobility and function of coenzyme Q (ubiquinone) in the mitochondrial respiratory chain. Biochim Biophys Acta. 2009;1787:563–73.

    PubMed  CAS  Google Scholar 

  11. Dudkina NV, Kouril R, Bultema JB, Boekema EJ. Imaging of organelles by electron microscopy reveals protein-protein interactions in mitochondria and chloroplasts. FEBS Lett. 2010;584:2510–5.

    PubMed  CAS  Google Scholar 

  12. Schagger H, Pfeiffer K. The ratio of oxidative phosphorylation complexes I-V in bovine heart mitochondria and the composition of respiratory chain supercomplexes. J Biol Chem. 2001;276:37861–7.

    PubMed  CAS  Google Scholar 

  13. Schafer E, Dencher NA, Vonck J, Parcej DN. Three-dimensional structure of the respiratory chain supercomplex I1III2IV1 from bovine heart mitochondria. Biochemistry. 2007;46:12579–85.

    PubMed  Google Scholar 

  14. Rich PR, Marechal A. The mitochondrial respiratory chain. Essays Biochem. 2010;47:1–23.

    PubMed  CAS  Google Scholar 

  15. D.G.Nicholls and S.J.Ferguson. Bioenergetics 3, Academic Press, 2002.

  16. Bianchi C, Genova ML, Parenti CG, Lenaz G. The mitochondrial respiratory chain is partially organized in a supercomplex assembly: kinetic evidence using flux control analysis. J Biol Chem. 2004;279:36562–9.

    PubMed  CAS  Google Scholar 

  17. Moreno-Sanchez R, Bravo C, Westerhoff HV. Determining and understanding the control of flux. An illustration in submitochondrial particles of how to validate schemes of metabolic control. Eur J Biochem. 1999;264:427–33.

    PubMed  CAS  Google Scholar 

  18. Kroger A, Klingenberg M. Further evidence for the pool function of ubiquinone as derived from the inhibition of the electron transport by antimycin. Eur J Biochem. 1973;39:313–23.

    PubMed  CAS  Google Scholar 

  19. Kroger A, Klingenberg M. The kinetics of the redox reactions of ubiquinone related to the electron-transport activity in the respiratory chain. Eur J Biochem. 1973;34:358–68.

    PubMed  CAS  Google Scholar 

  20. M.Gutman. Kinetic analysis of electron flux through the quinones in the mitochondrial system. In G.Ed.Lenaz (ed.), Coenzyme Q, John Wiley, Chichester, UK, 1985, pp. 215–234.

  21. Estornell E, Fato R, Castelluccio C, Cavazzoni M, Parenti CG, Lenaz G. Saturation kinetics of coenzyme Q in NADH and succinate oxidation in beef heart mitochondria. FEBS Lett. 1992;311:107–9.

    PubMed  CAS  Google Scholar 

  22. Stoner CD. Steady-state kinetics of the overall oxidative phosphorylation reaction in heart mitochondria. Determination of the coupling relationships between the respiratory reactions and miscellaneous observations concerning rate-limiting steps. J Bioenerg Biomembr. 1984;16:115–41.

    PubMed  CAS  Google Scholar 

  23. Hatefi Y. Introduction–preparation and properties of the enzymes and enzymes complexes of the mitochondrial oxidative phosphorylation system. Methods Enzymol. 1978;53:3–4.

    PubMed  CAS  Google Scholar 

  24. Yu CA, Yu L, King TE. Soluble cytochrome b-c1 complex and the reconstitution of succinate-cytochrome c reductase. J Biol Chem. 1974;249:4905–10.

    PubMed  CAS  Google Scholar 

  25. Benard G, Faustin B, Galinier A, Rocher C, Bellance N, Smolkova K, et al. Functional dynamic compartmentalization of respiratory chain intermediate substrates: implications for the control of energy production and mitochondrial diseases. Int J Biochem Cell Biol. 2008;40:1543–54.

    PubMed  CAS  Google Scholar 

  26. Lee C, Johansson B, King TE. Reconstitution of respiratory control of succinate oxidation in submitochondrial particles. Biochem Biophys Res Commun. 1969;35:243–8.

    PubMed  CAS  Google Scholar 

  27. Tushurashvili PR, Gavrikova EV, Ledenev AN, Vinogradov AD. Studies on the succinate dehydrogenating system. Isolation and properties of the mitochondrial succinate-ubiquinone reductase. Biochim Biophys Acta. 1985;809:145–59.

    PubMed  CAS  Google Scholar 

  28. Choudhry ZM, Kotlyar AB, Vinogradov AD. Studies on the succinate dehydrogenating system. Interaction of the mitochondrial succinate-ubiquinone reductase with pyridoxal phosphate. Biochim Biophys Acta. 1986;850:131–8.

    PubMed  CAS  Google Scholar 

  29. Yu L, Yu CA. Interaction between succinate dehydrogenase and ubiquinone-binding protein from succinate-ubiquinone reductase. Biochim Biophys Acta. 1980;593:24–38.

    PubMed  CAS  Google Scholar 

  30. Kalina M, Weavers B, Pearse AG. Ultrastructural localization of succinate dehydrogenase in mouse liver mitochondria; a cytochemical study. J Histochem Cytochem. 1971;19:124–30.

    PubMed  CAS  Google Scholar 

  31. Barnes SJ, Weitzman PD. Organization of citric acid cycle enzymes into a multienzyme cluster. FEBS Lett. 1986;201:267–70.

    PubMed  CAS  Google Scholar 

  32. Beeckmans S, Kanarek L. Enzyme-enzyme interactions as modulators of the metabolic flux through the citric acid cycle. Biochem Soc Symp. 1987;54:163–72.

    PubMed  CAS  Google Scholar 

  33. Lyubarev AE, Kurganov BI. Supramolecular organization of tricarboxylic acid cycle enzymes. Biosystems. 1989;22:91–102.

    PubMed  CAS  Google Scholar 

  34. Robinson Jr JB, Inman L, Sumegi B, Srere PA. Further characterization of the Krebs tricarboxylic acid cycle metabolon. J Biol Chem. 1987;262:1786–90.

    PubMed  CAS  Google Scholar 

  35. Robinson Jr JB, Srere PA. Organization of Krebs tricarboxylic acid cycle enzymes in mitochondria. J Biol Chem. 1985;260:10800–5.

    PubMed  CAS  Google Scholar 

  36. Moore GE, Gadol SM, Robinson Jr JB, Srere PA. Binding of citrate synthase and malate dehydrogenase to mitochondrial inner membranes: tissue distribution and metabolite effects. Biochem Biophys Res Commun. 1984;121:612–8.

    PubMed  CAS  Google Scholar 

  37. Beeckmans S, Van DE, Kanarek L. Immobilized enzymes as tools for the demonstration of metabolon formation. A short overview. J Mol Recognit. 1993;6:195–204.

    PubMed  CAS  Google Scholar 

  38. Beeckmans S, Van DE, Kanarek L. Clustering of sequential enzymes in the glycolytic pathway and the citric acid cycle. J Cell Biochem. 1990;43:297–306.

    PubMed  CAS  Google Scholar 

  39. van der Laarse WJ, Diegenbach PC, Elzinga G. Maximum rate of oxygen consumption and quantitative histochemistry of succinate dehydrogenase in single muscle fibres of Xenopus laevis. J Muscle Res Cell Motil. 1989;10:221–8.

    PubMed  Google Scholar 

  40. Berridge MV, Herst PM, Tan AS. Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Annu Rev. 2005;11:127–52.

    PubMed  CAS  Google Scholar 

  41. Kacser H, Burns JA. The control of flux. Biochem Soc Trans. 1995;23:341–66.

    PubMed  CAS  Google Scholar 

  42. Kacser H, Burns JA. The control of flux. Symp Soc Exp Biol. 1973;27:65–104.

    PubMed  CAS  Google Scholar 

  43. Heinrich R, Rapoport SM, Rapoport TA. Metabolic regulation and mathematical models. Prog Biophys Mol Biol. 1977;32:1–82.

    PubMed  CAS  Google Scholar 

  44. Heinrich R, Rapoport TA. A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur J Biochem. 1974;42:89–95.

    PubMed  CAS  Google Scholar 

  45. Moreno-Sanchez R, Torres-Marquez ME. Control of oxidative phosphorylation in mitochondria, cells and tissues. Int J Biochem. 1991;23:1163–74.

    PubMed  CAS  Google Scholar 

  46. Brown GC. Control of respiration and ATP synthesis in mammalian mitochondria and cells. Biochem J. 1992;284(Pt 1):1–13.

    PubMed  CAS  Google Scholar 

  47. Fan TW, Lane AN, Higashi RM, Farag MA, Gao H, Bousamra M, et al. Altered regulation of metabolic pathways in human lung cancer discerned by (13)C stable isotope-resolved metabolomics (SIRM). Mol Cancer. 2009;8:41.

    PubMed  Google Scholar 

  48. Fan TW, Kucia M, Jankowski K, Higashi RM, Ratajczak J, Ratajczak MZ, et al. Rhabdomyosarcoma cells show an energy producing anabolic metabolic phenotype compared with primary myocytes. Mol Cancer. 2008;7:79.

    PubMed  Google Scholar 

  49. Kwong LK, Sohal RS. Substrate and site specificity of hydrogen peroxide generation in mouse mitochondria. Arch Biochem Biophys. 1998;350:118–26.

    PubMed  CAS  Google Scholar 

  50. Starkov AA. The role of mitochondria in reactive oxygen species metabolism and signaling. Ann N Y Acad Sci. 2008;1147:37–52.

    PubMed  CAS  Google Scholar 

  51. Hirst J, King MS, Pryde KR. The production of reactive oxygen species by complex I. Biochem Soc Trans. 2008;36:976–80.

    PubMed  CAS  Google Scholar 

  52. Rolfe DF, Brown GC. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev. 1997;77:731–58.

    PubMed  CAS  Google Scholar 

  53. Tahara EB, Navarete FD, Kowaltowski AJ. Tissue-, substrate-, and site-specific characteristics of mitochondrial reactive oxygen species generation. Free Radic Biol Med. 2009;46:1283–97.

    PubMed  CAS  Google Scholar 

  54. Gutman M. In: Lenaz G, editor. Kinetic analysis of electron flux through the quinones in the mitochondrial system. Chichester: Coenzyme Q, John Wiley; 1985. p. 215–34.

    Google Scholar 

  55. Gutman M, Silman N. Mutual inhibition between NADH oxidase and succinoxidase activities in respiring submitochondrial particles. FEBS Lett. 1972;26:207–10.

    PubMed  CAS  Google Scholar 

  56. Pryde KR, Hirst J. Superoxide Is Produced by the Reduced Flavin in Mitochondrial Complex I: a single, unified mechanism that applies during both forward and reverse electron transfer. J Biol Chem. 2011;286:18056–65.

    PubMed  CAS  Google Scholar 

  57. Kussmaul L, Hirst J. The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc Natl Acad Sci U S A. 2006;103:7607–12.

    PubMed  CAS  Google Scholar 

  58. Bortolami S, Comelato E, Zoccarato F, Alexandre A, Cavallini L. Long chain fatty acyl-CoA modulation of H(2)O (2) release at mitochondrial complex I. J Bioenerg Biomembr. 2008;40:9–18.

    PubMed  CAS  Google Scholar 

  59. Zoccarato F, Cavallini L, Bortolami S, Alexandre A. Succinate modulation of H2O2 release at NADH:ubiquinone oxidoreductase (Complex I) in brain mitochondria. Biochem J. 2007;406:125–9.

    PubMed  CAS  Google Scholar 

  60. Votyakova TV, Reynolds IJ. DeltaPsi(m)-Dependent and -independent production of reactive oxygen species by rat brain mitochondria. J Neurochem. 2001;79:266–77.

    PubMed  CAS  Google Scholar 

  61. Han D, Canali R, Rettori D, Kaplowitz N. Effect of glutathione depletion on sites and topology of superoxide and hydrogen peroxide production in mitochondria. Mol Pharmacol. 2003;64:1136–44.

    PubMed  CAS  Google Scholar 

  62. Hansford RG, Hogue BA, Mildaziene V. Dependence of H2O2 formation by rat heart mitochondria on substrate availability and donor age. J Bioenerg Biomembr. 1997;29:89–95.

    PubMed  CAS  Google Scholar 

  63. Korshunov SS, Skulachev VP, Starkov AA. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 1997;416:15–8.

    PubMed  CAS  Google Scholar 

  64. Lambert AJ, Brand MD. Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane. Biochem J. 2004;382:511–7.

    PubMed  CAS  Google Scholar 

  65. Lambert AJ, Brand MD. Inhibitors of the quinone-binding site allow rapid superoxide production from mitochondrial NADH:ubiquinone oxidoreductase (complex I). J Biol Chem. 2004;279:39414–20.

    PubMed  CAS  Google Scholar 

  66. Liu Y, Fiskum G, Schubert D. Generation of reactive oxygen species by the mitochondrial electron transport chain. J Neurochem. 2002;80:780–7.

    PubMed  CAS  Google Scholar 

  67. Zoccarato F, Cavallini L, Alexandre A. Succinate is the controller of O2-/H2O2 release at mitochondrial complex I: negative modulation by malate, positive by cyanide. J Bioenerg Biomembr. 2009;41:387–93.

    PubMed  CAS  Google Scholar 

  68. Lambert AJ, Buckingham JA, Brand MD. Dissociation of superoxide production by mitochondrial complex I from NAD(P)H redox state. FEBS Lett. 2008;582:1711–4.

    PubMed  CAS  Google Scholar 

  69. Brand MD, Affourtit C, Esteves TC, Green K, Lambert AJ, Miwa S, et al. Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic Biol Med. 2004;37:755–67.

    PubMed  CAS  Google Scholar 

  70. Grivennikova VG, Vinogradov AD. Generation of superoxide by the mitochondrial Complex I. Biochim Biophys Acta. 2006;1757:553–61.

    PubMed  CAS  Google Scholar 

  71. Grivennikova VG, Kareyeva AV, Vinogradov AD. What are the sources of hydrogen peroxide production by heart mitochondria? Biochim Biophys Acta. 2010;1797:939–44.

    PubMed  CAS  Google Scholar 

  72. Tomitsuka E, Kita K, Esumi H. The NADH-fumarate reductase system, a novel mitochondrial energy metabolism, is a new target for anticancer therapy in tumor microenvironments. Ann N Y Acad Sci. 2010;1201:44–9.

    PubMed  CAS  Google Scholar 

  73. Kareyeva AV, Grivennikova VG, Cecchini G, Vinogradov AD. Molecular identification of the enzyme responsible for the mitochondrial NADH-supported ammonium-dependent hydrogen peroxide production. FEBS Lett. 2011;585:385–9.

    PubMed  CAS  Google Scholar 

  74. Papa S, Lofrumento NE, Paradies G, Quagliariello E. Mechanism of inhibition by uncouples of succinate oxidation in isolated mitochondria. Biochim Biophys Acta. 1969;180:35–44.

    PubMed  CAS  Google Scholar 

  75. Wojtczak L, Wojtczak AB, Ernster L. The inhibition of succinate dehydrogenase by oxalacetate. Biochim Biophys Acta. 1969;191:10–21.

    PubMed  CAS  Google Scholar 

  76. Wojtczak AB. Inhibitory action of oxaloacetate on succinate oxidation in rat-liver mitochondria and the mechanism of its reversal. Biochim Biophys Acta. 1969;172:52–65.

    PubMed  CAS  Google Scholar 

  77. Moser MD, Matsuzaki S, Humphries KM. Inhibition of succinate-linked respiration and complex II activity by hydrogen peroxide. Arch Biochem Biophys. 2009;488:69–75.

    PubMed  CAS  Google Scholar 

  78. Dohm GL, Tapscott EB. Oxaloacetate inhibition of succinate oxidation in tightly coupled liver mitochondria with ferricyanide as an electron acceptor. Biochem Biophys Res Commun. 1973;52:246–53.

    PubMed  CAS  Google Scholar 

  79. Muller FL, Liu Y, Abdul-Ghani MA, Lustgarten MS, Bhattacharya A, Jang YC, et al. High rates of superoxide production in skeletal-muscle mitochondria respiring on both complex I- and complex II-linked substrates. Biochem J. 2008;409:491–9.

    PubMed  CAS  Google Scholar 

  80. Pisarenko OI, Khlopkov VN, Ruuge EK. A 1H NMR study of succinate synthesis from exogenous precursors in oxygen-deprived rat heart mitochondria. Biochem Int. 1986;12:145–53.

    PubMed  CAS  Google Scholar 

  81. Oestreicher AB, Van den Bergh SG, Slater EC. The inhibition by 2,4-dinitrophenol of the removal of oxaloacetate formed by the oxidation of succinate by rat-liver and -heart mitochondria. Biochim Biophys Acta. 1969;180:45–55.

    PubMed  CAS  Google Scholar 

  82. Piccoli C, Scrima R, Boffoli D, Capitanio N. Control by cytochrome c oxidase of the cellular oxidative phosphorylation system depends on the mitochondrial energy state. Biochem J. 2006;396:573–83.

    PubMed  CAS  Google Scholar 

  83. Sazanov LA, Hinchliffe P. Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science. 2006;311:1430–6.

    PubMed  CAS  Google Scholar 

  84. Hunte C, Zickermann V, Brandt U. Functional modules and structural basis of conformational coupling in mitochondrial complex I. Science. 2010;329:448–51.

    PubMed  CAS  Google Scholar 

  85. Zoccarato F, Cappellotto M, Alexandre A. Clorgyline and other propargylamine derivatives as inhibitors of succinate-dependent H(2)O(2) release at NADH:UBIQUINONE oxidoreductase (Complex I) in brain mitochondria. J Bioenerg Biomembr. 2008;40:289–96.

    PubMed  CAS  Google Scholar 

  86. Kushnareva Y, Murphy AN, Andreyev A. Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P) + oxidation-reduction state. Biochem J. 2002;368:545–53.

    PubMed  CAS  Google Scholar 

  87. Sato K, Kashiwaya Y, Keon CA, Tsuchiya N, King MT, Radda GK, et al. Insulin, ketone bodies, and mitochondrial energy transduction. FASEB J. 1995;9:651–8.

    PubMed  CAS  Google Scholar 

  88. Vinogradov AD. Respiratory complex I: structure, redox components, and possible mechanisms of energy transduction. Biochemistry (Mosc). 2001;66:1086–97.

    CAS  Google Scholar 

  89. Tuena M, Gomez-Puyou A, Pena A, Chavez E, Sandoval F. Effect of ATP on the oxidation of succinate in rat brain mitochondria. Eur J Biochem. 1969;11:283–90.

    PubMed  CAS  Google Scholar 

  90. Ezawa I, Ogata E. Ca2+ −induced activation of succinate dehydrogenase and the regulation of mitochondrial oxidative reactions. J Biochem. 1979;85:65–74.

    PubMed  CAS  Google Scholar 

  91. Ezawa I, Ogata E. Ca2+ requirement in ATP-induced activation of uncoupled oxidation of succinate in isolated rat-liver mitochondria. Eur J Biochem. 1977;77:427–35.

    PubMed  CAS  Google Scholar 

  92. Rustin P, Lance C. Succinate-driven reverse electron transport in the respiratory chain of plant mitochondria. The effects of rotenone and adenylates in relation to malate and oxaloacetate metabolism. Biochem J. 1991;274(Pt 1):249–55.

    PubMed  CAS  Google Scholar 

  93. Gardner PR, Raineri I, Epstein LB, White CW. Superoxide radical and iron modulate aconitase activity in mammalian cells. J Biol Chem. 1995;270:13399–405.

    PubMed  CAS  Google Scholar 

  94. Tretter L, Adam-Vizi V. Inhibition of Krebs cycle enzymes by hydrogen peroxide: a key role of [alpha]-ketoglutarate dehydrogenase in limiting NADH production under oxidative stress. J Neurosci. 2000;20:8972–9.

    PubMed  CAS  Google Scholar 

  95. Halestrap AP, Clarke SJ, Khaliulin I. The role of mitochondria in protection of the heart by preconditioning. Biochim Biophys Acta. 2007;1767:1007–31.

    PubMed  CAS  Google Scholar 

  96. Ardehali H, Chen Z, Ko Y, Mejia-Alvarez R, Marban E. Multiprotein complex containing succinate dehydrogenase confers mitochondrial ATP-sensitive K + channel activity. Proc Natl Acad Sci U S A. 2004;101:11880–5.

    PubMed  CAS  Google Scholar 

  97. Ardehali H, O’Rourke B. Mitochondrial K(ATP) channels in cell survival and death. J Mol Cell Cardiol. 2005;39:7–16.

    PubMed  CAS  Google Scholar 

  98. Facundo HT. J.G.de Paula, and A.J. Kowaltowski. Mitochondrial ATP-sensitive K + channels are redox-sensitive pathways that control reactive oxygen species production. Free Radic Biol Med. 2007;42:1039–48.

    PubMed  CAS  Google Scholar 

  99. Schafer G, Wegener C, Portenhauser R, Bojanovski D. Diazoxide, an inhibitor of succinate oxidation. Biochem Pharmacol. 1969;18:2678–81.

    PubMed  CAS  Google Scholar 

  100. Paucek P, Mironova G, Mahdi F, Beavis AD, Woldegiorgis G, Garlid KD. Reconstitution and partial purification of the glibenclamide-sensitive, ATP-dependent K + channel from rat liver and beef heart mitochondria. J Biol Chem. 1992;267:26062–9.

    PubMed  CAS  Google Scholar 

  101. Garlid KD, Paucek P, Yarov-Yarovoy V, Sun X, Schindler PA. The mitochondrial KATP channel as a receptor for potassium channel openers. J Biol Chem. 1996;271:8796–9.

    PubMed  CAS  Google Scholar 

  102. Garlid KD, Paucek P, Yarov-Yarovoy V, Murray HN, Darbenzio RB, D’Alonzo AJ, et al. Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K + channels. Possible mechanism of cardioprotection. Circ Res. 1997;81:1072–82.

    PubMed  CAS  Google Scholar 

  103. Szewczyk A, Marban E. Mitochondria: a new target for K channel openers? Trends Pharmacol Sci. 1999;20:157–61.

    PubMed  CAS  Google Scholar 

  104. Brustovetsky T, Shalbuyeva N, Brustovetsky N. Lack of manifestations of diazoxide/5-hydroxydecanoate-sensitive KATP channel in rat brain nonsynaptosomal mitochondria. J Physiol. 2005;568:47–59.

    PubMed  CAS  Google Scholar 

  105. Minners J, Lacerda L, Yellon DM, Opie LH, McLeod CJ, Sack MN. Diazoxide-induced respiratory inhibition - a putative mitochondrial K(ATP) channel independent mechanism of pharmacological preconditioning. Mol Cell Biochem. 2007;294:11–8.

    PubMed  CAS  Google Scholar 

  106. Ovide-Bordeaux S, Ventura-Clapier R, Veksler V. Do modulators of the mitochondrial K(ATP) channel change the function of mitochondria in situ? J Biol Chem. 2000;275:37291–5.

    PubMed  CAS  Google Scholar 

  107. Hanley PJ, Mickel M, Loffler M, Brandt U, Daut J. K(ATP) channel-independent targets of diazoxide and 5-hydroxydecanoate in the heart. J Physiol. 2002;542:735–41.

    PubMed  CAS  Google Scholar 

  108. Das M, Parker JE, Halestrap AP. Matrix volume measurements challenge the existence of diazoxide/glibencamide-sensitive KATP channels in rat mitochondria. J Physiol. 2003;547:893–902.

    PubMed  CAS  Google Scholar 

  109. Kopustinskiene DM, Toleikis A, Saris NE. Adenine nucleotide translocase mediates the K(ATP)-channel-openers-induced proton and potassium flux to the mitochondrial matrix. J Bioenerg Biomembr. 2003;35:141–8.

    PubMed  CAS  Google Scholar 

  110. Holmuhamedov EL, Jahangir A, Oberlin A, Komarov A, Colombini M, Terzic A. Potassium channel openers are uncoupling protonophores: implication in cardioprotection. FEBS Lett. 2004;568:167–70.

    PubMed  CAS  Google Scholar 

  111. Grimmsmann T, Rustenbeck I. Direct effects of diazoxide on mitochondria in pancreatic B-cells and on isolated liver mitochondria. Br J Pharmacol. 1998;123:781–8.

    PubMed  CAS  Google Scholar 

  112. Lim KH, Javadov SA, Das M, Clarke SJ, Suleiman MS, Halestrap AP. The effects of ischaemic preconditioning, diazoxide and 5-hydroxydecanoate on rat heart mitochondrial volume and respiration. J Physiol. 2002;545:961–74.

    PubMed  CAS  Google Scholar 

  113. Paddenberg R, Goldenberg A, Faulhammer P, Braun-Dullaeus RC, Kummer W. Mitochondrial complex II is essential for hypoxia-induced ROS generation and vasoconstriction in the pulmonary vasculature. Adv Exp Med Biol. 2003;536:163–9.

    PubMed  CAS  Google Scholar 

  114. Paddenberg R, Ishaq B, Goldenberg A, Faulhammer P, Rose F, Weissmann N, et al. Essential role of complex II of the respiratory chain in hypoxia-induced ROS generation in the pulmonary vasculature. Am J Physiol Lung Cell Mol Physiol. 2003;284:L710–9.

    PubMed  CAS  Google Scholar 

  115. Paddenberg R, Faulhammer P, Goldenberg A, Gries B, Heinl J, Kummer W. Impact of modulators of mitochondrial ATP-sensitive potassium channel (mitoK(ATP)) on hypoxic pulmonary vasoconstriction. Adv Exp Med Biol. 2009;648:361–8.

    PubMed  CAS  Google Scholar 

  116. B.B.Queliconi, A.P.Wojtovich, S.M.Nadtochiy, A.J.Kowaltowski, and P.S.Brookes. Redox regulation of the mitochondrial K(ATP) channel in cardioprotection. Biochim Biophys Acta (2010).

  117. Drose S, Hanley PJ, Brandt U. Ambivalent effects of diazoxide on mitochondrial ROS production at respiratory chain complexes I and III. Biochim Biophys Acta. 2009;1790:558–65.

    PubMed  Google Scholar 

  118. Junemann S, Heathcote P, Rich PR. On the mechanism of quinol oxidation in the bc1 complex. J Biol Chem. 1998;273:21603–7.

    PubMed  CAS  Google Scholar 

  119. Drose S, Brandt U. The mechanism of mitochondrial superoxide production by the cytochrome bc1 complex. J Biol Chem. 2008;283:21649–54.

    PubMed  Google Scholar 

  120. Liu B, Zhu X, Chen CL, Hu K, Swartz HM, Chen YR, et al. Opening of the mitoKATP channel and decoupling of mitochondrial complex II and III contribute to the suppression of myocardial reperfusion hyperoxygenation. Mol Cell Biochem. 2010;337:25–38.

    PubMed  CAS  Google Scholar 

  121. Miyadera H, Shiomi K, Ui H, Yamaguchi Y, Masuma R, Tomoda H, et al. Atpenins, potent and specific inhibitors of mitochondrial complex II (succinate-ubiquinone oxidoreductase). Proc Natl Acad Sci U S A. 2003;100:473–7.

    PubMed  CAS  Google Scholar 

  122. Wojtovich AP, Brookes PS. The complex II inhibitor atpenin A5 protects against cardiac ischemia-reperfusion injury via activation of mitochondrial KATP channels. Basic Res Cardiol. 2009;104:121–9.

    PubMed  CAS  Google Scholar 

  123. S.Drose, L.Bleier, and U.Brandt. A common mechanism links differently acting complex II inhibitors to cardioprotection: modulation of mitochondrial reactive oxygen species production. Mol Pharmacol (2011).

  124. Schafer G, Portenhauser R, Trolp R. Inhibition of mitochondrial metabolism by the diabetogenic thiadiazine diazoxide. I. Action on succinate dehydrogenase and TCA-cycle oxidations. Biochem Pharmacol. 1971;20:1271–80.

    PubMed  CAS  Google Scholar 

  125. Drose S, Brandt U, Hanley PJ. K + −independent actions of diazoxide question the role of inner membrane KATP channels in mitochondrial cytoprotective signaling. J Biol Chem. 2006;281:23733–9.

    PubMed  Google Scholar 

  126. Sarewicz M, Borek A, Cieluch E, Swierczek M, Osyczka A. Discrimination between two possible reaction sequences that create potential risk of generation of deleterious radicals by cytochrome bc. Implications for the mechanism of superoxide production. Biochim Biophys Acta. 2010;1797:1820–7.

    PubMed  CAS  Google Scholar 

  127. Borek A, Sarewicz M, Osyczka A. Movement of the iron-sulfur head domain of cytochrome bc(1) transiently opens the catalytic Q(o) site for reaction with oxygen. Biochemistry. 2008;47:12365–70.

    PubMed  CAS  Google Scholar 

  128. Folbergrova J, Ljunggren B, Norberg K, Siesjo BK. Influence of complete ischemia on glycolytic metabolites, citric acid cycle intermediates, and associated amino acids in the rat cerebral cortex. Brain Res. 1974;80:265–79.

    PubMed  CAS  Google Scholar 

  129. Benzi G, Arrigoni E, Marzatico F, Villa RF. Influence of some biological pyrimidines on the succinate cycle during and after cerebral ischemia. Biochem Pharmacol. 1979;28:2545–50.

    PubMed  CAS  Google Scholar 

  130. Benzi G, Pastoris O, Dossena M. Relationships between gamma-aminobutyrate and succinate cycles during and after cerebral ischemia. J Neurosci Res. 1982;7:193–201.

    PubMed  CAS  Google Scholar 

  131. Khazanov VA, Poborsky AN, Kondrashova MN. Air saturation of the medium reduces the rate of phosphorylating oxidation of succinate in isolated mitochondria. FEBS Lett. 1992;314:264–6.

    PubMed  CAS  Google Scholar 

  132. A.N.Poborskii. [Effect of research conditions on succinate oxidation in brain mitochondria in circulatory hypoxia]. Patol Fiziol Eksp Ter:10–12 (1997).

  133. Konig T, Nicholls DG, Garland PB. The inhibition of pyruvate and Ls(+)-isocitrate oxidation by succinate oxidation in rat liver mitochondria. Biochem J. 1969;114:589–96.

    PubMed  CAS  Google Scholar 

  134. Hohl C, Oestreich R, Rosen P, Wiesner R, Grieshaber M. Evidence for succinate production by reduction of fumarate during hypoxia in isolated adult rat heart cells. Arch Biochem Biophys. 1987;259:527–35.

    PubMed  CAS  Google Scholar 

  135. Grivennikova VG, Gavrikova EV, Timoshin AA, Vinogradov AD. Fumarate reductase activity of bovine heart succinate-ubiquinone reductase. New assay system and overall properties of the reaction. Biochim Biophys Acta. 1993;1140:282–92.

    PubMed  CAS  Google Scholar 

  136. Ackrell BA. Progress in understanding structure-function relationships in respiratory chain complex II. FEBS Lett. 2000;466:1–5.

    PubMed  CAS  Google Scholar 

  137. Pisarenko OI. Mechanisms of myocardial protection by amino acids: facts and hypotheses. Clin Exp Pharmacol Physiol. 1996;23:627–33.

    PubMed  CAS  Google Scholar 

  138. Pisarenko OI, Khlopkov VN, Ruuge EK. A 1H NMR study of succinate synthesis from exogenous precursors in oxygen-deprived rat heart mitochondria. Biochem Int. 1986;12:145–53.

    PubMed  CAS  Google Scholar 

  139. Penney DG, Cascarano J. Anaerobic rat heart. Effects of glucose and tricarboxylic acid-cycle metabolites on metabolism and physiological performance. Biochem J. 1970;118:221–7.

    PubMed  CAS  Google Scholar 

  140. Taegtmeyer H. Metabolic responses to cardiac hypoxia. Increased production of succinate by rabbit papillary muscles. Circ Res. 1978;43:808–15.

    PubMed  CAS  Google Scholar 

  141. Taegtmeyer H, Lesch M. Mechanisms of de novo alanine synthesis in hypoxic heart muscle. Verh Dtsch Ges Kreislaufforsch. 1977;43:269.

    PubMed  CAS  Google Scholar 

  142. Sanborn T, Gavin W, Berkowitz S, Perille T, Lesch M. Augmented conversion of aspartate and glutamate to succinate during anoxia in rabbit heart. Am J Physiol. 1979;237:H535–41.

    PubMed  CAS  Google Scholar 

  143. Freminet A, Leclerc L, Poyart C, Huel C, Gentil M. Alanine and succinate accumulation in the perfused rat heart during hypoxia. J Physiol (Paris). 1980;76:113–7.

    CAS  Google Scholar 

  144. Peuhkurinen KJ, Takala TE, Nuutinen EM, Hassinen IE. Tricarboxylic acid cycle metabolites during ischemia in isolated perfused rat heart. Am J Physiol. 1983;244:H281–8.

    PubMed  CAS  Google Scholar 

  145. Weinberg JM, Venkatachalam MA, Roeser NF, Saikumar P, Dong Z, Senter RA, et al. Anaerobic and aerobic pathways for salvage of proximal tubules from hypoxia-induced mitochondrial injury. Am J Physiol Renal Physiol. 2000;279:F927–43.

    PubMed  CAS  Google Scholar 

  146. Weinberg JM, Venkatachalam MA, Roeser NF, Nissim I. Mitochondrial dysfunction during hypoxia/reoxygenation and its correction by anaerobic metabolism of citric acid cycle intermediates. Proc Natl Acad Sci U S A. 2000;97:2826–31.

    PubMed  CAS  Google Scholar 

  147. Moreadith RW, Lehninger AL. The pathways of glutamate and glutamine oxidation by tumor cell mitochondria. Role of mitochondrial NAD(P)+−dependent malic enzyme. J Biol Chem. 1984;259:6215–21.

    PubMed  CAS  Google Scholar 

  148. Ralph SJ, Rodriguez-Enriquez S, Neuzil J, Moreno-Sanchez R. Bioenergetic pathways in tumor mitochondria as targets for cancer therapy and the importance of the ROS-induced apoptotic trigger. Mol Aspects Med. 2010;31:29–59.

    PubMed  CAS  Google Scholar 

  149. Mates JM, Segura JA, Campos-Sandoval JA, Lobo C, Alonso L, Alonso FJ, et al. Glutamine homeostasis and mitochondrial dynamics. Int J Biochem Cell Biol. 2009;41:2051–61.

    PubMed  CAS  Google Scholar 

  150. Marino G, Kroemer G. Ammonia: a diffusible factor released by proliferating cells that induces autophagy. Sci Signal. 2010;3:e19.

    Google Scholar 

  151. Kovacevic Z, McGivan JD. Mitochondrial metabolism of glutamine and glutamate and its physiological significance. Physiol Rev. 1983;63:547–605.

    PubMed  CAS  Google Scholar 

  152. Yang C, Sudderth J, Dang T, Bachoo RM, McDonald JG, DeBerardinis RJ. Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signaling. Cancer Res. 2009;69:7986–93.

    PubMed  CAS  Google Scholar 

  153. Wang JB, Erickson JW, Fuji R, Ramachandran S, Gao P, Dinavahi R, et al. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell. 2010;18:207–19.

    PubMed  CAS  Google Scholar 

  154. Erickson JW, Cerione RA. Glutaminase: A hot spot for regulation of cancer cell metabolism? Oncotarget. 2010;1:734–40.

    PubMed  Google Scholar 

  155. Ishii N, Ishii T, Hartman PS. The role of the electron transport SDHC gene on lifespan and cancer. Mitochondrion. 2007;7:24–8.

    PubMed  CAS  Google Scholar 

  156. Ishii N, Ishii T, Hartman PS. The role of the electron transport gene SDHC on lifespan and cancer. Exp Gerontol. 2006;41:952–6.

    PubMed  CAS  Google Scholar 

  157. Brown JM, Giaccia AJ. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res. 1998;58:1408–16.

    PubMed  CAS  Google Scholar 

  158. Kim WY, Kaelin WG. Role of VHL gene mutation in human cancer. J Clin Oncol. 2004;22:4991–5004.

    PubMed  CAS  Google Scholar 

  159. Kaelin Jr WG. The von Hippel-Lindau tumour suppressor protein: O2 sensing and cancer. Nat Rev Cancer. 2008;8:865–73.

    PubMed  CAS  Google Scholar 

  160. Brahimi-Horn MC, Pouyssegur J. Harnessing the hypoxia-inducible factor in cancer and ischemic disease. Biochem Pharmacol. 2007;73:450–7.

    PubMed  CAS  Google Scholar 

  161. Marin-Hernandez A, Gallardo-Perez JC, Ralph SJ, Rodriguez-Enriquez S, Moreno-Sanchez R. HIF-1alpha modulates energy metabolism in cancer cells by inducing over-expression of specific glycolytic isoforms. Mini Rev Med Chem. 2009;9:1084–101.

    PubMed  CAS  Google Scholar 

  162. Gottlieb E, Tomlinson IP. Mitochondrial tumour suppressors: a genetic and biochemical update. Nat Rev Cancer. 2005;5:857–66.

    PubMed  CAS  Google Scholar 

  163. Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD, et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell. 2005;7:77–85.

    PubMed  CAS  Google Scholar 

  164. Lu H, Dalgard CL, Mohyeldin A, McFate T, Tait AS, Verma A. Reversible inactivation of HIF-1 prolyl hydroxylases allows cell metabolism to control basal HIF-1. J Biol Chem. 2005;280:41928–39.

    PubMed  CAS  Google Scholar 

  165. Pollard PJ, Briere JJ, Alam NA, Barwell J, Barclay E, Wortham NC, et al. Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations. Hum Mol Genet. 2005;14:2231–9.

    PubMed  CAS  Google Scholar 

  166. King A, Selak MA, Gottlieb E. Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene. 2006;25:4675–82.

    PubMed  CAS  Google Scholar 

  167. Koivunen P, Hirsila M, Remes AM, Hassinen IE, Kivirikko KI, Myllyharju J. Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates: possible links between cell metabolism and stabilization of HIF. J Biol Chem. 2007;282:4524–32.

    PubMed  CAS  Google Scholar 

  168. MacKenzie ED, Selak MA, Tennant DA, Payne LJ, Crosby S, Frederiksen CM, et al. Cell-permeating alpha-ketoglutarate derivatives alleviate pseudohypoxia in succinate dehydrogenase-deficient cells. Mol Cell Biol. 2007;27:3282–9.

    PubMed  CAS  Google Scholar 

  169. Blank A, Schmitt AM, Korpershoek E, Van NF, Rudolph T, Weber N, et al. SDHB loss predicts malignancy in pheochromocytomas/sympathethic paragangliomas, but not through hypoxia signalling. Endocr Relat Cancer. 2010;17:919–28.

    PubMed  Google Scholar 

  170. Brieger J, Bedavanija A, Gosepath J, Maurer J, Mann WJ. Vascular endothelial growth factor expression, vascularization and proliferation in paragangliomas. ORL J Otorhinolaryngol Relat Spec. 2005;67:119–24.

    PubMed  CAS  Google Scholar 

  171. Lopez-Jimenez E, Gomez-Lopez G, Leandro-Garcia LJ, Munoz I, Schiavi F, Montero-Conde C, et al. Research resource: transcriptional profiling reveals different pseudohypoxic signatures in SDHB and VHL-related pheochromocytomas. Mol Endocrinol. 2010;24:2382–91.

    PubMed  CAS  Google Scholar 

  172. Ni Y, Zbuk KM, Sadler T, Patocs A, Lobo G, Edelman E, et al. Germline mutations and variants in the succinate dehydrogenase genes in Cowden and Cowden-like syndromes. Am J Hum Genet. 2008;83:261–8.

    PubMed  CAS  Google Scholar 

  173. Briere JJ, Favier J, Benit P, El Ghouzzi V, Lorenzato A, Rabier D, et al. Mitochondrial succinate is instrumental for HIF1alpha nuclear translocation in SDHA-mutant fibroblasts under normoxic conditions. Hum Mol Genet. 2005;14:3263–9.

    PubMed  CAS  Google Scholar 

  174. Briere JJ, Favier J, El Ghouzzi V, Djouadi F, Benit P, Gimenez AP, et al. Succinate dehydrogenase deficiency in human. Cell Mol Life Sci. 2005;62:2317–24.

    PubMed  CAS  Google Scholar 

  175. Slane BG, Aykin-Burns N, Smith BJ, Kalen AL, Goswami PC, Domann FE. Mutation of succinate dehydrogenase subunit C results in increased O2.-, oxidative stress, and genomic instability. Cancer Res. 2006;66:7615–20.

    PubMed  CAS  Google Scholar 

  176. Grivennikova VG, Cecchini G, Vinogradov AD. Ammonium-dependent hydrogen peroxide production by mitochondria. FEBS Lett. 2008;582:2719–24.

    PubMed  CAS  Google Scholar 

  177. Gazaryan IG, Krasnikov BF, Ashby GA, Thorneley RN, Kristal BS, Brown AM. Zinc is a potent inhibitor of thiol oxidoreductase activity and stimulates reactive oxygen species production by lipoamide dehydrogenase. J Biol Chem. 2002;277:10064–72.

    PubMed  CAS  Google Scholar 

  178. Okamura-Ikeda K, Hosaka H, Maita N, Fujiwara K, Yoshizawa AC, Nakagawa A, et al. Crystal structure of aminomethyltransferase in complex with dihydrolipoyl-H-protein of the glycine cleavage system: implications for recognition of lipoyl protein substrate, disease-related mutations, and reaction mechanism. J Biol Chem. 2010;285:18684–92.

    PubMed  CAS  Google Scholar 

  179. Link TA, von Jagow G. Zinc ions inhibit the QP center of bovine heart mitochondrial bc1 complex by blocking a protonatable group. J Biol Chem. 1995;270:25001–6.

    PubMed  CAS  Google Scholar 

  180. Raffaello A, Rizzuto R. Mitochondrial longevity pathways. Biochim Biophys Acta. 2011;1813:260–8.

    PubMed  CAS  Google Scholar 

  181. M.H.Vendelbo and K.S.Nair. Mitochondrial longevity pathways. Biochim Biophys Acta (2011).

  182. Tahara EB, Barros MH, Oliveira GA, Netto LE, Kowaltowski AJ. Dihydrolipoyl dehydrogenase as a source of reactive oxygen species inhibited by caloric restriction and involved in Saccharomyces cerevisiae aging. FASEB J. 2007;21:274–83.

    PubMed  CAS  Google Scholar 

  183. Haigis MC, Sinclair DA. Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol. 2010;5:253–95.

    PubMed  CAS  Google Scholar 

  184. L.Gil del Valle. Oxidative stress in aging: Theoretical outcomes and clinical evidences in humans. Biomed Pharmacother (2010).

  185. Starkov AA, Fiskum G, Chinopoulos C, Lorenzo BJ, Browne SE, Patel MS, et al. Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species. J Neurosci. 2004;24:7779–88.

    PubMed  CAS  Google Scholar 

  186. Tretter L, Adam-Vizi V. Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase. J Neurosci. 2004;24:7771–8.

    PubMed  CAS  Google Scholar 

  187. Huennekens F, Basford RE, Gabrio BW. An oxidase for reduced diphosphopyridine nucleotide. J Biol Chem. 1955;213:951–67.

    PubMed  CAS  Google Scholar 

  188. Massey V. Activation of molecular oxygen by flavins and flavoproteins. J Biol Chem. 1994;269:22459–62.

    PubMed  CAS  Google Scholar 

  189. Bunik VI, Sievers C. Inactivation of the 2-oxo acid dehydrogenase complexes upon generation of intrinsic radical species. Eur J Biochem. 2002;269:5004–15.

    PubMed  CAS  Google Scholar 

  190. Cooney GJ, Taegtmeyer H, Newsholme EA. Tricarboxylic acid cycle flux and enzyme activities in the isolated working rat heart. Biochem J. 1981;200:701–3.

    PubMed  CAS  Google Scholar 

  191. McCormack JG, Halestrap AP, Denton RM. Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev. 1990;70:391–425.

    PubMed  CAS  Google Scholar 

  192. Moreno-Sanchez R, Hogue BA, Hansford RG. Influence of NAD-linked dehydrogenase activity on flux through oxidative phosphorylation. Biochem J. 1990;268:421–8.

    PubMed  CAS  Google Scholar 

  193. Yudkoff M, Nelson D, Daikhin Y, Erecinska M. Tricarboxylic acid cycle in rat brain synaptosomes. Fluxes and interactions with aspartate aminotransferase and malate/aspartate shuttle. J Biol Chem. 1994;269:27414–20.

    PubMed  CAS  Google Scholar 

  194. Bunik VI. 2-Oxo acid dehydrogenase complexes in redox regulation. Eur J Biochem. 2003;270:1036–42.

    PubMed  CAS  Google Scholar 

  195. Muhling J, Tiefenbach M, Lopez-Barneo J, Piruat JI, Garcia-Flores P, Pfeil U, et al. Mitochondrial complex II participates in normoxic and hypoxic regulation of alpha-keto acids in the murine heart. J Mol Cell Cardiol. 2010;49:950–61.

    PubMed  Google Scholar 

  196. Olsson JM, Xia L, Eriksson LC, Bjornstedt M. Ubiquinone is reduced by lipoamide dehydrogenase and this reaction is potently stimulated by zinc. FEBS Lett. 1999;448:190–2.

    PubMed  CAS  Google Scholar 

  197. Xia L, Bjornstedt M, Nordman T, Eriksson LC, Olsson JM. Reduction of ubiquinone by lipoamide dehydrogenase. An antioxidant regenerating pathway. Eur J Biochem. 2001;268:1486–90.

    PubMed  CAS  Google Scholar 

  198. Ventura FV, Ruiter JP, Ijlst L, de Almeida IT, Wanders RJ. Inhibitory effect of 3-hydroxyacyl-CoAs and other long-chain fatty acid beta-oxidation intermediates on mitochondrial oxidative phosphorylation. J Inherit Metab Dis. 1996;19:161–4.

    PubMed  CAS  Google Scholar 

  199. Ventura FV, Ruiter J, Ijlst L, de Almeida IT, Wanders RJ. Differential inhibitory effect of long-chain acyl-CoA esters on succinate and glutamate transport into rat liver mitochondria and its possible implications for long-chain fatty acid oxidation defects. Mol Genet Metab. 2005;86:344–52.

    PubMed  CAS  Google Scholar 

  200. Ventura FV, Ruiter JP, Ijlst L, Almeida IT, Wanders RJ. Inhibition of oxidative phosphorylation by palmitoyl-CoA in digitonin permeabilized fibroblasts: implications for long-chain fatty acid beta-oxidation disorders. Biochim Biophys Acta. 1995;1272:14–20.

    PubMed  Google Scholar 

  201. Beatrice MC, Pfeiffer DR. The mechanism of palmitoyl-CoA inhibition of Ca2+ uptake in liver and heart mitochondria. Biochem J. 1981;194:71–7.

    PubMed  CAS  Google Scholar 

  202. Garland PB, Randle PJ. Control of pyruvate dehydrogenase in the perfused rat heart by the intracellular concentration of acetyl-coenzyme A. Biochem J. 1964;91:6C–7C.

    PubMed  CAS  Google Scholar 

  203. Wieland O, Von Jagow-Westermann B, Stukowski B. Kinetic and regulatory properties of heart muscle pyruvate dehydrogenase. Hoppe Seylers Z Physiol Chem. 1969;350:329–34.

    PubMed  CAS  Google Scholar 

  204. Bremer J. Pyruvate dehydrogenase, substrate specificity and product inhibition. Eur J Biochem. 1969;8:535–40.

    PubMed  CAS  Google Scholar 

  205. Tsai CS, Burgett MW, Reed LJ. Alpha-keto acid dehydrogenase complexes. XX. A kinetic study of the pyruvate dehydrogenase complex from bovine kidney. J Biol Chem. 1973;248:8348–52.

    PubMed  CAS  Google Scholar 

  206. Cooper RH, Randle PJ, Denton RM. Regulation of heart muscle pyruvate dehydrogenase kinase. Biochem J. 1974;143:625–41.

    PubMed  CAS  Google Scholar 

  207. Kerbey AL, Randle PJ, Cooper RH, Whitehouse S, Pask HT, Denton RM. Regulation of pyruvate dehydrogenase in rat heart. Mechanism of regulation of proportions of dephosphorylated and phosphorylated enzyme by oxidation of fatty acids and ketone bodies and of effects of diabetes: role of coenzyme A, acetyl-coenzyme A and reduced and oxidized nicotinamide-adenine dinucleotide. Biochem J. 1976;154:327–48.

    PubMed  CAS  Google Scholar 

  208. Hansford RG, Cohen L. Relative importance of pyruvate dehydrogenase interconversion and feed-back inhibition in the effect of fatty acids on pyruvate oxidation by rat heart mitochondria. Arch Biochem Biophys. 1978;191:65–81.

    PubMed  CAS  Google Scholar 

  209. Garland PB, Randle PJ. Regulation of glucose uptake by muscles. 10. Effects of alloxan-diabetes, starvation, hypophysectomy and adrenalectomy, and of fatty acids, ketone bodies and pyruvate, on the glycerol output and concentrations of free fatty acids, long-chain fatty acyl-coenzyme A, glycerol phosphate and citrate-cycle intermediates in rat heart and diaphragm muscles. Biochem J. 1964;93:678–87.

    PubMed  CAS  Google Scholar 

  210. Randle PJ, England PJ, Denton RM. Control of the tricarboxylate cycle and its interactions with glycolysis during acetate utilization in rat heart. Biochem J. 1970;117:677–95.

    PubMed  CAS  Google Scholar 

  211. Moore KH, Dandurand DM, Kiechle FL. Fasting induced alterations in mitochondrial palmitoyl-CoA metabolism may inhibit adipocyte pyruvate dehydrogenase activity. Int J Biochem. 1992;24:809–14.

    PubMed  CAS  Google Scholar 

  212. Lai JC, Cooper AJ. Neurotoxicity of ammonia and fatty acids: differential inhibition of mitochondrial dehydrogenases by ammonia and fatty acyl coenzyme A derivatives. Neurochem Res. 1991;16:795–803.

    PubMed  CAS  Google Scholar 

  213. Sauer SW, Okun JG, Hoffmann GF, Koelker S, Morath MA. Impact of short- and medium-chain organic acids, acylcarnitines, and acyl-CoAs on mitochondrial energy metabolism. Biochim Biophys Acta. 2008;1777:1276–82.

    PubMed  CAS  Google Scholar 

  214. Luis PB, Ruiter JP, Aires CC, Soveral G, de Almeida IT, Duran M, et al. Valproic acid metabolites inhibit dihydrolipoyl dehydrogenase activity leading to impaired 2-oxoglutarate-driven oxidative phosphorylation. Biochim Biophys Acta. 2007;1767:1126–33.

    PubMed  CAS  Google Scholar 

  215. Krebs HA, Johnson WA. Metabolism of ketonic acids in animal tissues. Biochem J. 1937;31:645–60.

    PubMed  CAS  Google Scholar 

  216. Cimen H, Han MJ, Yang Y, Tong Q, Koc H, Koc EC. Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria. Biochemistry. 2010;49:304–11.

    PubMed  CAS  Google Scholar 

  217. Verdin E, Hirschey MD, Finley LW, Haigis MC. Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Trends Biochem Sci. 2010;35:669–75.

    PubMed  CAS  Google Scholar 

  218. James AM, Smith RA, Murphy MP. Antioxidant and prooxidant properties of mitochondrial Coenzyme Q. Arch Biochem Biophys. 2004;423:47–56.

    PubMed  CAS  Google Scholar 

  219. O’Malley Y, Fink BD, Ross NC, Prisinzano TE, Sivitz WI. Reactive oxygen and targeted antioxidant administration in endothelial cell mitochondria. J Biol Chem. 2006;281:39766–75.

    PubMed  Google Scholar 

  220. Fink BD, O’Malley Y, Dake BL, Ross NC, Prisinzano TE, Sivitz WI. Mitochondrial targeted coenzyme Q, superoxide, and fuel selectivity in endothelial cells. PLoS One. 2009;4:e4250.

    PubMed  Google Scholar 

  221. James AM, Sharpley MS, Manas AR, Frerman FE, Hirst J, Smith RA, et al. Interaction of the mitochondria-targeted antioxidant MitoQ with phospholipid bilayers and ubiquinone oxidoreductases. J Biol Chem. 2007;282:14708–18.

    PubMed  CAS  Google Scholar 

  222. Plecita-Hlavata L, Jezek J, Jezek P. Pro-oxidant mitochondrial matrix-targeted ubiquinone MitoQ10 acts as anti-oxidant at retarded electron transport or proton pumping within Complex I. Int J Biochem Cell Biol. 2009;41:1697–707.

    PubMed  CAS  Google Scholar 

  223. Mowery PC, Steenkamp DJ, Ackrell AC, Singer TP, White GA. Inhibition of mammalian succinate dehydrogenase by carboxins. Arch Biochem Biophys. 1977;178:495–506.

    PubMed  CAS  Google Scholar 

  224. Trumpower BL, Simmons Z. Diminished inhibition of mitochondrial electron transfer from succinate to cytochrome c by thenoyltrifluoroacetone induced by antimycin. J Biol Chem. 1979;254:4608–16.

    PubMed  CAS  Google Scholar 

  225. Don AS, Hogg PJ. Mitochondria as cancer drug targets. Trends Mol Med. 2004;10:372–8.

    PubMed  CAS  Google Scholar 

  226. Gogvadze V, Orrenius S, Zhivotovsky B. Mitochondria as targets for cancer chemotherapy. Semin Cancer Biol. 2009;19:57–66.

    PubMed  CAS  Google Scholar 

  227. Fantin VR, Leder P. Mitochondriotoxic compounds for cancer therapy. Oncogene. 2006;25:4787–97.

    PubMed  CAS  Google Scholar 

  228. Neuzil J, Wang XF, Dong LF, Low P, Ralph SJ. Molecular mechanism of ‘mitocan’-induced apoptosis in cancer cells epitomizes the multiple roles of reactive oxygen species and Bcl-2 family proteins. FEBS Lett. 2006;580:5125–9.

    PubMed  CAS  Google Scholar 

  229. Ralph SJ, Neuzil J. Mitochondria as targets for cancer therapy. Mol Nutr Food Res. 2009;53:9–28.

    PubMed  CAS  Google Scholar 

  230. Ralph SJ, Neuzil J. Mitocans, a class of emerging anti-cancer drugs. Mol Nutr Food Res. 2009;53:7–8.

    PubMed  CAS  Google Scholar 

  231. Ralph SJ, Low P, Dong L, Lawen A, Neuzil J. Mitocans: mitochondrial targeted anti-cancer drugs as improved therapies and related patent documents. Recent Pat Anticancer Drug Discov. 2006;1:327–46.

    PubMed  CAS  Google Scholar 

  232. Neuzil J, Dong LF, Ramanathapuram L, Hahn T, Chladova M, Wang XF, et al. Vitamin E analogues as a novel group of mitocans: anti-cancer agents that act by targeting mitochondria. Mol Aspects Med. 2007;28:607–45.

    PubMed  CAS  Google Scholar 

  233. Neuzil J, Dyason JC, Freeman R, Dong LF, Prochazka L, Wang XF, et al. Mitocans as anti-cancer agents targeting mitochondria: lessons from studies with vitamin E analogues, inhibitors of complex II. J Bioenerg Biomembr. 2007;39:65–72.

    PubMed  CAS  Google Scholar 

  234. Neuzil J, Tomasetti M, Zhao Y, Dong LF, Birringer M, Wang XF, et al. Vitamin E analogs, a novel group of ‘mitocans,’ as anticancer agents: the importance of being redox-silent. Mol Pharmacol. 2007;71:1185–99.

    PubMed  CAS  Google Scholar 

  235. Neuzil J, Wang XF, Dong LF, Low P, Ralph SJ. Molecular mechanism of ‘mitocan’-induced apoptosis in cancer cells epitomizes the multiple roles of reactive oxygen species and Bcl-2 family proteins. FEBS Lett. 2006;580:5125–9.

    PubMed  CAS  Google Scholar 

  236. Neuzil J, Weber T, Gellert N, Weber C. Selective cancer cell killing by alpha-tocopheryl succinate. Br J Cancer. 2001;84:87–9.

    PubMed  CAS  Google Scholar 

  237. Geschwind JF, Ko YH, Torbenson MS, Magee C, Pedersen PL. Novel therapy for liver cancer: direct intraarterial injection of a potent inhibitor of ATP production. Cancer Res. 2002;62:3909–13.

    PubMed  CAS  Google Scholar 

  238. Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, et al. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell. 2007;11:37–51.

    PubMed  CAS  Google Scholar 

  239. Trachootham D, Zhou Y, Zhang H, Demizu Y, Chen Z, Pelicano H, et al. Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell. 2006;10:241–52.

    PubMed  CAS  Google Scholar 

  240. Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 2008;321:1801–6.

    PubMed  CAS  Google Scholar 

  241. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008;321:1807–12.

    PubMed  CAS  Google Scholar 

  242. Moreno-Sanchez R, Saavedra E, Rodriguez-Enriquez S, Gallardo-Perez JC, Quezada H, Westerhoff HV. Metabolic control analysis indicates a change of strategy in the treatment of cancer. Mitochondrion. 2010;10:626–39.

    PubMed  CAS  Google Scholar 

  243. Shiau CW, Huang JW, Wang DS, Weng JR, Yang CC, Lin CH, et al. alpha-Tocopheryl succinate induces apoptosis in prostate cancer cells in part through inhibition of Bcl-xL/Bcl-2 function. J Biol Chem. 2006;281:11819–25.

    PubMed  CAS  Google Scholar 

  244. Stapelberg M, Gellert N, Swettenham E, Tomasetti M, Witting PK, Procopio A, et al. Alpha-tocopheryl succinate inhibits malignant mesothelioma by disrupting the fibroblast growth factor autocrine loop: mechanism and the role of oxidative stress. J Biol Chem. 2005;280:25369–76.

    PubMed  CAS  Google Scholar 

  245. Weber T, Dalen H, Andera L, Negre-Salvayre A, Auge N, Sticha M, et al. Mitochondria play a central role in apoptosis induced by alpha-tocopheryl succinate, an agent with antineoplastic activity: comparison with receptor-mediated pro-apoptotic signaling. Biochemistry. 2003;42:4277–91.

    PubMed  CAS  Google Scholar 

  246. Wang XF, Witting PK, Salvatore BA, Neuzil J. Vitamin E analogs trigger apoptosis in HER2/erbB2-overexpressing breast cancer cells by signaling via the mitochondrial pathway. Biochem Biophys Res Commun. 2005;326:282–9.

    PubMed  CAS  Google Scholar 

  247. Swettenham E, Witting PK, Salvatore BA, Neuzil J. Alpha-tocopheryl succinate selectively induces apoptosis in neuroblastoma cells: potential therapy of malignancies of the nervous system? J Neurochem. 2005;94:1448–56.

    PubMed  CAS  Google Scholar 

  248. Kang YH, Lee E, Choi MK, Ku JL, Kim SH, Park YG, et al. Role of reactive oxygen species in the induction of apoptosis by alpha-tocopheryl succinate. Int J Cancer. 2004;112:385–92.

    PubMed  CAS  Google Scholar 

  249. Kogure K, Hama S, Manabe S, Tokumura A, Fukuzawa K. High cytotoxicity of alpha-tocopheryl hemisuccinate to cancer cells is due to failure of their antioxidative defense systems. Cancer Lett. 2002;186:151–6.

    PubMed  CAS  Google Scholar 

  250. Allen RG, Balin AK. Effects of oxygen on the antioxidant responses of normal and transformed cells. Exp Cell Res. 2003;289:307–16.

    PubMed  CAS  Google Scholar 

  251. Safford SE, Oberley TD, Urano M, St Clair DK. Suppression of fibrosarcoma metastasis by elevated expression of manganese superoxide dismutase. Cancer Res. 1994;54:4261–5.

    PubMed  CAS  Google Scholar 

  252. Church SL, Grant JW, Ridnour LA, Oberley LW, Swanson PE, Meltzer PS, et al. Increased manganese superoxide dismutase expression suppresses the malignant phenotype of human melanoma cells. Proc Natl Acad Sci U S A. 1993;90:3113–7.

    PubMed  CAS  Google Scholar 

  253. Huang P, Feng L, Oldham EA, Keating MJ, Plunkett W. Superoxide dismutase as a target for the selective killing of cancer cells. Nature. 2000;407:390–5.

    PubMed  CAS  Google Scholar 

  254. Neuzil J, Massa H. Hepatic processing determines dual activity of alpha-tocopheryl succinate: a novel paradigm for a shift in biological activity due to pro-vitamin-to-vitamin conversion. Biochem Biophys Res Commun. 2005;327:1024–7.

    PubMed  CAS  Google Scholar 

  255. Wang XF, Dong L, Zhao Y, Tomasetti M, Wu K, Neuzil J. Vitamin E analogues as anticancer agents: lessons from studies with alpha-tocopheryl succinate. Mol Nutr Food Res. 2006;50:675–85.

    PubMed  CAS  Google Scholar 

  256. Wang XF, Birringer M, Dong LF, Veprek P, Low P, Swettenham E, et al. A peptide conjugate of vitamin E succinate targets breast cancer cells with high ErbB2 expression. Cancer Res. 2007;67:3337–44.

    PubMed  CAS  Google Scholar 

  257. Tomasetti M, Gellert N, Procopio A, Neuzil J. A vitamin E analogue suppresses malignant mesothelioma in a preclinical model: a future drug against a fatal neoplastic disease? Int J Cancer. 2004;109:641–2.

    PubMed  CAS  Google Scholar 

  258. Dong LF, Low P, Dyason JC, Wang XF, Prochazka L, Witting PK, et al. Alpha-tocopheryl succinate induces apoptosis by targeting ubiquinone-binding sites in mitochondrial respiratory complex II. Oncogene. 2008;27:4324–35.

    PubMed  CAS  Google Scholar 

  259. Oostveen FG, Au HC, Meijer PJ, Scheffler IE. A Chinese hamster mutant cell line with a defect in the integral membrane protein CII-3 of complex II of the mitochondrial electron transport chain. J Biol Chem. 1995;270:26104–8.

    PubMed  CAS  Google Scholar 

  260. Albayrak T, Scherhammer V, Schoenfeld N, Braziulis E, Mund T, Bauer MK, et al. The tumor suppressor cybL, a component of the respiratory chain, mediates apoptosis induction. Mol Biol Cell. 2003;14:3082–96.

    PubMed  CAS  Google Scholar 

  261. Tran QM, Rothery RA, Maklashina E, Cecchini G, Weiner JH. The quinone binding site in Escherichia coli succinate dehydrogenase is required for electron transfer to the heme b. J Biol Chem. 2006;281:32310–7.

    PubMed  CAS  Google Scholar 

  262. Cheng VW, Ma E, Zhao Z, Rothery RA, Weiner JH. The iron-sulfur clusters in Escherichia coli succinate dehydrogenase direct electron flow. J Biol Chem. 2006;281:27662–8.

    PubMed  CAS  Google Scholar 

  263. McLennan HR, Degli EM. The contribution of mitochondrial respiratory complexes to the production of reactive oxygen species. J Bioenerg Biomembr. 2000;32:153–62.

    PubMed  CAS  Google Scholar 

  264. Adam-Vizi V, Chinopoulos C. Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol Sci. 2006;27:639–45.

    PubMed  CAS  Google Scholar 

  265. Valis K, Prochazka L, Boura E, Chladova J, Obsil T, Rohlena J, et al. Hippo/Mst1 stimulates transcription of the proapoptotic mediator NOXA in a FoxO1-dependent manner. Cancer Res. 2011;71:946–54.

    PubMed  CAS  Google Scholar 

  266. Prochazka L, Dong LF, Valis K, Freeman R, Ralph SJ, Turanek J, et al. alpha-Tocopheryl succinate causes mitochondrial permeabilization by preferential formation of Bak channels. Apoptosis. 2010;15:782–94.

    PubMed  CAS  Google Scholar 

  267. Dong LF, Jameson VJ, Tilly D, Cerny J, Mahdavian E, Marin-Hernandez A, et al. Mitochondrial targeting of vitamin E succinate enhances its pro-apoptotic and anti-cancer activity via mitochondrial complex II. J Biol Chem. 2011;286:3717–28.

    PubMed  CAS  Google Scholar 

  268. L.F.Dong, V.J.Jameson, D.Tilly, L.Prochazka, J.Rohlena, K.Valis, J.Truksa, R.Zobalova, E.Mahdavian, K.Kluckova, M.Stantic, J.Stursa, R.Freeman, P.K.Witting, E.Norberg, J.Goodwin, B.A.Salvatore, J.Novotna, J.Turanek, M.Ledvina, P.Hozak, B.Zhivotovsky, M.J.Coster, S.J.Ralph, R.A.Smith, and J.Neuzil. Mitochondrial targeting of alpha-tocopheryl succinate enhances its pro-apoptotic efficacy: A new paradigm of efficient cancer therapy. Free Radic Biol Med (2011).

  269. D’Angelo G, Duplan E, Boyer N, Vigne P, Frelin C. Hypoxia up-regulates prolyl hydroxylase activity: a feedback mechanism that limits HIF-1 responses during reoxygenation. J Biol Chem. 2003;278:38183–7.

    PubMed  Google Scholar 

  270. D’Angelo G, Duplan E, Vigne P, Frelin C. Cyclosporin A prevents the hypoxic adaptation by activating hypoxia-inducible factor-1alpha Pro-564 hydroxylation. J Biol Chem. 2003;278:15406–11.

    PubMed  Google Scholar 

  271. Holmuhamedov E, Lewis L, Bienengraeber M, Holmuhamedova M, Jahangir A, Terzic A. Suppression of human tumor cell proliferation through mitochondrial targeting. FASEB J. 2002;16:1010–6.

    PubMed  CAS  Google Scholar 

  272. Ding J, Ge D, Guo W, Lu C. Diazoxide-mediated growth inhibition in human lung cancer cells via downregulation of beta-catenin-mediated cyclin D1 transcription. Lung. 2009;187:61–7.

    PubMed  CAS  Google Scholar 

  273. van Hamersvelt HW, Kloke HJ, de Jong DJ, Koene RA, Huysmans FT. Oedema formation with the vasodilators nifedipine and diazoxide: direct local effect or sodium retention? J Hypertens. 1996;14:1041–5.

    PubMed  Google Scholar 

  274. Ozcan C, Holmuhamedov EL, Jahangir A, Terzic A. Diazoxide protects mitochondria from anoxic injury: implications for myopreservation. J Thorac Cardiovasc Surg. 2001;121:298–306.

    PubMed  CAS  Google Scholar 

  275. Ozcan C, Bienengraeber M, Dzeja PP, Terzic A. Potassium channel openers protect cardiac mitochondria by attenuating oxidant stress at reoxygenation. Am J Physiol Heart Circ Physiol. 2002;282:H531–9.

    PubMed  CAS  Google Scholar 

  276. Akao M, O’Rourke B, Kusuoka H, Teshima Y, Jones SP, Marban E. Differential actions of cardioprotective agents on the mitochondrial death pathway. Circ Res. 2003;92:195–202.

    PubMed  CAS  Google Scholar 

  277. Ichinose M, Yonemochi H, Sato T, Saikawa T. Diazoxide triggers cardioprotection against apoptosis induced by oxidative stress. Am J Physiol Heart Circ Physiol. 2003;284:H2235–41.

    PubMed  CAS  Google Scholar 

  278. Lenzen S, Panten U. Characterization of succinate dehydrogenase and alpha-glycerophosphate dehydrogenase in pancreatic islets. Biochem Med. 1983;30:349–56.

    PubMed  CAS  Google Scholar 

  279. Dzeja PP, Bast P, Ozcan C, Valverde A, Holmuhamedov EL, Van Wylen DG, et al. Targeting nucleotide-requiring enzymes: implications for diazoxide-induced cardioprotection. Am J Physiol Heart Circ Physiol. 2003;284:H1048–56.

    PubMed  CAS  Google Scholar 

  280. C.Gleason, S.Huang, L.F.Thatcher, R.C.Foley, C.R.Anderson, A.J.Carroll, A.H.Millar, and K.B.Singh. Mitochondrial complex II has a key role in mitochondrial-derived reactive oxygen species influence on plant stress gene regulation and defense. Proc Natl Acad Sci U S A (2011).

  281. Hirst J. Towards the molecular mechanism of respiratory complex I. Biochem J. 2010;425:327–39.

    CAS  Google Scholar 

  282. J.R.Treberg, C.L.Quinlan, and M.D.Brand. Evidence for Two Sites of Superoxide Production by Mitochondrial NADH-Q Oxidoreductase (Complex I). J Biol Chem (2011).

  283. Treberg JR, Brand MD. A model of the proton translocation mechanism of complex I. J Biol Chem. 2011;286:17579–84.

    PubMed  CAS  Google Scholar 

  284. Ingledew WJ, Ohnishi T. An analysis of some thermodynamic properties of iron-sulphur centres in site I of mitochondria. Biochem J. 1980;186:111–7.

    PubMed  CAS  Google Scholar 

  285. Lemos RS, Fernandes AS, Pereira MM, Gomes CM, Teixeira M. Quinol:fumarate oxidoreductases and succinate:quinone oxidoreductases: phylogenetic relationships, metal centres and membrane attachment. Biochim Biophys Acta. 2002;1553:158–70.

    PubMed  CAS  Google Scholar 

  286. Covian R, Zwicker K, Rotsaert FA, Trumpower BL. Asymmetric and redox-specific binding of quinone and quinol at center N of the dimeric yeast cytochrome bc1 complex. Consequences for semiquinone stabilization. J Biol Chem. 2007;282:24198–208.

    PubMed  CAS  Google Scholar 

  287. Snyder CH, Merbitz-Zahradnik T, Link TA, Trumpower BL. Role of the Rieske iron-sulfur protein midpoint potential in the protonmotive Q-cycle mechanism of the cytochrome bc1 complex. J Bioenerg Biomembr. 1999;31:235–42.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Ralph.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11095-011-0583-6

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ralph, S.J., Moreno-Sánchez, R., Neuzil, J. et al. Inhibitors of Succinate: Quinone Reductase/Complex II Regulate Production of Mitochondrial Reactive Oxygen Species and Protect Normal Cells from Ischemic Damage but Induce Specific Cancer Cell Death. Pharm Res 28, 2695–2730 (2011). https://doi.org/10.1007/s11095-011-0566-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0566-7

KEY WORDS

Navigation