Skip to main content
Log in

Modeling axonal defects in hereditary spastic paraplegia with human pluripotent stem cells

  • Review
  • Published:
Frontiers in Biology

Abstract

Background

Cortical motor neurons, also known as upper motor neurons, are large projection neurons whose axons convey signals to lower motor neurons to control the muscle movements. Degeneration of cortical motor neuron axons is implicated in several debilitating disorders including hereditary spastic paraplegia (HSP). Since the discovery of the first HSP gene, SPAST that encodes spastin, over 70 distinct genetic loci associated with HSP have been identified. How the mutations of these functionally diverse genes result in axonal degeneration and why certain axons are affected in HSP remain largely unknown. The development of induced pluripotent stem cell (iPSC) technology has provided researchers an excellent resource to generate patient-specific human neurons to model human neuropathological processes including axonal defects.

Methods

In this article, we will first review the pathology and pathways affected in the common forms of HSP subtypes by searching the PubMed database. We will then summarize the findings and insights gained from studies using iPSC-based models, and discuss challenges and future directions.

Results

HSPs, a heterogeneous group of genetic neurodegenerative disorders, exhibit similar pathological changes that result from retrograde axonal degeneration of cortical motor neurons. Recently, iPSCs have been generated from several common forms of HSP including SPG4, SPG3A, and SPG11 patients. Neurons derived from HSP iPSCs exhibit impaired neurite outgrowth, increased axonal swellings, and reduced axonal transport, recapitulating disease-specific axonal defects.

Conclusions

These patient-derived neurons offer a unique tool to study the pathogenic mechanisms and explore the treatments for rescuing axonal defects in HSP, as well as other diseases involving axonopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ben-David U, Kopper O, Benvenisty N (2012). Expanding the boundaries of embryonic stem cells. Cell Stem Cell, 10(6): 666–677

    Article  CAS  PubMed  Google Scholar 

  • Bilican B, Serio A, Barmada S J, Nishimura A L, Sullivan G J, Carrasco M, Phatnani H P, Puddifoot C A, Story D, Fletcher J, Park I H, Friedman B A, Daley G Q, Wyllie D J, Hardingham G E, Wilmut I, Finkbeiner S, Maniatis T, Shaw C E, Chandran S (2012). Mutant induced pluripotent stem cell lines recapitulate aspects of TDP-43 proteinopathies and reveal cell-specific vulnerability. Proc Natl Acad Sci USA, 109(15): 5803–5808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blackstone C (2012). Cellular pathways of hereditary spastic paraplegia. Annu Rev Neurosci, 35(1): 25–47

    Article  CAS  PubMed  Google Scholar 

  • Blackstone C, O’Kane C J, Reid E (2011). Hereditary spastic paraplegias: membrane traffic and the motor pathway. Nat Rev Neurosci, 12(1): 31–42

    CAS  PubMed  Google Scholar 

  • Boulting G L, Kiskinis E, Croft G F, Amoroso M W, Oakley D H, Wainger B J, Williams D J, Kahler D J, Yamaki M, Davidow L, Rodolfa C T, Dimos J T, Mikkilineni S, MacDermott A B, Woolf C J, Henderson C E, Wichterle H, Eggan K (2011). A functionally characterized test set of human induced pluripotent stem cells. Nat Biotechnol, 29(3): 279–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Chan D C (2009). Mitochondrial dynamics—fusion, fission, movement, and mitophagy—in neurodegenerative diseases. Hum Mol Genet, 18(R2): R169–R176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claudiani P, Riano E, Errico A, Andolfi G, Rugarli E I (2005). Spastin subcellular localization is regulated through usage of different translation start sites and active export from the nucleus. Exp Cell Res, 309(2): 358–369

    Article  CAS  PubMed  Google Scholar 

  • Crosby A H, Proukakis C (2002). Is the transportation highway the right road for hereditary spastic paraplegia? Am J Hum Genet, 71(5): 1009–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Vos K J, Grierson A J, Ackerley S, Miller C C (2008). Role of axonal transport in neurodegenerative diseases. Annu Rev Neurosci, 31(1): 151–173

    Article  PubMed  CAS  Google Scholar 

  • Deluca G C, Ebers G C, Esiri M M (2004). The extent of axonal loss in the long tracts in hereditary spastic paraplegia. Neuropathol Appl Neurobiol, 30(6): 576–584

    Article  CAS  PubMed  Google Scholar 

  • Denton K R, Lei L, Grenier J, Rodionov V, Blackstone C, Li X J (2014). Loss of spastin function results in disease-specific axonal defects in human pluripotent stem cell-based models of hereditary spastic paraplegia. Stem Cells, 32(2): 414–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimos J T, Rodolfa K T, Niakan K K, Weisenthal L M, Mitsumoto H, Chung W, Croft G F, Saphier G, Leibel R, Goland R, Wichterle H, Henderson C E, Eggan K (2008). Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science, 321(5893): 1218–1221

    Article  CAS  PubMed  Google Scholar 

  • Ebert A D, Yu J, Rose F F Jr, Mattis V B, Lorson C L, Thomson J A, Svendsen C N (2009). Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature, 457(7227): 277–280

    Article  CAS  PubMed  Google Scholar 

  • Errico A, Ballabio A, Rugarli E I (2002). Spastin, the protein mutated in autosomal dominant hereditary spastic paraplegia, is involved in microtubule dynamics. Hum Mol Genet, 11(2): 153–163

    Article  CAS  PubMed  Google Scholar 

  • Evans M J, Kaufman M H (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292(5819): 154–156

    Article  CAS  PubMed  Google Scholar 

  • Falk J, Rohde M, Bekhite MM, Neugebauer S, Hemmerich P, Kiehntopf M, Deufel T, Hübner C A, Beetz C (2014). Functional mutation analysis provides evidence for a role of REEP1 in lipid droplet biology. Hum Mutat, 35(4): 497–504

    Article  CAS  PubMed  Google Scholar 

  • Fan Y, Wali G, Sutharsan R, Bellette B, Crane D I, Sue C M, Mackay-Sim A (2014). Low dose tubulin-binding drugs rescue peroxisome trafficking deficit in patient-derived stem cells in Hereditary Spastic Paraplegia. Biol Open, 3(6): 494–502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fassier C, Hutt J A, Scholpp S, Lumsden A, Giros B, Nothias F, Schneider-Maunoury S, Houart C, Hazan J (2010). Zebrafish atlastin controls motility and spinal motor axon architecture via inhibition of the BMP pathway. Nat Neurosci, 13(11): 1380–1387

    Article  CAS  PubMed  Google Scholar 

  • Fink J K (1993). Hereditary Spastic Paraplegia Overview. In: Pagon R A, Adam M P, Ardinger H H, Wallacc S E, Amemiya A, Beau L J H, Bird T D, Fong C T, Mefford H C, Smith R J H, Stephens K, Eds. Gene Reviews [Internet]. Seatlle (WA): University of Washington, Seattle 1993–2016

    Google Scholar 

  • Fink J K (2003). Advances in the hereditary spastic paraplegias. Exp Neurol, 184(Suppl 1): S106–S110

    Article  CAS  PubMed  Google Scholar 

  • Fink J K (2006). Hereditary spastic paraplegia. Curr Neurol Neurosci Rep, 6(1): 65–76

    Article  CAS  PubMed  Google Scholar 

  • Fonknechten N, Mavel D, Byrne P, Davoine C S, Cruaud C, Bönsch D, Samson D, Coutinho P, Hutchinson M, McMonagle P, Burgunder J M, Tartaglione A, Heinzlef O, Feki I, Deufel T, Parfrey N, Brice A, Fontaine B, Prud’homme J F, Weissenbach J, Dürr A, Hazan J (2000). Spectrum of SPG4 mutations in autosomal dominant spastic paraplegia. Hum Mol Genet, 9(4): 637–644

    Article  CAS  PubMed  Google Scholar 

  • Grove E A, Fukuchi-Shimogori T (2003). Generating the cerebral cortical area map. Annu Rev Neurosci, 26(1): 355–380

    Article  CAS  PubMed  Google Scholar 

  • Guha P, Morgan J W, Mostoslavsky G, Rodrigues N P, Boyd A S (2013). Lack of immune response to differentiated cells derived from syngeneic induced pluripotent stem cells. Cell Stem Cell, 12(4): 407–412

    Article  CAS  PubMed  Google Scholar 

  • Guidubaldi A, Piano C, Santorelli F M, Silvestri G, Petracca M, Tessa A, Bentivoglio A R (2011). Novel mutations in SPG11 cause hereditary spastic paraplegia associated with early-onset levodopa-responsive Parkinsonism. Mov Disord, 26(3): 553–556

    Article  PubMed  Google Scholar 

  • Hallett P J, Deleidi M, Astradsson A, Smith G A, Cooper O, Osborn T M, Sundberg M, Moore M A, Perez-Torres E, Brownell A L, Schumacher J M, Spealman R D, Isacson O (2015). Successful function of autologous iPSC-derived dopamine neurons following transplantation in a non-human primate model of Parkinson’s disease. Cell Stem Cell, 16(3): 269–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halliwell B (2014). Cell culture, oxidative stress, and antioxidants: avoiding pitfalls. Biomed J, 37(3): 99–105

    PubMed  Google Scholar 

  • Hanein S, Martin E, Boukhris A, Byrne P, Goizet C, Hamri A, Benomar A, Lossos A, Denora P, Fernandez J, Elleuch N, Forlani S, Durr A, Feki I, Hutchinson M, Santorelli F M, Mhiri C, Brice A, Stevanin G (2008). Identification of the SPG15 gene, encoding spastizin, as a frequent cause of complicated autosomal-recessive spastic paraple-gia, including Kjellin syndrome. Am J Hum Genet, 82(4): 992–1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harding A E (1983). Classification of the hereditary ataxias and paraplegias. Lancet, 1(8334): 1151–1155

    Article  CAS  PubMed  Google Scholar 

  • Harding A E (1993). Hereditary spastic paraplegias. Semin Neurol, 13(4): 333–336

    Article  CAS  PubMed  Google Scholar 

  • Havlicek S, Kohl Z, Mishra H K, Prots I, Eberhardt E, Denguir N, Wend H, Plötz S, Boyer L, Marchetto M C, Aigner S, Sticht H, Groemer T W, Hehr U, Lampert A, Schlötzer-Schrehardt U, Winkler J, Gage F H, Winner B (2014). Gene dosage-dependent rescue of HSP neurite defects in SPG4 patients’ neurons. Hum Mol Genet, 23(10): 2527–2541

    Article  CAS  PubMed  Google Scholar 

  • Hazan J, Fonknechten N, Mavel D, Paternotte C, Samson D, Artiguenave F, Davoine C S, Cruaud C, Dürr A, Wincker P, Brottier P, Cattolico L, Barbe V, Burgunder J M, Prud’homme J F, Brice A, Fontaine B, Heilig B, Weissenbach J (1999). Spastin, a new AAA protein, is altered in the most frequent form of autosomal dominant spastic paraplegia. Nat Genet, 23(3): 296–303

    Article  CAS  PubMed  Google Scholar 

  • Hedera P, Eldevik O P, Maly P, Rainier S, Fink J K (2005). Spinal cord magnetic resonance imaging in autosomal dominant hereditary spastic paraplegia. Neuroradiology, 47(10): 730–734

    Article  CAS  PubMed  Google Scholar 

  • Hirst J, Borner G H, Edgar J, Hein MY, Mann M, Buchholz F, Antrobus R, Robinson M S (2013). Interaction between AP-5 and the hereditary spastic paraplegia proteins SPG11 and SPG15. Mol Biol Cell, 24(16): 2558–2569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hockemeyer D, Wang H, Kiani S, Lai C S, Gao Q, Cassady J P, Cost G J, Zhang L, Santiago Y, Miller J C, Zeitler B, Cherone J M, Meng X, Hinkley S J, Rebar E J, Gregory P D, Urnov F D, Jaenisch R (2011). Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol, 29(8): 731–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollenbeck P J (2005). Mitochondria and neurotransmission: evacuating the synapse. Neuron, 47(3): 331–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu J, Shibata Y, Zhu P P, Voss C, Rismanchi N, Prinz W A, Rapoport T A, Blackstone C (2009). A class of dynamin-like GTPases involved in the generation of the tubular ER network. Cell, 138(3): 549–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096): 816–821

    Article  CAS  PubMed  Google Scholar 

  • Kanekura K, Suzuki H, Aiso S, Matsuoka M (2009). ER stress and unfolded protein response in amyotrophic lateral sclerosis. Mol Neurobiol, 39(2): 81–89

    Article  CAS  PubMed  Google Scholar 

  • Kasher P R, De Vos K J, Wharton S B, Manser C, Bennett E J, Bingley M, Wood J D, Milner R, McDermott C J, Miller C C, Shaw P J, Grierson A J (2009). Direct evidence for axonal transport defects in a novel mouse model of mutant spastin-induced hereditary spastic paraplegia (HSP) and human HSP patients. J Neurochem, 110(1): 34–44

    Article  CAS  PubMed  Google Scholar 

  • Kiskinis E, Eggan K (2010). Progress toward the clinical application of patient-specific pluripotent stem cells. J Clin Invest, 120(1): 51–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiskinis E, Sandoe J, Williams L A, Boulting G L, Moccia R, Wainger B J, Han S, Peng T, Thams S, Mikkilineni S, Mellin C, Merkle F T, Davis-Dusenbery B N, Ziller M, Oakley D, Ichida J, Di Costanzo S, Atwater N, Maeder M L, Goodwin M J, Nemesh J, Handsaker R E, Paull D, Noggle S, McCarroll S A, Joung J K, Woolf C J, Brown R H, Eggan K (2014). Pathways disrupted in human ALS motor neurons identified through genetic correction of mutant SOD1. Cell Stem Cell, 14(6): 781–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klemm R W, Norton J P, Cole R A, Li C S, Park S H, Crane M M, Li L, Jin D, Boye-Doe A, Liu T Y, Shibata Y, Lu H, Rapoport T A, Farese R V Jr, Blackstone C, Guo Y, Mak H Y (2013). A conserved role for atlastin GTPases in regulating lipid droplet size. Cell Reports, 3(5): 1465–1475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knott A B, Perkins G, Schwarzenbacher R, Bossy-Wetzel E (2008). Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci, 9(7): 505–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kola I, Landis J (2004). Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov, 3(8): 711–715

    Article  CAS  PubMed  Google Scholar 

  • Kondo T, Asai M, Tsukita K, Kutoku Y, Ohsawa Y, Sunada Y, Imamura K, Egawa N, Yahata N, Okita K, Takahashi K, Asaka I, Aoi T, Watanabe A, Watanabe K, Kadoya C, Nakano R, Watanabe D, Maruyama K, Hori O, Hibino S, Choshi T, Nakahata T, Hioki H, Kaneko T, Naitoh M, Yoshikawa K, Yamawaki S, Suzuki S, Hata R, Ueno S, Seki T, Kobayashi K, Toda T, Murakami K, Irie K, Klein W L, Mori H, Asada T, Takahashi R, Iwata N, Yamanaka S, Inoue H (2013). Modeling Alzheimer’s disease with iPSCs reveals stress phenotypes associated with intracellular Aβ and differential drug responsiveness. Cell Stem Cell, 12(4): 487–496

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Shamy G A, Elkabetz Y, Schofield C M, Harrsion N L, Panagiotakos G, Socci N D, Tabar V, Studer L (2007). Directed differentiation and transplantation of human embryonic stem cellderived motoneurons. Stem Cells, 25(8): 1931–1939

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre S, Bürglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M, Le Paslier D, Frézal J, Cohen D, Weissenbach J, Munnich A, Melki J (1995). Identification and characterization of a spinal muscular atrophydetermining gene. Cell, 80(1): 155–165

    Article  CAS  PubMed  Google Scholar 

  • Li X J, Du Z W, Zarnowska E D, Pankratz M, Hansen L O, Pearce R A, Zhang S C (2005). Specification of motoneurons from human embryonic stem cells. Nat Biotechnol, 23(2): 215–221

    Article  PubMed  CAS  Google Scholar 

  • Lindsey J C, Lusher M E, McDermott C J, White K D, Reid E, Rubinsztein D C, Bashir R, Hazan J, Shaw P J, Bushby K M (2000). Mutation analysis of the spastin gene (SPG4) in patients with hereditary spastic paraparesis. J Med Genet, 37(10): 759–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ling S C, Polymenidou M, Cleveland D W (2013). Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron, 79(3): 416–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu G H, Qu J, Suzuki K, Nivet E, Li M, Montserrat N, Yi F, Xu X, Ruiz S, Zhang W, Wagner U, Kim A, Ren B, Li Y, Goebl A, Kim J, Soligalla R D, Dubova I, Thompson J, Yates J 3rd, Esteban C R, Sancho-Martinez I, Izpisua Belmonte J C (2012). Progressive degeneration of human neural stem cells caused by pathogenic LRRK2. Nature, 491(7425): 603–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lumb J H, Connell J W, Allison R, Reid E (2012). The AAA ATPase spastin links microtubule severing to membrane modelling. Biochim Biophys Acta, 1823(1): 192–197

    Article  CAS  PubMed  Google Scholar 

  • Lunn M R, Wang C H (2008). Spinal muscular atrophy. Lancet, 371(9630): 2120–2133

    Article  PubMed  Google Scholar 

  • Ly CV, Verstreken P (2006) Mitochondria at the synapse. The Neuroscientist: a review journal bringing neurobiology, neurology and psychiatry 12: 291–299.

    Article  CAS  Google Scholar 

  • Ma L, Hu B, Liu Y, Vermilyea S C, Liu H, Gao L, Sun Y, Zhang X, Zhang S C (2012). Human embryonic stem cell-derived GABA neurons correct locomotion deficits in quinolinic acid-lesioned mice. Cell Stem Cell, 10(4): 455–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magrané J, Cortez C, Gan W B, Manfredi G (2014). Abnormal mitochondrial transport and morphology are common pathological denominators in SOD1 and TDP43 ALS mouse models. Hum Mol Genet, 23(6): 1413–1424

    Article  PubMed  CAS  Google Scholar 

  • Mali P, Yang L, Esvelt K M, Aach J, Guell M, DiCarlo J E, Norville J E, Church G M (2013). RNA-guided human genome engineering via Cas9. Science, 339(6121): 823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mancuso G, Rugarli E I (2008). A cryptic promoter in the first exon of the SPG4 gene directs the synthesis of the 60-kDa spastin isoform. BMC Biol, 6(1): 31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manfredi G, Xu Z (2005). Mitochondrial dysfunction and its role in motor neuron degeneration in ALS. Mitochondrion, 5(2): 77–87

    Article  CAS  PubMed  Google Scholar 

  • Martin G R (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA, 78(12): 7634–7638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller J C, Tan S, Qiao G, Barlow K A, Wang J, Xia D F, Meng X, Paschon D E, Leung E, Hinkley S J, Dulay G P, Hua K L, Ankoudinova I, Cost G J, Urnov F D, Zhang H S, Holmes M C, Zhang L, Gregory P D, Rebar E J (2011). A TALE nuclease architecture for efficient genome editing. Nat Biotechnol, 29(2): 143–148

    Article  CAS  PubMed  Google Scholar 

  • Miller J D, Ganat Y M, Kishinevsky S, Bowman R L, Liu B, Tu E Y, Mandal P K, Vera E, Shim J W, Kriks S, Taldone T, Fusaki N, Tomishima M J, Krainc D, Milner T A, Rossi D J, Studer L (2013). Human iPSC-based modeling of late-onset disease via progerininduced aging. Cell Stem Cell, 13(6): 691–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra HK, Prots I, Havlicek S, Kohl Z, Perez-Branguli F, Boerstler T, Anneser L, Minakaki G, Wend H, Hampl M, Leone M, Bruckner M, Klucken J, Reis A, Boyer L, Schuierer G, Behrens J, Lampert A, Engel FB, Gage FH, Winkler J, Winner B (2016) GSK3ss-dependent dysregulation of neurodevelopment in SPG11-patient iPSC model. Ann Neurol.

    Google Scholar 

  • Montague K, Malik B, Gray A L, La Spada A R, Hanna M G, Szabadkai G, Greensmith L (2014). Endoplasmic reticulum stress in spinal and bulbar muscular atrophy: a potential target for therapy. Brain, 137(Pt 7): 1894–1906

    Article  PubMed  PubMed Central  Google Scholar 

  • Montenegro G, Rebelo A P, Connell J, Allison R, Babalini C, D’Aloia M, Montieri P, Schüle R, Ishiura H, Price J, Strickland A, Gonzalez M A, Baumbach-Reardon L, Deconinck T, Huang J, Bernardi G, Vance J M, Rogers M T, Tsuji S, De Jonghe P, Pericak-Vance M A, Schöls L, Orlacchio A, Reid E, Züchner S (2012). Mutations in the ER-shaping protein reticulon 2 cause the axon-degenerative disorder hereditary spastic paraplegia type 12. J Clin Invest, 122(2): 538–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moss T J, Daga A, McNew J A (2011). Fusing a lasting relationship between ER tubules. Trends Cell Biol, 21(7): 416–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murmu R P, Martin E, Rastetter A, Esteves T, Muriel MP, El Hachimi K H, Denora P S, Dauphin A, Fernandez J C, Duyckaerts C, Brice A, Darios F, Stevanin G (2011). Cellular distribution and subcellular localization of spatacsin and spastizin, two proteins involved in hereditary spastic paraplegia. Mol Cell Neurosci, 47(3): 191–202

    Article  CAS  PubMed  Google Scholar 

  • Murry C E, Keller G (2008). Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell, 132(4): 661–680

    Article  CAS  PubMed  Google Scholar 

  • Nadar V C, Ketschek A, Myers K A, Gallo G, Baas PW (2008). Kinesin-5 is essential for growth-cone turning. Curr Biol, 18(24): 1972–1977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Namekawa M, Ribai P, Nelson I, Forlani S, Fellmann F, Goizet C, Depienne C, Stevanin G, Ruberg M, Dürr A, Brice A (2006). SPG3A is the most frequent cause of hereditary spastic paraplegia with onset before age 10 years. Neurology, 66(1): 112–114

    Article  CAS  PubMed  Google Scholar 

  • Nguyen H N, Byers B, Cord B, Shcheglovitov A, Byrne J, Gujar P, Kee K, Schüle B, Dolmetsch R E, Langston W, Palmer T D, Pera R R (2011). LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell, 8(3): 267–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu J, Zhang B, Chen H (2014). Applications of TALENs and CRISPR/Cas9 in human cells and their potentials for gene therapy. Mol Biotechnol, 56(8): 681–688

    Article  CAS  PubMed  Google Scholar 

  • Novarino G, Fenstermaker A G, Zaki M S, Hofree M, Silhavy J L, Heiberg A D, Abdellateef M, Rosti B, Scott E, Mansour L, Masri A, Kayserili H, Al-Aama J Y, Abdel-Salam G M, Karminejad A, Kara M, Kara B, Bozorgmehri B, Ben-Omran T, Mojahedi F, Mahmoud I G, Bouslam N, Bouhouche A, Benomar A, Hanein S, Raymond L, Forlani S, Mascaro M, Selim L, Shehata N, Al-Allawi N, Bindu P S, Azam M, Gunel M, Caglayan A, Bilguvar K, Tolun A, Issa M Y, Schroth J, Spencer E G, Rosti R O, Akizu N, Vaux K K, Johansen A, Koh A A, Megahed H, Durr A, Brice A, Stevanin G, Gabriel S B, Ideker T, Gleeson J G (2014). Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders. Science, 343(6170): 506–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Leary D D, Nakagawa Y (2002). Patterning centers, regulatory genes and extrinsic mechanisms controlling arealization of the neocortex. Curr Opin Neurobiol, 12(1): 14–25

    Article  PubMed  Google Scholar 

  • Okita K, Ichisaka T, Yamanaka S (2007). Generation of germlinecompetent induced pluripotent stem cells. Nature, 448(7151): 313–317

    Article  CAS  PubMed  Google Scholar 

  • Pantakani D V, Swapna L S, Srinivasan N, Mannan A U (2008). Spastin oligomerizes into a hexamer and the mutant spastin (E442Q) redistribute the wild-type spastin into filamentous microtubule. J Neurochem, 106(2): 613–624

    Article  CAS  PubMed  Google Scholar 

  • Park I H, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, Lensch M W, Cowan C, Hochedlinger K, Daley G Q (2008). Diseasespecific induced pluripotent stem cells. Cell, 134(5): 877–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park S, Lee K S, Lee Y J, Shin H A, Cho H Y, Wang K C, Kim Y S, Lee H T, Chung K S, Kim E Y, Lim J (2004). Generation of dopaminergic neurons in vitro from human embryonic stem cells treated with neurotrophic factors. Neurosci Lett, 359(1-2): 99–103

    Article  CAS  PubMed  Google Scholar 

  • Park S H, Zhu P P, Parker R L, Blackstone C (2010). Hereditary spastic paraplegia proteins REEP1, spastin, and atlastin-1 coordinate microtubule interactions with the tubular ER network. J Clin Invest, 120(4): 1097–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Brangulí F, Mishra H K, Prots I, Havlicek S, Kohl Z, Saul D, Rummel C, Dorca-Arevalo J, Regensburger M, Graef D, Sock E, Blasi J, Groemer T W, Schlötzer-Schrehardt U, Winkler J, Winner B (2014). Dysfunction of spatacsin leads to axonal pathology in SPG11-linked hereditary spastic paraplegia. Hum Mol Genet, 23(18): 4859–4874

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perrier A L, Tabar V, Barberi T, Rubio M E, Bruses J, Topf N, Harrison N L, Studer L (2004). Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci USA, 101(34): 12543–12548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piaceri I, Rinnoci V, Bagnoli S, Failli Y, Sorbi S (2012). Mitochondria and Alzheimer’s disease. J Neurol Sci, 322(1–2): 31–34

    Article  CAS  PubMed  Google Scholar 

  • Polleux F, Dehay C, Goffinet A, Kennedy H (2001). Pre-and postmitotic events contribute to the progressive acquisition of areaspecific connectional fate in the neocortex. Cereb Cortex, 11(11): 1027–1039

    Article  CAS  PubMed  Google Scholar 

  • Reid E (2003). Science in motion: common molecular pathological themes emerge in the hereditary spastic paraplegias. J Med Genet, 40(2): 81–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renvoisé B, Blackstone C (2010). Emerging themes of ER organization in the development and maintenance of axons. Curr Opin Neurobiol, 20(5): 531–537

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reubinoff B E, Itsykson P, Turetsky T, Pera M F, Reinhartz E, Itzik A, Ben-Hur T (2001). Neural progenitors from human embryonic stem cells. Nat Biotechnol, 19(12): 1134–1140

    Article  CAS  PubMed  Google Scholar 

  • Roy N S, Cleren C, Singh S K, Yang L, Beal M F, Goldman S A (2006). Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat Med, 12(11): 1259–1268

    Article  CAS  PubMed  Google Scholar 

  • Salinas S, Proukakis C, Crosby A, Warner T T (2008). Hereditary spastic paraplegia: clinical features and pathogenetic mechanisms. Lancet Neurol, 7(12): 1127–1138

    Article  CAS  PubMed  Google Scholar 

  • Schicks J, Synofzik M, Pétursson H, Huttenlocher J, Reimold M, Schöls L, Bauer P (2011). Atypical juvenile parkinsonism in a consanguineous SPG15 family. Mov Disord, 26(3): 564–566

    Article  PubMed  Google Scholar 

  • Singh Roy N, Nakano T, Xuing L, Kang J, Nedergaard M, Goldman S A (2005). Enhancer-specified GFP-based FACS purification of human spinal motor neurons from embryonic stem cells. Exp Neurol, 196(2): 224–234

    Article  PubMed  CAS  Google Scholar 

  • Soderblom C, Blackstone C (2006). Traffic accidents: molecular genetic insights into the pathogenesis of the hereditary spastic paraplegias. Pharmacol Ther, 109(1–2): 42–56

    Article  CAS  PubMed  Google Scholar 

  • Solowska J M, Morfini G, Falnikar A, Himes B T, Brady S T, Huang D, Baas P W (2008). Quantitative and functional analyses of spastin in the nervous system: implications for hereditary spastic paraplegia. J Neurosci, 28(9): 2147–2157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevanin G, Santorelli F M, Azzedine H, Coutinho P, Chomilier J, Denora P S, Martin E, Ouvrard-Hernandez A M, Tessa A, Bouslam N, Lossos A, Charles P, Loureiro J L, Elleuch N, Confavreux C, Cruz V T, Ruberg M, Leguern E, Grid D, Tazir M, Fontaine B, Filla A, Bertini E, Durr A, Brice A (2007). Mutations in SPG11, encoding spatacsin, are a major cause of spastic paraplegia with thin corpus callosum. Nat Genet, 39(3): 366–372

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5): 861–872

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4): 663–676

    Article  CAS  PubMed  Google Scholar 

  • Tarrade A, Fassier C, Courageot S, Charvin D, Vitte J, Peris L, Thorel A, Mouisel E, Fonknechten N, Roblot N, Seilhean D, Diérich A, Hauw J J, Melki J (2006). A mutation of spastin is responsible for swellings and impairment of transport in a region of axon characterized by changes in microtubule composition. Hum Mol Genet, 15(24): 3544–3558

    Article  CAS  PubMed  Google Scholar 

  • Thomson J A, Itskovitz-Eldor J, Shapiro S S, Waknitz M A, Swiergiel J J, Marshall V S, Jones J M (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391): 1145–1147

    Article  CAS  PubMed  Google Scholar 

  • Valente E M, Abou-Sleiman P M, Caputo V, Muqit M M, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio A R, Healy D G, Albanese A, Nussbaum R, Gonzlez-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks W P, Latchman D S, Harvey R J, Dallapiccola B, Auburger G, Wood N W (2004). Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science, 304(5674): 1158–1160

    Article  CAS  PubMed  Google Scholar 

  • Vidal R, Caballero B, Couve A, Hetz C (2011). Converging pathways in the occurrence of endoplasmic reticulum (ER) stress in Huntington’s disease. Curr Mol Med, 11(1): 1–12

    Article  CAS  PubMed  Google Scholar 

  • Walther T C, Farese R V Jr (2012). Lipid droplets and cellular lipid metabolism. Annu Rev Biochem, 81(1): 687–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang D, Lagerstrom R, Sun C, Bishof L, Valotton P, Götte M (2010). HCA-vision: Automated neurite outgrowth analysis. J Biomol Screen, 15(9): 1165–1170

    Article  PubMed  Google Scholar 

  • Wang H, Yang H, Shivalila C S, Dawlaty M M, Cheng A W, Zhang F, Jaenisch R (2013a). One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 153(4): 910–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z B, Zhang X, Li X J (2013b). Recapitulation of spinal motor neuron-specific disease phenotypes in a human cell model of spinal muscular atrophy. Cell Res, 23(3): 378–393

    Article  CAS  PubMed  Google Scholar 

  • Wilfling F, Wang H, Haas J T, Krahmer N, Gould T J, Uchida A, Cheng J X, Graham M, Christiano R, Fröhlich F, Liu X, Buhman K K, Coleman R A, Bewersdorf J, Farese R V Jr, Walther T C (2013). Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev Cell, 24(4): 384–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu C C, Denton K R, Wang Z B, Zhang X, Li X J (2016). Abnormal mitochondrial transport and morphology as early pathological changes in human models of spinal muscular atrophy. Dis Model Mech, 9(1): 39–49

    PubMed  PubMed Central  Google Scholar 

  • Yagi T, Ito D, Okada Y, Akamatsu W, Nihei Y, Yoshizaki T, Yamanaka S, Okano H, Suzuki N (2011). Modeling familial Alzheimer’s disease with induced pluripotent stem cells. Hum Mol Genet, 20(23): 4530–4539

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Yang D, Zarnowska E D, Du Z, Werbel B, Valliere C, Pearce R A, Thomson J A, Zhang S C (2005). Directed differentiation of dopaminergic neuronal subtypes from human embryonic stem cells. Stem Cells, 23(6): 781–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y M, Gupta S K, Kim K J, Powers B E, Cerqueira A, Wainger B J, Ngo H D, Rosowski K A, Schein P A, Ackeifi C A, Arvanites A C, Davidow L S, Woolf C J, Rubin L L (2013). A small molecule screen in stem-cell-derived motor neurons identifies a kinase inhibitor as a candidate therapeutic for ALS. Cell Stem Cell, 12(6): 713–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Vodyanik M A, Smuga-Otto K, Antosiewicz-Bourget J, Frane J L, Tian S, Nie J, Jonsdottir G A, Ruotti V, Stewart R, Slukvin I I, Thomson J A (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858): 1917–1920

    Article  CAS  PubMed  Google Scholar 

  • Zeng H, Guo M, Martins-Taylor K, Wang X, Zhang Z, Park J W, Zhan S, Kronenberg MS, Lichtler A, Liu H X, Chen F P, Yue L, Li X J, Xu R H (2010). Specification of region-specific neurons including forebrain glutamatergic neurons from human induced pluripotent stem cells. PLoS ONE, 5(7): e11853

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang N, An M C, Montoro D, Ellerby L M (2010). Characterization of Human Huntington’s Disease Cell Model from Induced Pluripotent Stem Cells. PLoS Curr, 2: RRN1193

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang S C (2006). Neural subtype specification from embryonic stem cells. Brain Pathol, 16(2): 132–142

    Article  CAS  PubMed  Google Scholar 

  • Zhang S C, Wernig M, Duncan I D, Brüstle O, Thomson J A (2001). In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol, 19(12): 1129–1133

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Alvarado D, Rainier S, Lemons R, Hedera P, Weber C H, Tukel T, Apak M, Heiman-Patterson T, Ming L, Bui M, Fink J K (2001). Mutations in a newly identified GTPase gene cause autosomal dominant hereditary spastic paraplegia. Nat Genet, 29(3): 326–331

    Article  CAS  PubMed  Google Scholar 

  • Zhu P P, Denton K R, Pierson T M, Li X J, Blackstone C (2014). Pharmacologic rescue of axon growth defects in a human iPSC model of hereditary spastic paraplegia SPG3A. Hum Mol Genet, 23(21): 5638–5648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu P P, Patterson A, Lavoie B, Stadler J, Shoeb M, Patel R, Blackstone C (2003). Cellular localization, oligomerization, and membrane association of the hereditary spastic paraplegia 3A (SPG3A) protein atlastin. J Biol Chem, 278(49): 49063–49071

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Jun Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denton, K.R., Xu, C., Shah, H. et al. Modeling axonal defects in hereditary spastic paraplegia with human pluripotent stem cells. Front. Biol. 11, 339–354 (2016). https://doi.org/10.1007/s11515-016-1416-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-016-1416-0

Keywords

Navigation