Skip to main content
Log in

Mutation in angiotensin II type 1 receptor disrupts its binding to angiotensin II leading to hypotension: An insight into hydrogen bonding patterns

  • Research Article
  • Published:
Frontiers in Biology

Abstract

To understand the role of angiotensin II type 1 receptor gene (AGTR1) gene products in relation to hypotension we have analyzed the single nucleotide polymorphisms (SNPs) associated with this gene. This can help us to understand the genetic variations that can alter the function of the gene products. In this present study, we report the polymorphic variant associated with AGTR1 and its weak interaction with angiotensin II (AngII) which leads to hypotension. Out of 1318 SNPs, six are found to be non-synonymous, of which rs1064533 shows significant damaging effect. A missense mutation (T1255G), i.e., from thymine to guanine for rs1064533 in AGTR1 gene results in amino acid substitution from cysteine (Cys) to tryptophan (Trp) in the receptor protein. A strong hydrogen bond exists between Cys289 of native AGTR1 protein and glutamine 167 of AngII. Interestingly, it is replaced by a weak hydrogen bond in the mutant protein between Trp289 (mutant residue) and serine 340. Such a substitution from small, hydrophilic to bulky, hydrophobic residue in AGTR1 protein results in reduced binding affinity of the receptor protein with AngII, leading to hypotension. The results presented from this in silico study will open up new prospect for genetic analysis of AGTR1 gene and will be beneficial to the researchers for understanding the role played by AGTR1 gene in hypotension disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anbarasu A, Anand S, Mathew L, Rao S (2006). Computation of noncovalent interactions in TNF proteins and interleukins. Cytokine, 35(5–6): 263–269

    Article  PubMed  CAS  Google Scholar 

  • Anbarasu A, Anand S, Mathew L, Sethumadhavan R (2007). Influence of cation-π interactions on RNA-binding proteins. Int J Biol Macromol, 40(5): 479–483

    Article  PubMed  CAS  Google Scholar 

  • Anbarasu A, Sethumadhavan R (2007). Exploring the role of cation-π interactions in glycoproteins lipid-binding proteins and RNA-binding proteins. J Theor Biol, 247(2): 346–353

    Article  PubMed  CAS  Google Scholar 

  • Ausiello G, Cesareni G, Helmer-Citterich M (1997). ESCHER: a new docking procedure applied to the reconstruction of protein tertiary structure. Proteins, 28(4): 556–567

    Article  PubMed  CAS  Google Scholar 

  • Benner S A, Cannarozzi G, Gerloff D, Turcotte M, Chelvanayagam G (1997). Bona fide predictions of protein secondary structure using transparent analyses of multiple sequence alignments. Chem Rev, 97(8): 2725–2844

    Article  PubMed  CAS  Google Scholar 

  • Berry C, Touyz R, Dominiczak A F, Webb R C, Johns D G (2001). Angiotensin receptors: signaling, vascular pathophysiology, and interactions with ceramide. Am J Physiol Heart Circ Physiol, 281(6): H2337–H2365

    PubMed  CAS  Google Scholar 

  • Cartegni L, Wang J, Zhu Z, Zhang M Q, Krainer A R (2003). ESEfinder: A web resource to identify exonic splicing enhancers. Nucleic Acids Res, 31(13): 3568–3571

    Article  PubMed  CAS  Google Scholar 

  • Eswar N, Webb B, Marti-Renom M A, Madhusudhan M S, Eramian D, Shen M Y, Pieper U, Sali A (2007). Comparative protein structure modeling using MODELLER. Curr Protoc Protein Sci, Chapter 2(9): 2, 9

  • Fairbrother W G, Yeh R F, Sharp P A, Burge C B (2002). Predictive identification of exonic splicing enhancers in human genes. Science, 297(5583): 1007–1013

    Article  PubMed  CAS  Google Scholar 

  • Fairbrother W G, Yeo GW, Yeh R, Goldstein P, Mawson M, Sharp P A, Burge C B (2004). RESCUE-ESE identifies candidate exonic splicing enhancers in vertebrate exons. Nucleic Acids Res, 32(Web ServerWeb Server issue): W187–90

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Recio J, Totrov M, Abagyan R (2002). Soft protein-protein docking in internal coordinates. Protein Sci, 11(2): 280–291

    Article  PubMed  CAS  Google Scholar 

  • Fiser A, Sali A (2003). Modeller: generation and refinement of homology-based protein structure models. Methods Enzymol, 374: 461–491

    Article  PubMed  CAS  Google Scholar 

  • Gallivan J P, Dougherty D A (1999). Cation-π interactions in structural biology. Proc Natl Acad Sci USA, 96(17): 9459–9464

    Article  PubMed  CAS  Google Scholar 

  • Gavin A C, Superti-Furga G (2003). Protein complexes and proteome organization from yeast to man. Curr Opin Chem Biol, 7(1): 21–27

    Article  PubMed  CAS  Google Scholar 

  • Gerken T A, Tep C, Rarick J (2004). Role of peptide sequence and neighboring residue glycosylation on the substrate specificity of the uridine 5′-diphosphate-alpha-N-acetylgalactosamine:polypeptide Nacetylgalactosaminyl transferases T1 and T2: kinetic modeling of the porcine and canine submaxillary gland mucin tandem repeats. Biochemistry, 43(30): 9888–9900

    Article  PubMed  CAS  Google Scholar 

  • Griendling K K, Alexander RW (1993). The angiotensin (AT1) receptor. Semin Nephrol, 13(6): 558–566

    PubMed  CAS  Google Scholar 

  • Hansen J L, Haunsø S, Brann M R, Sheikh S P, Weiner D M (2004). Loss-of-function polymorphic variants of the human angiotensin II type 1 receptor. Mol Pharmacol, 65(3): 770–777

    Article  PubMed  CAS  Google Scholar 

  • Hekkelman M L, Te Beek T A H, Pettifer S R, Thorne D, Attwood T K, Vriend G (2010). WIWS: a protein structure bioinformatics Web service collection. Nucleic Acids Res, 38(Web Server Web Server issue): W719–23

    Article  PubMed  CAS  Google Scholar 

  • Higuchi S, Ohtsu H, Suzuki H, Shirai H, Frank G D, Eguchi S (2007). Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology. Clin Sci (Lond), 112(8): 417–428

    Article  CAS  Google Scholar 

  • Hogg P J (2003). Disulfide bonds as switches for protein function. Trends Biochem Sci, 28(4): 210–214

    Article  PubMed  CAS  Google Scholar 

  • Hubbard T J P, Aken B L, Ayling S, Ballester B, Beal K, Bragin E, Brent S, Chen Y, Clapham P, Clarke L, Coates G, Fairley S, Fitzgerald S, Fernandez-Banet J, Gordon L, Graf S, Haider S, Hammond M, Holland R, Howe K, Jenkinson A, Johnson N, Kahari A, Keefe D, Keenan S, Kinsella R, Kokocinski F, Kulesha E, Lawson D, Longden I, Megy K, Meidl P, Overduin B, Parker A, Pritchard B, Rios D, Schuster M, Slater G, Smedley D, Spooner W, Spudich G, Trevanion S, Vilella A, Vogel J, White S, Wilder S, Zadissa A, Birney E, Cunningham F, Curwen V, Durbin R, Fernandez-Suarez X M, Herrero J, Kasprzyk A, Proctor G, Smith J, Searle S, Flicek P (2009). Ensembl 2009. Nucleic Acids Res, 37(Database Database issue): D690–D697

    Article  PubMed  CAS  Google Scholar 

  • Jeffrey G A, Saenger W (1991) Hydrogen Bonding in Biological Structure. Springer-Verlag, Berlin, Heidelberg, 459–486

    Book  Google Scholar 

  • Johnson M M, Houck J, Chen C (2005). Screening for deleterious non synonymous single-nucleotide polymorphisms in genes involved in steroid hormone metabolism and response. Cancer Epidemiol Biomarkers Prev, 4(5): 1326–1329

    Article  Google Scholar 

  • Karchin R, Diekhans M, Kelly L, Thomas D J, Pieper U, Eswar N, Haussler D, Sali A (2005). LS-SNP: large-scale annotation of coding non-synonymous SNPs based on multiple information sources. Bioinformatics, 21(12): 2814–2820

    Article  PubMed  CAS  Google Scholar 

  • Khan S, Vihinen M (2007). Spectrum of disease-causing mutations in protein secondary structures. BMC Struct Biol, 7(1): 56

    Article  PubMed  Google Scholar 

  • Kuhn R M, Karolchik D, Zweig A S, Trumbower H, Thomas D J, Thakkapallayil A, Sugnet C W, Stanke M, Smith K E, Siepel A K, Rosenbloom K R, Rhead B, Raney B J, Pohl A, Pedersen J S, Hsu F, Hinrichs A S, Harte R A, Diekhans M, Clawson H, Bejerano G, Barber G P, Baertsch R, Haussler D, Kent W J (2007). The UCSC genome browser database: update 2007. Nucleic Acids Res, 35(Database Database issue): D668–D673

    Article  PubMed  CAS  Google Scholar 

  • Lanver D, Mendoza-Mendoza A, Brachmann A, Kahmann R (2010). Sho1 and Msb2-related proteins regulate appressorium development in the smut fungus Ustilago maydis. Plant Cell, 22(6): 2085–2101

    Article  PubMed  CAS  Google Scholar 

  • Leclerc P C, Lanctot P M, Auger-Messier M, Escher E, Leduc R, Guillemette G (2006). S-nitrosylation of cysteine 289 of the AT1 receptor decreases its binding affinity for angiotensin II. Br J Pharmacol, 148(3): 306–313

    Article  PubMed  CAS  Google Scholar 

  • Lee P H, Shatkay H (2008). F-SNP: computationally predicted functional SNPs for disease association studies. Nucleic Acids Res, 36(Database Database issue): D820–D824

    PubMed  CAS  Google Scholar 

  • Lee P H, Shatkay H (2009). An integrative scoring system for ranking SNPs by their potential deleterious effects. Bioinformatics, 25(8): 1048–1055

    Article  PubMed  CAS  Google Scholar 

  • Maekawa M, Kikuchi J, Kotani K, Nagao K, Odgerel T, Ueda K, Kawano M, Furukawa Y, Sakurabayashi I (2009). A novel missense mutation of ABCA1 in transmembrane alpha-helix in a Japanese patient with Tangier disease. Atherosclerosis, 206(1): 216–222

    Article  PubMed  CAS  Google Scholar 

  • Mah J T L, Low E S H, Lee E (2011). In silico SNP analysis and bioinformatics tools: a review of the state of the art to aid drug discovery. Drug Discov Today, 16(17–18): 800–809

    Article  PubMed  CAS  Google Scholar 

  • Meyer M, Wilson P, Schomburg D (1996). Hydrogen bonding and molecular surface shape complementarity as a basis for protein docking. J Mol Biol, 264(1): 199–210

    Article  PubMed  CAS  Google Scholar 

  • Ng P C, Henikoff S (2003). SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res, 31(13): 3812–3814

    Article  PubMed  CAS  Google Scholar 

  • Perodin J, Deraët M, Auger-Messier M, Boucard A A, Rihakova L, Beaulieu ME, Lavigne P, Parent J L, Guillemette G, Leduc R, Escher E (2002). Residues 293 and 294 are ligand contact points of the human angiotensin type 1 receptor. Biochemistry, 41(48): 14348–14356

    Article  PubMed  CAS  Google Scholar 

  • Ramensky V, Bork P, Sunyaev S (2002). Human non-synonymous SNPs: server and survey. Nucleic Acids Res, 30(17): 3894–3900

    Article  PubMed  CAS  Google Scholar 

  • Reumers J, Maurer-Stroh S, Schymkowitz J, Rousseau F (2006). SNPeffect v2.0: a new step in investigating the molecular phenotypic effects of human non-synonymous SNPs. Bioinformatics, 22(17): 2183–2185

    Article  PubMed  CAS  Google Scholar 

  • Reumers J, Schymkowitz J, Ferkinghoff-Borg J, Stricher F, Serrano L, Rousseau F (2005). SNPeffect: a database mapping molecular phenotypic effects of human non-synonymous coding SNPs. Nucleic Acids Res, 33(Database issue): D527–D532

    PubMed  CAS  Google Scholar 

  • Reynolds C A, Hong M G, Eriksson U K, Blennow K, Bennet A M, Johansson B, Malmberg B, Berg S, Wiklund F, Gatz M, Pedersen N L, Prince J A (2009). A survey of ABCA1 sequence variation confirms association with dementia. Hum Mutat, 30(9): 1348–1354

    Article  PubMed  CAS  Google Scholar 

  • Rosskopf D, Schürks M, Rimmbach C, Schäfers R (2007). Genetics of arterial hypertension and hypotension. Naunyn Schmiedebergs Arch Pharmacol, 374(5–6): 429–469

    Article  PubMed  CAS  Google Scholar 

  • Rout C C, Rocke D A, Levin J, Gouws E, Reddy D (1993). A reevaluation of the role of crystalloid preload in the prevention of hypotension associated with spinal anesthesia for elective cesarean section. Anesthesiology, 79(2): 262–269

    Article  PubMed  CAS  Google Scholar 

  • Ryan M, Diekhans M, Lien S, Liu Y, Karchin R (2009). LS-SNP/PDB: annotated non-synonymous SNPs mapped to Protein Data Bank structures. Bioinformatics, 25(11): 1431–1432

    Article  PubMed  CAS  Google Scholar 

  • Satija R, Hein J, Lunter G A (2010). Genome-wide functional element detection using pairwise statistical alignment outperforms multiple genome footprinting techniques. Bioinformatics, 26(17): 2116–2120

    Article  PubMed  CAS  Google Scholar 

  • Siepel A, Bejerano G, Pedersen J S, Hinrichs A S, Hou M, Rosenbloom K, Clawson H, Spieth J, Hillier L W, Richards S, Weinstock G M, Wilson R K, Gibbs R A, Kent W J, Miller W, Haussler D (2005). Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res, 15(8): 1034–1050

    Article  PubMed  CAS  Google Scholar 

  • Smith P J, Zhang C, Wang J, Chew S L, Zhang MQ, Krainer A R (2006). An increased specificity score matrix for the prediction of SF2/ASFspecific exonic splicing enhancers. Hum Mol Genet, 15(16): 2490–2508

    Article  PubMed  CAS  Google Scholar 

  • Sugaya T, Nishimatsu S I, Tanimoto K, Takimoto E, Yamagishi T, Imamura K, Goto S, Imaizumi K, Hisada Y, Otsuka A, Sugiura M, Fukuta K, Fukamizu A, Murakami K (1995). Angiotensin II type 1a receptor-deficient mice with hypotension and hyperreninemia. J Biol Chem, 270(32): 18719–18722

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama F, Yagami K, Paigen B (2001). Mouse models of blood pressure regulation and hypertension. Curr Hypertens Rep, 3(1): 41–48

    Article  PubMed  CAS  Google Scholar 

  • Tobin M D, Tomaszewski M, Braund P S, Hajat C, Raleigh S M, Palmer T M, Caulfield M, Burton P R, Samani N J (2008). Common variants in genes underlying monogenic hypertension and hypotension and blood pressure in the general population. Hypertension, 51(6): 1658–1664

    Article  PubMed  CAS  Google Scholar 

  • Viklund H, Granseth E, Elofsson A (2006). Structural classification and prediction of reentrant regions in α-helical transmembrane proteins: application to complete genomes. J Mol Biol, 361(3): 591–603

    Article  PubMed  CAS  Google Scholar 

  • Wetzel R (1987). Harnessing disulfide-bonds using protein engineering. Trends Biochem Sci, 12: 478–482

    Article  CAS  Google Scholar 

  • Wheeler D L, Church DM, Lash A E, Leipe D D, Madden T L, Pontius J U, Schuler G D, Schriml L M, Tatusova T A, Wagner L, Rapp B A, Geer L Y, Helmberg W, Kapustin Y, Khovayko O, Landsman D, Lipman D J, Madden T L, Maglott D R, Miller V, Ostell J, Pruitt K D, Schuler G D, Shumway M, Sequeira E, Sherry S T, Sirotkin K, Souvorov A, Starchenko G, Tatusov R L, Tatusova T A, Wagner L, Yaschenko E (2002). Database resources of the National Center for Biotechnology Information: 2002 update. Nucleic Acids Res, 30(1): 13–16

    Article  PubMed  CAS  Google Scholar 

  • Xi H (2002). Linkage analysis on chromosome 2 in essential hypotension pedigrees. Chin Sci Bull, 47(18): 1538–1540

    Article  CAS  Google Scholar 

  • Xu D, Tsai C J, Nussinov R (1997). Hydrogen bonds and salt bridges across protein-protein interfaces. Protein Eng, 10(9): 999–1012

    Article  PubMed  CAS  Google Scholar 

  • Yuan Z Q, Gottlieb B, Beitel L K, Wong N, Gordon P H, Wang Q, Puisieux A, Foulkes W D, Trifiro M (2002). Polymorphisms and HNPCC: PMS2-MLH1 protein interactions diminished by single nucleotide polymorphisms. Hum Mutat, 19(2): 108–113

    Article  PubMed  CAS  Google Scholar 

  • Yue P, Melamud E, Moult J (2006). SNPs3D: candidate gene and SNP selection for association studies. BMC Bioinformatics, 7(1): 166–181

    Article  PubMed  Google Scholar 

  • Zhang X H F, Kangsamaksin T, Chao M S P, Banerjee J K, Chasin L A (2005). Exon inclusion is dependent on predictable exonic splicing enhancers. Mol Cell Biol, 25(16): 7323–7332

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Hoffman A, Wu X, Zhang H, Zhang Y, Leaderer D, Zheng T (2008). Correlating observed odds ratios from lung cancer casecontrol studies to SNP functional scores predicted by bioinformatic tools. Mutat Res, 639(1–2): 80–88

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Anbarasu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kundu, A., Ramaiah, S. & Anbarasu, A. Mutation in angiotensin II type 1 receptor disrupts its binding to angiotensin II leading to hypotension: An insight into hydrogen bonding patterns. Front. Biol. 7, 477–484 (2012). https://doi.org/10.1007/s11515-012-1241-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-012-1241-z

Keywords

Navigation