Skip to main content
Log in

Single-cell genomics: An overview

  • Review
  • Published:
Frontiers in Biology

Abstract

The newly developed next-generation sequencing platforms, in combination with genome-scale amplification methods, provide a powerful tool to study genomics from a single cell. This mini-review summarizes the technologies of single cell genomics and their applications in several areas of biomedical research including stem cells, cancer biology and reproductive medicine. Particularly, it highlights recent advances in single cell exome sequencing, RNA-seq, and genome sequencing. The application of these powerful techniques will shed new light on the fundamental principles of gene transcription and genome organization at single-cell level and improve our understanding of cellular heterogeneity and diversity in multicellular organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aird D, Ross MG, Chen WS, Danielsson M, Fennell T, Russ C, Jaffe D B, Nusbaum C, Gnirke A (2011). Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol, 12(2): R18

    Article  PubMed  CAS  Google Scholar 

  • Allen L Z, Ishoey T, Novotny M A, McLean J S, Lasken R S, Williamson S J (2011). Single virus genomics: a new tool for virus discovery. PLoS ONE, 6(3): e17722

    Article  PubMed  CAS  Google Scholar 

  • Bhutani N, Burns D M, Blau H M (2011). DNA demethylation dynamics. Cell, 146(6): 866–872

    Article  PubMed  CAS  Google Scholar 

  • Buganim Y, Faddah D A, Cheng AW, Itskovich E, Markoulaki S, Ganz K, Klemm S L, van Oudenaarden A, Jaenisch R (2012). Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell, 150(6): 1209–1222

    Article  PubMed  CAS  Google Scholar 

  • Chaffer C L, Weinberg R A (2011). A perspective on cancer cell metastasis. Science, 331(6024): 1559–1564

    Article  PubMed  CAS  Google Scholar 

  • Clark MJ, Homer N, O’Connor B D, Chen Z, Eskin A, Lee H, Merriman B, Nelson S F (2010). U87MG decoded: the genomic sequence of a cytogenetically aberrant human cancer cell line. PLoS Genet, 6(1): e1000832

    Article  PubMed  Google Scholar 

  • Corneveaux J J, Kruer M C, Hu-Lince D, Ramsey K E, Zismann V L, Stephan D A, Craig D W, Huentelman M J (2007). SNP-based chromosomal copy number ascertainment following multiple displacement whole-genome amplification. Biotechniques, 42(1): 77–83

    Article  PubMed  CAS  Google Scholar 

  • Dalerba P, Kalisky T, Sahoo D, Rajendran P S, Rothenberg M E, Leyrat A A, Sim S, Okamoto J, Johnston D M, Qian D, Zabala M, Bueno J, Neff N F, Wang J, Shelton A A, Visser B, Hisamori S, Shimono Y, van de Wetering M, Clevers H, Clarke M F, Quake S R (2011). Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nat Biotechnol, 29(12): 1120–1127

    Article  PubMed  CAS  Google Scholar 

  • Dean F B, Hosono S, Fang L, Wu X, Faruqi A F, Bray-Ward P, Sun Z, Zong Q, Du Y, Du J, Driscoll M, Song W, Kingsmore S F, Egholm M, Lasken R S (2002). Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci USA, 99(8): 5261–5266

    Article  PubMed  CAS  Google Scholar 

  • Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S, Dalal R, Dewinter A, Dixon J, Foquet M, Gaertner A, Hardenbol P, Heiner C, Hester K, Holden D, Kearns G, Kong X, Kuse R, Lacroix Y, Lin S, Lundquist P, Ma C, Marks P, Maxham M, Murphy D, Park I, Pham T, Phillips M, Roy J, Sebra R, Shen G, Sorenson J, Tomaney A, Travers K, Trulson M, Vieceli J, Wegener J, Wu D, Yang A, Zaccarin D, Zhao P, Zhong F, Korlach J, Turner S (2009). Real-time DNA sequencing from single polymerase molecules. Science, 323(5910): 133–138

    Article  PubMed  CAS  Google Scholar 

  • Esteller M (2007). Cancer epigenomics: DNA methylomes and histonemodification maps. Nat Rev Genet, 8(4): 286–298

    Article  PubMed  CAS  Google Scholar 

  • Fan H C, Wang J, Potanina A, Quake S R (2011). Whole-genome molecular haplotyping of single cells. Nat Biotechnol, 29(1): 51–57

    Article  PubMed  CAS  Google Scholar 

  • Farago C, Chester I C (1961). Cancer in the Territory of Papua and New Guinea: a preliminary communication. Med J Aust, 48(2): 1033–1035

    PubMed  Google Scholar 

  • Feng Z, Fang G, Korlach J, Clark T, Luong K, Zhang X, Wong W, Schadt E (2013). Detecting DNA modifications from SMRT sequencing data by modeling sequence context dependence of polymerase kinetic. PLOS Comput Biol, 9(3): e1002935

    Article  PubMed  CAS  Google Scholar 

  • Frontera WR, Zayas A R, Rodriguez N (2012). Aging of human muscle: understanding sarcopenia at the single muscle cell level. Phys Med Rehabil Clin N Am, 23(1): 201–207, xiii

    Article  PubMed  Google Scholar 

  • Galán A, Montaner D, Póo ME, Valbuena D, Ruiz V, Aguilar C, Dopazo J, Simón C (2010). Functional genomics of 5- to 8-cell stage human embryos by blastomere single-cell cDNA analysis. PLoS ONE, 5(10): e13615

    Article  PubMed  Google Scholar 

  • Geschwind D H, Konopka G (2009). Neuroscience in the era of functional genomics and systems biology. Nature, 461(7266): 908–915

    Article  PubMed  CAS  Google Scholar 

  • Guo Y, Yang Y, Zhou J, Czajkowsky D M, Liu B, Shao Z (2012). Microdissection of spatially identified single nuclei in a solid tumor for single cell whole genome sequencing. Biotechniques, 0(0): 1–3

    PubMed  Google Scholar 

  • Hamburger A W, Salmon S E (1977). Primary bioassay of human tumor stem cells. Science, 197(4302): 461–463

    Article  PubMed  CAS  Google Scholar 

  • Hanson E K, Ballantyne J (2005). Whole genome amplification strategy for forensic genetic analysis using single or few cell equivalents of genomic DNA. Anal Biochem, 346(2): 246–257

    Article  PubMed  CAS  Google Scholar 

  • Hashimshony T, Wagner F, Sher N, Yanai I (2012). CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Reports 2, 666–673

    Article  PubMed  CAS  Google Scholar 

  • He C (2010). Grand challenge commentary: RNA epigenetics? Nat Chem Biol, 6(12): 863–865

    Article  PubMed  CAS  Google Scholar 

  • Heitzer E, Auer M, Gasch C, Pichler M, Ulz P, Hoffmann E M, Lax S, Waldispuehl-Geigl J, Mauermann O, Lackner C, Höfler G, Eisner F, Sill H, Samonigg H, Pantel K, Riethdorf S, Bauernhofer T, Geigl J B, Speicher M R (2013). Complex tumor genomes inferred from single circulating tumor cells by array-CGH and next-generation sequencing. Cancer Res, 73(10): 2965–2975

    Article  PubMed  CAS  Google Scholar 

  • Hou Y, Song L, Zhu P, Zhang B, Tao Y, Xu X, Li F, Wu K, Liang J, Shao D, Wu H, Ye X, Ye C, Wu R, Jian M, Chen Y, Xie W, Zhang R, Chen L, Liu X, Yao X, Zheng H, Yu C, Li Q, Gong Z, Mao M, Yang X, Yang L, Li J, Wang W, Lu Z, Gu N, Laurie G, Bolund L, Kristiansen K, Wang J, Yang H, Li Y, Zhang X, Wang J (2012). Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell, 148(5): 873–885

    Article  PubMed  CAS  Google Scholar 

  • Hughes S, Jones J L (2007). The use of multiple displacement amplified DNA as a control for methylation specific PCR, pyrosequencing, bisulfite sequencing and methylation-sensitive restriction enzyme PCR. BMC Mol Biol, 8(1): 91

    Article  PubMed  Google Scholar 

  • Hutchison C A 3rd, Smith H O, Pfannkoch C, Venter J C (2005). Cellfree cloning using phi29 DNA polymerase. Proc Natl Acad Sci USA, 102(48): 17332–17336

    Article  PubMed  CAS  Google Scholar 

  • Iourov I Y, Vorsanova S G, Yurov Y B (2012). Single cell genomics of the brain: focus on neuronal diversity and neuropsychiatric diseases. Curr Genomics, 13(6): 477–488

    Article  PubMed  CAS  Google Scholar 

  • Islam S, Kjällquist U, Moliner A, Zajac P, Fan J B, Lönnerberg P, Linnarsson S (2011). Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res, 21(7): 1160–1167

    Article  PubMed  CAS  Google Scholar 

  • Jones P A, Baylin S B (2007). The epigenomics of cancer. Cell, 128(4): 683–692

    Article  PubMed  CAS  Google Scholar 

  • Kleinsmith L J, Pierce G B Jr (1964). Multipotentiality of Single Embryonal Carcinoma Cells. Cancer Res, 24: 1544–1551

    PubMed  CAS  Google Scholar 

  • Lecault V, Vaninsberghe M, Sekulovic S, Knapp D J, Wohrer S, Bowden W, Viel F, McLaughlin T, Jarandehei A, Miller M, Falconnet D, White A K, Kent D G, Copley M R, Taghipour F, Eaves C J, Humphries R K, Piret J M, Hansen C L (2011). High-throughput analysis of single hematopoietic stem cell proliferation in micro-fluidic cell culture arrays. Nat Methods, 8(7): 581–586

    Article  PubMed  CAS  Google Scholar 

  • Lee J Y, Dong S M, Kim S Y, Yoo N J, Lee S H, Park W S (1998). A simple, precise and economical microdissection technique for analysis of genomic DNA from archival tissue sections. Virchows Archiv: an international journal of pathology 433, 305–309

    Article  CAS  Google Scholar 

  • Li L, Clevers H (2010). Coexistence of quiescent and active adult stem cells in mammals. Science, 327(5965): 542–545

    Article  PubMed  CAS  Google Scholar 

  • Ling J, Deng Y, Long X, Liu J, Du H, Cao B, Xu K (2012). Singlenucleotide polymorphism array coupled with multiple displacement amplification: accuracy and spatial resolution for analysis of chromosome copy numbers in few cells. Biotechnol Appl Biochem, 59(1): 35–44

    Article  PubMed  CAS  Google Scholar 

  • Lu S, Zong C, Fan W, Yang M, Li J, Chapman A R, Zhu P, Hu X, Xu L, Yan L, Bai F, Qiao J, Tang F, Li R, Xie X S (2012). Probing meiotic recombination and aneuploidy of single sperm cells by wholegenome sequencing. Science, 338(6114): 1627–1630

    Article  PubMed  CAS  Google Scholar 

  • Luthra R, Medeiros L J (2004). Isothermal multiple displacement amplification: a highly reliable approach for generating unlimited high molecular weight genomic DNA from clinical specimens. J Mol Diagn, 6(3): 236–242

    Article  PubMed  CAS  Google Scholar 

  • Mardis E R (2008). The impact of next-generation sequencing technology on genetics. Trends Genet, 24(3): 133–141

    Article  PubMed  CAS  Google Scholar 

  • McLean J S, Lombardo M J, Ziegler M G, Novotny M, Yee-Greenbaum J, Badger J H, Tesler G, Nurk S, Lesin V, Brami D, Hall A P, Edlund A, Allen L Z, Durkin S, Reed S, Torriani F, Nealson K H, Pevzner P A, Friedman R, Venter J C, Lasken R S (2013). Genome of the pathogen Porphyromonas gingivalis recovered from a biofilm in a hospital sink using a high-throughput single-cell genomics platform. Genome Res, 23(5): 867–877

    Article  PubMed  CAS  Google Scholar 

  • McVean G A, Myers S R, Hunt S, Deloukas P, Bentley D R, Donnelly P (2004). The fine-scale structure of recombination rate variation in the human genome. Science, 304(5670): 581–584

    Article  PubMed  CAS  Google Scholar 

  • McWilliam Leitch E C, McLauchlan J (2013). Determining the cellular diversity of hepatitis C virus quasispecies by single-cell viral sequencing. J Virol, 87(23): 12648–12655

    Article  PubMed  Google Scholar 

  • Metzker M L (2010). Sequencing technologies-the next generation. Nat Rev Genet, 11(1): 31–46

    Article  PubMed  CAS  Google Scholar 

  • Morozova O, Marra M A (2008). Applications of next-generation sequencing technologies in functional genomics. Genomics, 92(5): 255–264

    Article  PubMed  CAS  Google Scholar 

  • Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, Cook K, Stepansky A, Levy D, Esposito D, Muthuswamy L, Krasnitz A, McCombie W R, Hicks J, Wigler M (2011). Tumour evolution inferred by single-cell sequencing. Nature, 472(7341): 90–94

    Article  PubMed  CAS  Google Scholar 

  • Niedringhaus T P, Milanova D, Kerby M B, Snyder M P, Barron A E (2011). Landscape of next-generation sequencing technologies. Anal Chem, 83(12): 4327–4341

    Article  PubMed  CAS  Google Scholar 

  • Paez J G, Lin M, Beroukhim R, Lee J C, Zhao X, Richter D J, Gabriel S, Herman P, Sasaki H, Altshuler D, Li C, Meyerson M, Sellers W R (2004). Genome coverage and sequence fidelity of phi29 polymerase-based multiple strand displacement whole genome amplification. Nucleic Acids Res, 32(9): e71

    Article  PubMed  Google Scholar 

  • Pan X, Durrett R E, Zhu H, Tanaka Y, Li Y, Zi X, Marjani S L, Euskirchen G, Ma C, Lamotte R H, Park I H, Snyder M P, Mason C E, Weissman S M (2013). Two methods for full-length RNA sequencing for low quantities of cells and single cells. Proc Natl Acad Sci USA, 110(2): 594–599

    Article  PubMed  CAS  Google Scholar 

  • Pan X, Urban A E, Palejev D, Schulz V, Grubert F, Hu Y, Snyder M, Weissman SM (2008). A procedure for highly specific, sensitive, and unbiased whole-genome amplification. Proc Natl Acad Sci USA, 105(40): 15499–15504

    Article  PubMed  CAS  Google Scholar 

  • Park S Y, Gönen M, Kim H J, Michor F, Polyak K (2010). Cellular and genetic diversity in the progression of in situ human breast carcinomas to an invasive phenotype. J Clin Invest, 120(2): 636–644

    Article  PubMed  CAS  Google Scholar 

  • Quenneville S, Turelli P, Bojkowska K, Raclot C, Offner S, Kapopoulou A, Trono D (2012). The KRAB-ZFP/KAP1 system contributes to the early embryonic establishment of site-specific DNA methylation patterns maintained during development. Cell Reports 2: 766–773

    Article  PubMed  CAS  Google Scholar 

  • Ramsköld D, Luo S, Wang Y C, Li R, Deng Q, Faridani O R, Daniels G A, Khrebtukova I, Loring J F, Laurent L C, Schroth G P, Sandberg R (2012). Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol, 30(8): 777–782

    Article  PubMed  Google Scholar 

  • Reya T, Morrison S J, Clarke M F, Weissman I L (2001). Stem cells, cancer, and cancer stem cells. Nature, 414(6859): 105–111

    Article  PubMed  CAS  Google Scholar 

  • Rothberg J M, Hinz W, Rearick T M, Schultz J, Mileski W, Davey M, Leamon J H, Johnson K, Milgrew MJ, Edwards M, Hoon J, Simons J F, Marran D, Myers J W, Davidson J F, Branting A, Nobile J R, Puc B P, Light D, Clark T A, Huber M, Branciforte J T, Stoner I B, Cawley S E, Lyons M, Fu Y, Homer N, Sedova M, Miao X, Reed B, Sabina J, Feierstein E, Schorn M, Alanjary M, Dimalanta E, Dressman D, Kasinskas R, Sokolsky T, Fidanza J A, Namsaraev E, McKernan K J, Williams A, Roth G T, Bustillo J (2011). An integrated semiconductor device enabling non-optical genome sequencing. Nature, 475(7356): 348–352

    Article  PubMed  CAS  Google Scholar 

  • Sasagawa Y, Nikaido I, Hayashi T, Danno H, Uno K D, Imai T, Ueda H R (2013). Quartz-Seq: a highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity. Genome Biol, 14(4): R31

    Article  PubMed  Google Scholar 

  • Schoenborn L, Yates P S, Grinton B E, Hugenholtz P, Janssen P H (2004). Liquid serial dilution is inferior to solid media for isolation of cultures representative of the phylum-level diversity of soil bacteria. Appl Environ Microbiol, 70(7): 4363–4366

    Article  PubMed  CAS  Google Scholar 

  • Shalek A K, Satija R, Adiconis X, Gertner R S, Gaublomme J T, Raychowdhury R, Schwartz S, Yosef N, Malboeuf C, Lu D, Trombetta J J, Gennert D, Gnirke A, Goren A, Hacohen N, Levin J Z, Park H, Regev A (2013). Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature, 498(7453): 236–240

    Article  PubMed  CAS  Google Scholar 

  • Shendure J, Ji H (2008). Next-generation DNA sequencing. Nat Biotechnol, 26(10): 1135–1145

    Article  PubMed  CAS  Google Scholar 

  • Simone N L, Bonner R F, Gillespie J W, Emmert-Buck M R, Liotta L A (1998). Laser-capture microdissection: opening the microscopic frontier to molecular analysis. Trends Genet, 14(7): 272–276

    Article  PubMed  CAS  Google Scholar 

  • Song C X, Clark T A, Lu X Y, Kislyuk A, Dai Q, Turner S W, He C, Korlach J (2012). Sensitive and specific single-molecule sequencing of 5-hydroxymethylcytosine. Nat Methods, 9(1): 75–77

    Article  CAS  Google Scholar 

  • Tahiliani M, Koh K P, Shen Y, Pastor W A, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu D R, Aravind L, Rao A (2009). Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science, 324(5929): 930–935

    Article  PubMed  CAS  Google Scholar 

  • Tan D W, Jensen K B, Trotter M W, Connelly J T, Broad S, Watt F M (2013). Single-cell gene expression profiling reveals functional heterogeneity of undifferentiated human epidermal cells. Development, 140(7): 1433–1444

    Article  PubMed  CAS  Google Scholar 

  • Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Bodeau J, Tuch B B, Siddiqui A, Lao K, Surani MA (2009). mRNASeq whole-transcriptome analysis of a single cell. Nat Methods, 6(5): 377–382

    Article  PubMed  CAS  Google Scholar 

  • Tang F, Lao K, Surani M A (2011). Development and applications of single-cell transcriptome analysis. Nat Methods, 8(4 Suppl): S6–S11

    PubMed  CAS  Google Scholar 

  • Torres L, Ribeiro F R, Pandis N, Andersen J A, Heim S, Teixeira M R (2007). Intratumor genomic heterogeneity in breast cancer with clonal divergence between primary carcinomas and lymph node metastases. Breast Cancer Res Treat, 102(2): 143–155

    Article  PubMed  Google Scholar 

  • Tzvetkov M V, Becker C, Kulle B, Nürnberg P, Brockmöller J, Wojnowski L (2005). Genome-wide single-nucleotide polymorphism arrays demonstrate high fidelity of multiple displacement-based whole-genome amplification. Electrophoresis, 26(3): 710–715

    Article  PubMed  CAS  Google Scholar 

  • Unger M A, Chou H P, Thorsen T, Scherer A, Quake S R (2000). Monolithic microfabricated valves and pumps by multilayer soft lithography. Science, 288(5463): 113–116

    Article  PubMed  CAS  Google Scholar 

  • Voet T, Kumar P, Van Loo P, Cooke S L, Marshall J, Lin M L, Zamani Esteki M, Van der Aa N, Mateiu L, McBride D J, Bignell G R, McLaren S, Teague J, Butler A, Raine K, Stebbings L A, Quail M A, D’Hooghe T, Moreau Y, Futreal P A, Stratton M R, Vermeesch J R, Campbell P J (2013). Single-cell paired-end genome sequencing reveals structural variation per cell cycle. Nucleic Acids Res, 41(12): 6119–6138

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Fan H C, Behr B, Quake S R (2012). Genome-wide single-cell analysis of recombination activity and de novo mutation rates in human sperm. Cell, 150(2): 402–412

    Article  PubMed  CAS  Google Scholar 

  • Wu A R, Neff N F, Kalisky T, Dalerba P, Treutlein B, Rothenberg M E, Mburu F M, Mantalas G L, Sim S, Clarke M F, Quake S R (2013). Quantitative assessment of single-cell RNA-sequencing methods. Nat Methods

    Google Scholar 

  • Xu X, Hou Y, Yin X, Bao L, Tang A, Song L, Li F, Tsang S, Wu K, Wu H, He W, Zeng L, Xing M, Wu R, Jiang H, Liu X, Cao D, Guo G, Hu X, Gui Y, Li Z, Xie W, Sun X, Shi M, Cai Z, Wang B, Zhong M, Li J, Lu Z, Gu N, Zhang X, Goodman L, Bolund L, Wang J, Yang H, Kristiansen K, Dean M, Li Y, Wang J (2012). Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell, 148(5): 886–895

    Article  PubMed  CAS  Google Scholar 

  • Xue Z, Huang K, Cai C, Cai L, Jiang C Y, Feng Y, Liu Z, Zeng Q, Cheng L, Sun Y E, Liu J Y, Horvath S, Fan G (2013). Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature, 500(7464): 593–597

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Yang M, Guo H, Yang L, Wu J, Li R, Liu P, Lian Y, Zheng X, Yan J, Huang J, Li M, Wu X, Wen L, Lao K, Li R, Qiao J, Tang F (2013). Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol, 20(9): 1131–1139

    Article  PubMed  CAS  Google Scholar 

  • Zandi S, Ahsberg J, Tsapogas P, Stjernberg J, Qian H, Sigvardsson M (2012). Single-cell analysis of early B-lymphocyte development suggests independent regulation of lineage specification and commitment in vivo. Proc Natl Acad Sci USA, 109(39): 15871–15876

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Gong X, Chen L, Li L, Liang Y, Chen S, Zhang Y (2013). Sitespecific methylation of placental HSD11B2 gene promoter is related to intrauterine growth restriction. Eur J Hum Genet, doi: 10.1038/ejhg.2013.226

    Google Scholar 

  • Zong C, Lu S, Chapman A R, Xie X S (2012). Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science, 338(6114): 1622–1626

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoping Fan.

Additional information

These authors contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Q., Zhu, X., Feng, Y. et al. Single-cell genomics: An overview. Front. Biol. 8, 569–576 (2013). https://doi.org/10.1007/s11515-013-1285-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-013-1285-8

Keywords

Navigation