Skip to main content
Log in

dsRNA binding protein PACT/RAX in gene silencing, development and diseases

  • Review
  • Published:
Frontiers in Biology

Abstract

PACT (Protein kinase, interferon-inducible double stranded RNA dependent activator) and its murine ortholog RAX (PKR-associated protein X) were originally identified as a protein activator for the dsRNA-dependent, interferon-inducible protein kinase (PKR). Endogenous PACT/RAX activates PKR in response to diverse stress signals such as serum starvation, and peroxide or arsenite treatment. PACT/RAX heterodimerized with PKR and activated it with its third motif in the absence of dsRNA. The activation of PKR leads to enhanced eIF2α phosphorylation followed by apoptosis or inhibition of growth. Besides the role of activating PKR, PACT is associated with a ∼500 kDa complex that contains Dicer, hAgo2, and TRBP (TAR RNA binding protein) and it associates with Dicer to facilitate the production of small interfering RNA. PACT/RAX plays an important role in diverse physiological and pathological processes. Pact−/− mice exhibit notable developmental abnormalities including microtia, with craniofacial ear, and hearing defects. Pact−/− mice had smaller body sizes and fertility defects, both of which were caused by defective pituitary functions. It was found that dRAX disrupted fly embryos homozygous, displayed highly abnormal commissural axon structure of the central nervous system, and 70% of the flies homozygous for the mutant allele died prior to adulthood. Using high density SNP genotyping arrays, it was found that a mutation in PRKRA (the PACT/RAX gene) is the causative genetic mutation in DYT16, a novel autosomal recessive dystonia-parkinsonism syndrome in Brazilian patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham N, Stojdl D F, Duncan P I, Méthot N, Ishii T, Dubé M, Vanderhyden B C, Atkins H L, Gray D A, McBurney M W, Koromilas A E, Brown E G, Sonenberg N, Bell J C (1999). Characterization of transgenic mice with targeted disruption of the catalytic domain of the double-stranded RNA-dependent protein kinase, PKR. J Biol Chem, 274(9): 5953–5962

    Article  PubMed  CAS  Google Scholar 

  • Bando Y, Onuki R, Katayama T, Manabe T, Kudo T, Taira K, Tohyama M (2005). Double-strand RNA dependent protein kinase (PKR) is involved in the extrastriatal degeneration in Parkinson’s disease and Huntington’s disease. Neurochem Int, 46(1): 11–18

    Article  PubMed  CAS  Google Scholar 

  • Bennett R L, Blalock W L, Abtahi D M, Pan Y, Moyer S A, May W S (2006). RAX, the PKR activator, sensitizes cells to inflammatory cytokines, serum withdrawal, chemotherapy, and viral infection. Blood, 108(3): 821–829

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bennett R L, Blalock W L, Choi E J, Lee Y J, Zhang Y, Zhou L, Oh S P, May W S (2008). RAX is required for fly neuronal development and mouse embryogenesis. Mech Dev, 125(9–10): 777–785

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bennett R L, Blalock W L, May W S (2004). Serine 18 phosphorylation of RAX, the PKR activator, is required for PKR activation and consequent translation inhibition. J Biol Chem, 279(41): 42687–42693

    Article  PubMed  CAS  Google Scholar 

  • Bennett R L, Pan Y, Christian J, Hui T, May W S Jr (2012). The RAX/PACT-PKR stress response pathway promotes p53 sumoylation and activation, leading to G1 arrest. Cell Cycle, 11(2): 407–417

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bernstein E, Caudy A A, Hammond S M, Hannon G J (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 409(6818): 363–366

    Article  PubMed  CAS  Google Scholar 

  • Camargos S, Scholz S, Simón-Sánchez J, Paisán-Ruiz C, Lewis P, Hernandez D, Ding J, Gibbs J R, Cookson M R, Bras J, Guerreiro R, Oliveira C R, Lees A, Hardy J, Cardoso F, Singleton A B (2008). DYT16, a novel young-onset dystonia-parkinsonism disorder: identification of a segregating mutation in the stress-response protein PRKRA. Lancet Neurol, 7(3): 207–215

    Article  PubMed  CAS  Google Scholar 

  • Carmell M A, Xuan Z, Zhang M Q, Hannon G J (2002). The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev, 16(21): 2733–2742

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Ma C, Bower K A, Ke Z, Luo J (2006). Interaction between RAX and PKR modulates the effect of ethanol on protein synthesis and survival of neurons. J Biol Chem, 281(23): 15909–15915

    Article  PubMed  CAS  Google Scholar 

  • Chendrimada T P, Gregory R I, Kumaraswamy E, Norman J, Cooch N, Nishikura K, Shiekhattar R (2005). TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature, 436(7051): 740–744

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Clemens M J, Elia A (1997). The double-stranded RNA-dependent protein kinase PKR: structure and function. J Interferon Cytokine Res, 17(9): 503–524

    Article  PubMed  CAS  Google Scholar 

  • Daher A, Laraki G, Singh M, Melendez-Peña C E, Bannwarth S, Peters A H, Meurs E F, Braun R E, Patel R C, Gatignol A (2009). TRBP control of PACT-induced phosphorylation of protein kinase R is reversed by stress. Mol Cell Biol, 29(1): 254–265

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Doi N, Zenno S, Ueda R, Ohki-Hamazaki H, Ui-Tei K, Saigo K (2003). Short-interfering-RNA-mediated gene silencing in mammalian cells requires Dicer and eIF2C translation initiation factors. Curr Biol, 13(1): 41–46

    Article  PubMed  CAS  Google Scholar 

  • Fierro-Monti I, Mathews M B (2000). Proteins binding to duplexed RNA: one motif, multiple functions. Trends Biochem Sci, 25(5): 241–246

    Article  PubMed  CAS  Google Scholar 

  • Galabru J, Hovanessian A (1987). Autophosphorylation of the protein kinase dependent on double-stranded RNA. J Biol Chem, 262(32): 15538–15544

    PubMed  CAS  Google Scholar 

  • Hannon G J (2002). RNA interference. Nature, 418(6894): 244–251

    Article  PubMed  CAS  Google Scholar 

  • Hovanessian A G (1989). The double stranded RNA-activated protein kinase induced by interferon: dsRNA-PK. J Interferon Res, 9(6): 641–647

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Hutchins B, Patel R C (2002). The C-terminal, third conserved motif of the protein activator PACT plays an essential role in the activation of double-stranded-RNA-dependent protein kinase (PKR). Biochem J, 366(Pt 1): 175–186

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ito T, Yang M, May W S (1999). RAX, a cellular activator for double-stranded RNA-dependent protein kinase during stress signaling. J Biol Chem, 274(22): 15427–15432

    Article  PubMed  CAS  Google Scholar 

  • Koh H R, Kidwell M A, Ragunathan K, Doudna J A, Myong S (2013). ATP-independent diffusion of double-stranded RNA binding proteins. Proc Natl Acad Sci USA, 110(1): 151–156

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kok K H, Ng M H, Ching Y P, Jin D Y (2007). Human TRBP and PACT directly interact with each other and associate with dicer to facilitate the production of small interfering RNA. J Biol Chem, 282(24): 17649–17657

    Article  PubMed  CAS  Google Scholar 

  • Koscianska E, Starega-Roslan J, Krzyzosiak W J (2011). The role of Dicer protein partners in the processing of microRNA precursors. PLoS ONE, 6(12): e28548

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lee E S, Yoon C H, Kim Y S, Bae Y S (2007). The double-strand RNA-dependent protein kinase PKR plays a significant role in a sustained ER stress-induced apoptosis. FEBS Lett, 581(22): 4325–4332

    Article  PubMed  CAS  Google Scholar 

  • Lee H Y, Zhou K, Smith A M, Noland C L, Doudna J A (2013). Differential roles of human Dicer-binding proteins TRBP and PACT in small RNA processing. Nucleic Acids Res, 41(13): 6568–6576

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lee Y, Hur I, Park S Y, Kim Y K, Suh M R, Kim V N (2006). The role of PACT in the RNA silencing pathway. EMBO J, 25(3): 522–532

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li S, Peters G A, Ding K, Zhang X, Qin J, Sen G C (2006). Molecular basis for PKR activation by PACT or dsRNA. Proc Natl Acad Sci USA, 103(26): 10005–10010

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liu J, Carmell M A, Rivas F V, Marsden C G, Thomson J M, Song J J, Hammond S M, Joshua-Tor L, Hannon G J (2004). Argonaute2 is the catalytic engine of mammalian RNAi. Science, 305(5689): 1437–1441

    Article  PubMed  CAS  Google Scholar 

  • Meister G, Landthaler M, Peters L, Chen P Y, Urlaub H, Lührmann R, Tuschl T (2005). Identification of novel argonaute-associated proteins. Curr Biol, 15(23): 2149–2155

    Article  PubMed  CAS  Google Scholar 

  • Patel C V, Handy I, Goldsmith T, Patel R C (2000). PACT, a stress-modulated cellular activator of interferon-induced double-stranded RNA-activated protein kinase, PKR. J Biol Chem, 275(48): 37993–37998

    Article  PubMed  CAS  Google Scholar 

  • Patel R C, Sen G C (1998). PACT, a protein activator of the interferon-induced protein kinase, PKR. EMBO J, 17(15): 4379–4390

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Peters G A, Hartmann R, Qin J, Sen G C (2001). Modular structure of PACT: distinct domains for binding and activating PKR. Mol Cell Biol, 21(6): 1908–1920

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Peters G A, Li S, Sen G C (2006). Phosphorylation of specific serine residues in the PKR activation domain of PACT is essential for its ability to mediate apoptosis. J Biol Chem, 281(46): 35129–35136

    Article  PubMed  CAS  Google Scholar 

  • Peters G A, Seachrist D D, Keri R A, Sen G C (2009). The double-stranded RNA-binding protein, PACT, is required for postnatal anterior pituitary proliferation. Proc Natl Acad Sci USA, 106(26): 10696–10701

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pires-daSilva A, Nayernia K, Engel W, Torres M, Stoykova A, Chowdhury K, Gruss P (2001). Mice deficient for spermatid perinuclear RNA-binding protein show neurologic, spermatogenic, and sperm morphological abnormalities. Dev Biol, 233(2): 319–328

    Article  PubMed  CAS  Google Scholar 

  • Proud C G (1995). PKR: a new name and new roles. Trends Biochem Sci, 20(6): 241–246

    Article  PubMed  CAS  Google Scholar 

  • Provost P, Dishart D, Doucet J, Frendewey D, Samuelsson B, Rådmark O (2002). Ribonuclease activity and RNA binding of recombinant human Dicer. EMBO J, 21(21): 5864–5874

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Redfern A D, Colley S M, Beveridge D J, Ikeda N, Epis M R, Li X, Foulds C E, Stuart LM, Barker A, Russell V J, Ramsay K, Kobelke SJ, Li X, Hatchell E C, Payne C, Giles K M, Messineo A, Gatignol A, Lanz R B, O’Malley B W, Leedman P J (2013). RNA-induced silencing complex (RISC) Proteins PACT, TRBP, and Dicer are SRA binding nuclear receptor coregulators. Proc Natl Acad Sci USA, 110(16): 6536–6541

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rowe TM, Rizzi M, Hirose K, Peters G A, Sen G C (2006). A role of the double-stranded RNA-binding protein PACT in mouse ear development and hearing. Proc Natl Acad Sci USA, 103(15): 5823–5828

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ryter J M, Schultz S C (1998). Molecular basis of double-stranded RNA-protein interactions: structure of a dsRNA-binding domain complexed with dsRNA. EMBO J, 17(24): 7505–7513

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Samuel C E (1993). The eIF-2 alpha protein kinases, regulators of translation in eukaryotes from yeasts to humans. J Biol Chem, 268(11): 7603–7606

    PubMed  CAS  Google Scholar 

  • Samuel C E, Duncan R, Knutson G S, Hershey J W (1984). Mechanism of interferon action. Increased phosphorylation of protein synthesis initiation factor eIF-2 alpha in interferon-treated, reovirus-infected mouse L929 fibroblasts in vitro and in vivo. J Biol Chem, 259(21): 13451–13457

    PubMed  CAS  Google Scholar 

  • Saunders L R, Barber G N (2003). The dsRNA binding protein family: critical roles, diverse cellular functions. FASEB J, 17(9): 961–983

    Article  PubMed  CAS  Google Scholar 

  • Seeman N C, Rosenberg J M, Rich A (1976). Sequence-specific recognition of double helical nucleic acids by proteins. Proc Natl Acad Sci USA, 73(3): 804–808

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Singh M, Patel R C (2012). Increased interaction between PACT molecules in response to stress signals is required for PKR activation. J Cell Biochem, 113(8): 2754–2764

    Article  PubMed  CAS  Google Scholar 

  • St Johnston D, Brown N H, Gall J G, Jantsch M (1992). A conserved double-stranded RNA-binding domain. Proc Natl Acad Sci USA, 89(22): 10979–10983

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Stalder L, Heusermann W, Sokol L, Trojer D, Wirz J, Hean J, Fritzsche A, Aeschimann F, Pfanzagl V, Basselet P, Weiler J, Hintersteiner M, Morrissey D V, Meisner-Kober N C (2013). The rough endoplasmatic reticulum is a central nucleation site of siRNA-mediated RNA silencing. EMBO J, 32(8): 1115–1127

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Takahashi T, Miyakawa T, Zenno S, Nishi K, Tanokura M, Ui-Tei K (2013). Distinguishable in vitro binding mode of monomeric TRBP and dimeric PACT with siRNA. PLoS ONE, 8(5): e63434

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tomari Y, Zamore P D (2005). Perspective: machines for RNAi. Genes Dev, 19(5): 517–529

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Khillan J, Gadue P, Nishikura K(2000). Requirement of the RNA editing deaminase ADAR1 gene for embryonic erythropoiesis. Science, 290(5497): 1765–1768

    Article  PubMed  CAS  Google Scholar 

  • Williams B R (1997). Role of the double-stranded RNA-activated protein kinase (PKR) in cell regulation. Biochem Soc Trans, 25(2): 509–513

    PubMed  CAS  Google Scholar 

  • Yang Y L, Reis L F, Pavlovic J, Aguzzi A, Schäfer R, Kumar A, Williams B R, Aguet M, Weissmann C (1995). Deficient signaling in mice devoid of double-stranded RNA-dependent protein kinase. EMBO J, 14(24): 6095–6106

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jia Luo or Zun-Ji Ke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yong, Y., Luo, J. & Ke, ZJ. dsRNA binding protein PACT/RAX in gene silencing, development and diseases. Front. Biol. 9, 382–388 (2014). https://doi.org/10.1007/s11515-014-1325-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-014-1325-z

Keywords

Navigation