Skip to main content
Log in

NMDA receptor signaling: death or survival?

  • Review
  • Published:
Frontiers in Biology

Abstract

Glutamate-induced neuronal damage is mainly caused by overactivation of N-methyl-D-aspartate (NMDA) receptors. Conversely, normal physiological brain function and neuronal survival require adequate activation of NMDA receptors. Studies have revealed that NMDA receptor-induced neuronal death or survival is mediated through distinct subset of NMDA receptors triggering different intracellular signaling pathways. Here we discuss recent advances in the characterization of NMDA receptors in neuronal protection, emphasizing subunit-specific role, which contributes to temporal-spatial distribution, subcellular localization and diverse channel properties of NMDA receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarts M, Liu Y, Liu L, Besshoh S, Arundine M, Gurd J W, Wang Y T, Salter M W, Tymianski M (2002). Treatment of ischemic brain damage by perturbing NMDA receptor-PSD-95 protein interactions. Science, 298(5594): 846–850

    Article  PubMed  CAS  Google Scholar 

  • Al-Mubarak B, Soriano F X, Hardingham G E (2009). Synaptic NMDAR activity suppresses FOXO1 expression via a cis-acting FOXO binding site: FOXO1 is a FOXO target gene. Channels (Austin), 3(4): 233–238

    CAS  Google Scholar 

  • Akazawa C, Shigemoto R, Bessho Y, Nakanishi S, Mizuno N (1994). Differential expression of five N-methyl-D-aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats. J Comp Neurol, 347(1): 150–160

    Article  PubMed  CAS  Google Scholar 

  • Brunet A, Bonni A, Zigmond M J, Lin M Z, Juo P, Hu L S, Anderson M J, Arden K C, Blenis J, Greenberg M E(1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell, 96(6): 857–868

    Article  PubMed  CAS  Google Scholar 

  • Cavara N A, Hollmann M (2008). Shuffling the deck anew: how NR3 tweaks NMDA receptor function. Mol Neurobiol, 38(1): 16–26

    Article  PubMed  CAS  Google Scholar 

  • Cavara N A, Orth A, Hicking G, Seebohm G, Hollmann M (2010). Residues at the tip of the pore loop of NR3B-containing NMDA receptors determine Ca2+ permeability and Mg2+ block. BMC Neurosci, 11(1): 133

    Article  PubMed  Google Scholar 

  • Chandler L J, Sutton G, Dorairaj N R, Norwood D (2001). N-methyl Daspartate receptor-mediated bidirectional control of extracellular signal-regulated kinase activity in cortical neuronal cultures. J Biol Chem, 276(4): 2627–2636

    Article  PubMed  CAS  Google Scholar 

  • Chatterton J E, Awobuluyi M, Premkumar L S, Takahashi H, Talantova M, Shin Y, Cui J, Tu S, Sevarino K A, Nakanishi N, Tong G, Lipton S A, Zhang D (2002). Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature, 415(6873): 793–798

    PubMed  CAS  Google Scholar 

  • Chen B S, Roche K W (2007). Regulation of NMDA receptors by phosphorylation. Neuropharmacology, 53(3): 362–368

    Article  PubMed  Google Scholar 

  • Chen B S, Roche K W (2009). Growth factor-dependent trafficking of cerebellar NMDA receptors via protein kinase B/Akt phosphorylation of NR2C. Neuron, 62(4): 471–478

    Article  PubMed  CAS  Google Scholar 

  • Choi D W (1987). Ionic dependence of glutamate neurotoxicity. J Neurosci, 7(2): 369–379

    PubMed  CAS  Google Scholar 

  • Choi D W, Maulucci-Gedde M, Kriegstein A R (1987). Glutamate neurotoxicity in cortical cell culture. J Neurosci, 7(2): 357–368

    PubMed  CAS  Google Scholar 

  • Choi D W, Koh J Y, Peters S (1988). Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists. J Neurosci, 8(1): 185–196

    PubMed  CAS  Google Scholar 

  • Ciabarra A M, Sullivan J M, Gahn L G, Pecht G, Heinemann S, Sevarino K A (1995). Cloning and characterization of chi-1: a developmentally regulated member of a novel class of the ionotropic glutamate receptor family. J Neurosci, 15(10): 6498–6508

    PubMed  CAS  Google Scholar 

  • Ciani E, Rizzi S, Paulsen R E, Contestabile A (1997). Chronic preexplant blockade of the NMDA receptor affects survival of cerebellar granule cells explanted in vitro. Brain Res Dev Brain Res, 99(1): 112–117

    Article  PubMed  CAS  Google Scholar 

  • Clements J D, Lester R A, Tong G, Jahr C E, Westbrook G L (1992). The time course of glutamate in the synaptic cleft. Science, 258(5087): 1498–1501

    Article  PubMed  CAS  Google Scholar 

  • Collingridge G L, Isaac J T R, Wang Y T (2004). Receptor trafficking and synaptic plasticity. Nat Rev Neurosci, 5(12): 952–962

    Article  PubMed  CAS  Google Scholar 

  • Cui H, Hayashi A, Sun H S, Belmares M P, Cobey C, Phan T, Schweizer J, Salter MW, Wang Y T, Tasker R A, Garman D, Rabinowitz J, Lu P S, Tymianski M (2007). PDZ protein interactions underlying NMDA receptor-mediated excitotoxicity and neuroprotection by PSD-95 inhibitors. J Neurosci, 27(37): 9901–9915

    Article  PubMed  CAS  Google Scholar 

  • Cull-Candy S, Brickley S, Farrant M (2001). NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol, 11(3): 327–335

    Article  PubMed  CAS  Google Scholar 

  • Cull-Candy S G, Leszkiewicz D N (2004). Role of distinct NMDA receptor subtypes at central synapses. Sci STKE, 2004(255): re16

    Article  PubMed  Google Scholar 

  • Das S, Sasaki Y F, Rothe T, Premkumar L S, Takasu M, Crandall J E, Dikkes P, Conner D A, Rayudu P V, Cheung W, Chen H S, Lipton S A, Nakanishi N (1998). Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A. Nature, 393(6683): 377–381

    Article  PubMed  CAS  Google Scholar 

  • Dick O, Bading H (2010). Synaptic activity and nuclear calcium signaling protect hippocampal neurons from death signal-associated nuclear translocation of FoxO3a induced by extrasynaptic N-methyl-D-aspartate receptors. J Biol Chem, 285(25): 19354–19361

    Article  PubMed  CAS  Google Scholar 

  • Dingledine R, Borges K, Bowie D, Traynelis S F (1999). The glutamate receptor ion channels. Pharmacol Rev, 51(1): 7–61

    PubMed  CAS  Google Scholar 

  • Dravid SM, Prakash A, Traynelis S F (2008). Activation of recombinant NR1/NR2C NMDA receptors. J Physiol, 586(18): 4425–4439

    Article  PubMed  CAS  Google Scholar 

  • Ebralidze A K, Rossi D J, Tonegawa S, Slater N T (1996). Modification of NMDA receptor channels and synaptic transmission by targeted disruption of the NR2C gene. J Neurosci, 16(16): 5014–5025

    PubMed  CAS  Google Scholar 

  • von Engelhardt J, Coserea I, Pawlak V, Fuchs E C, Köhr G, Seeburg P H, Monyer H, (2007). Excitotoxicity in vitro by NR2A- and NR2Bcontaining NMDA receptors. Neuropharmacology, 53(1): 10–17

    Article  Google Scholar 

  • Farrant M, Feldmeyer D, Takahashi T, Cull-Candy S G (1994). NMDAreceptor channel diversity in the developing cerebellum. Nature, 368(6469): 335–339

    Article  PubMed  CAS  Google Scholar 

  • Groc L, Heine M, Cousins S L, Stephenson F A, Lounis B, Cognet L, Choquet D (2006). NMDA receptor surface mobility depends on NR2A-2B subunits. Proc Natl Acad Sci USA, 103(49): 18769–18774

    Article  PubMed  CAS  Google Scholar 

  • Hardingham G E, Bading H (2010). Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci, 11(10): 682–696

    Article  PubMed  CAS  Google Scholar 

  • Hardingham G E, Fukunaga Y, Bading H (2002). Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci, 5(5): 405–414

    PubMed  CAS  Google Scholar 

  • Ikonomidou C, Bosch F, Miksa M, Bittigau P, Vöckler J, Dikranian K, Tenkova T I, Stefovska V, Turski L, Olney J W (1999). Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science, 283(5398): 70–74

    Article  PubMed  CAS  Google Scholar 

  • Ivanov A, Pellegrino C, Rama S, Dumalska I, Salyha Y, Ben-Ari Y, Medina I (2006). Opposing role of synaptic and extrasynaptic NMDA receptors in regulation of the extracellular signal-regulated kinases (ERK) activity in cultured rat hippocampal neurons. J Physiol, 572(Pt 3): 789–798

    PubMed  CAS  Google Scholar 

  • Kadotani H, Namura S, Katsuura G, Terashima T, Kikuchi H (1998). Attenuation of focal cerebral infarct in mice lacking NMDA receptor subunit NR2C. Neuroreport, 9(3): 471–475

    Article  PubMed  CAS  Google Scholar 

  • Karavanova I, Vasudevan K, Cheng J, Buonanno A (2007). Novel regional and developmental NMDA receptor expression patterns uncovered in NR2C subunit-beta-galactosidase knock-in mice. Mol Cell Neurosci, 34(3): 468–480

    Article  PubMed  CAS  Google Scholar 

  • Káradóttir R, Cavelier P, Bergersen L H, Attwell D (2005). NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature, 438(7071): 1162–1166

    Article  PubMed  Google Scholar 

  • Kim M J, Dunah AW, Wang Y T, Sheng M (2005). Differential roles of NR2A- and NR2B-containing NMDA receptors in Ras-ERK signaling and AMPA receptor trafficking. Neuron, 46(5): 745–760

    Article  PubMed  CAS  Google Scholar 

  • Kutsuwada T, Sakimura K, Manabe T, Takayama C, Katakura N, Kushiya E, Natsume R, Watanabe M, Inoue Y, Yagi T, Aizawa S, Arakawa M, Takahashi T, Nakamura Y, Mori H, Mishina M (1996). Impairment of suckling response, trigeminal neuronal pattern formation, and hippocampal LTD in NMDA receptor epsilon 2 subunit mutant mice. Neuron, 16(2): 333–344

    Article  PubMed  CAS  Google Scholar 

  • Larsen R S, Corlew R J, Henson M A, Roberts A C, Mishina M, Watanabe M, Lipton S A, Nakanishi N, Pérez-Otaño I, Weinberg R J, Philpot B D (2011). NR3A-containing NMDARs promote neurotransmitter release and spike timing-dependent plasticity. Nat Neurosci, 14(3): 338–344

    Article  PubMed  CAS  Google Scholar 

  • Lee F J S, Xue S, Pei L, Vukusic B, Chéry N, Wang Y, Wang Y T, Niznik H B, Yu X M, Liu F (2002). Dual regulation of NMDA receptor functions by direct protein-protein interactions with the dopamine D1 receptor. Cell, 111(2): 219–230

    Article  PubMed  CAS  Google Scholar 

  • Lehtinen M K, Yuan Z, Boag P R, Yang Y, Villén J, Becker E B E, DiBacco S, de la Iglesia N, Gygi S, Blackwell T K, Bonni A (2006). A conserved MST-FOXO signaling pathway mediates oxidativestress responses and extends life span. Cell, 125(5): 987–1001

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Wong T P, Aarts M, Rooyakkers A, Liu L, Lai T W, Wu D C, Lu J, Tymianski M, Craig A M, Wang Y T (2007). NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J Neurosci, 27(11): 2846–2857

    Article  PubMed  CAS  Google Scholar 

  • Low C M, Wee K S L (2010). New insights into the not-so-new NR3 subunits of N-methyl-D-aspartate receptor: localization, structure, and function. Mol Pharmacol, 78(1): 1–11

    Article  PubMed  CAS  Google Scholar 

  • Lucas D R, Newhouse J P (1957). The toxic effect of sodium Lglutamate on the inner layers of the retina. AMA Arch Ophthalmol, 58(2): 193–201

    PubMed  CAS  Google Scholar 

  • Martel M A, Wyllie D J, Hardingham G E (2009). In developing hippocampal neurons, NR2B-containing N-methyl-D-aspartate receptors (NMDARs) can mediate signaling to neuronal survival and synaptic potentiation, as well as neuronal death. Neuroscience, 158(1): 334–343

    Article  PubMed  CAS  Google Scholar 

  • Mayr B, Montminy M (2001). Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol, 2(8): 599–609

    Article  PubMed  CAS  Google Scholar 

  • Micu I, Jiang Q, Coderre E, Ridsdale A, Zhang L, Woulfe J, Yin X, Trapp B D, McRory J E, Rehak R, Zamponi GW, Wang W, Stys P K (2006). NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia. Nature, 439(7079): 988–992

    PubMed  CAS  Google Scholar 

  • Monyer H, Burnashev N, Laurie D J, Sakmann B, Seeburg P H (1994). Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron, 12(3): 529–540

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi N, Tu S, Shin Y, Cui J, Kurokawa T, Zhang D, Chen H S V, Tong G, Lipton S A (2009). Neuroprotection by the NR3A subunit of the NMDA receptor. J Neurosci, 29(16): 5260–5265

    Article  PubMed  CAS  Google Scholar 

  • Nakazawa K, McHugh T J, Wilson M A, Tonegawa S (2004). NMDA receptors, place cells and hippocampal spatial memory. Nat Rev Neurosci, 5(5): 361–372

    Article  PubMed  CAS  Google Scholar 

  • Neyton J, Paoletti P (2006). Relating NMDA receptor function to receptor subunit composition: limitations of the pharmacological approach. J Neurosci, 26(5): 1331–1333

    Article  PubMed  CAS  Google Scholar 

  • Ni H, Jiang Y W, Bo T, Wang J M, Wu X R (2005). c-Fos, N-methyl-daspartate receptor 2C, GABA-A-alpha1 immonoreactivity, seizure latency and neuronal injury following single or recurrent neonatal seizures in hippocampus ofWistar rat. Neurosci Lett, 380(1–2): 149–154

    Article  PubMed  CAS  Google Scholar 

  • Niethammer M, Kim E, Sheng M (1996). Interaction between the C terminus of NMDA receptor subunits and multiple members of the PSD-95 family of membrane-associated guanylate kinases. J Neurosci, 16(7): 2157–2163

    PubMed  CAS  Google Scholar 

  • Nishi M, Hinds H, Lu H P, Kawata M, Hayashi Y (2001). Motoneuronspecific expression of NR3B, a novel NMDA-type glutamate receptor subunit that works in a dominant-negative manner. J Neurosci, 21(23): RC185

    PubMed  CAS  Google Scholar 

  • Olney JW, Sharpe L G (1969). Brain lesions in an infant rhesus monkey treated with monsodium glutamate. Science, 166(3903): 386–388

    Article  PubMed  CAS  Google Scholar 

  • Papadia S, Soriano F X, Léveillé F, Martel M A, Dakin K A, Hansen H H, Kaindl A, Sifringer M, Fowler J, Stefovska V, McKenzie G, Craigon M, Corriveau R, Ghazal P, Horsburgh K, Yankner B A, Wyllie D J A, Ikonomidou C, Hardingham G E (2008). Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses. Nat Neurosci, 11(4): 476–487

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Otaño I, Luján R, Tavalin S J, Plomann M, Modregger J, Liu X B, Jones E G, Heinemann S F, Lo D C, Ehlers M D (2006). Endocytosis and synaptic removal of NR3A-containing NMDA receptors by PACSIN1/syndapin1. Nat Neurosci, 9(5): 611–621

    Article  PubMed  Google Scholar 

  • Piña-Crespo J C, Talantova M, Micu I, States B, Chen H S V, Tu S, Nakanishi N, Tong G, Zhang D, Heinemann S F, Zamponi G W, Stys P K, Lipton S A (2010). Excitatory glycine responses of CNS myelin mediated by NR1/NR3 “NMDA” receptor subunits. J Neurosci, 30(34): 11501–11505

    Article  PubMed  Google Scholar 

  • Sakimura K, Kutsuwada T, Ito I, Manabe T, Takayama C, Kushiya E, Yagi T, Aizawa S, Inoue Y, Sugiyama H, Mishina M (1995). Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor epsilon 1 subunit. Nature, 373(6510): 151–155

    Article  PubMed  CAS  Google Scholar 

  • Salter M G, Fern R (2005). NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury. Nature, 438(7071): 1167–1171

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T, Takemori H, Yagita Y, Terasaki Y, Uebi T, Horike N, Takagi H, Susumu T, Teraoka H, Kusano K I, Hatano O, Oyama N, Sugiyama Y, Sakoda S, Kitagawa K (2011). SIK2 is a key regulator for neuronal survival after ischemia via TORC1-CREB. Neuron, 69(1): 106–119

    Article  PubMed  CAS  Google Scholar 

  • Sasaki Y F, Rothe T, Premkumar L S, Das S, Cui J, Talantova M V, Wong H K, Gong X, Chan S F, Zhang D, Nakanishi N, Sucher N J, Lipton S A (2002). Characterization and comparison of the NR3A subunit of the NMDA receptor in recombinant systems and primary cortical neurons. J Neurophysiol, 87(4): 2052–2063

    PubMed  CAS  Google Scholar 

  • Small D L, Poulter M O, Buchan A M, Morley P (1997). Alteration in NMDA receptor subunit mRNA expression in vulnerable and resistant regions of in vitro ischemic rat hippocampal slices. Neurosci Lett, 232(2): 87–90

    Article  PubMed  CAS  Google Scholar 

  • Sattler R, Xiong Z, Lu W Y, Hafner M, MacDonald J F, Tymianski M (1999). Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science, 284(5421): 1845–1848

    Article  PubMed  CAS  Google Scholar 

  • Sprengel R, Suchanek B, Amico C, Brusa R, Burnashev N, Rozov A, Hvalby O, Jensen V, Paulsen O, Andersen P, Kim J J, Thompson R F, Sun W, Webster L C, Grant S G, Eilers J, Konnerth A, Li J, McNamara J O, Seeburg P H (1998). Importance of the intracellular domain of NR2 subunits for NMDA receptor function in vivo. Cell, 92(2): 279–289

    Article  PubMed  CAS  Google Scholar 

  • Steigerwald F, Schulz T W, Schenker L T, Kennedy M B, Seeburg P H, Köhr G (2000). C-Terminal truncation of NR2A subunits impairs synaptic but not extrasynaptic localization of NMDA receptors. J Neurosci, 20(12): 4573–4581

    PubMed  CAS  Google Scholar 

  • Stern P, Béhé P, Schoepfer R, Colquhoun D (1992). Single-channel conductances of NMDA receptors expressed from cloned cDNAs: comparison with native receptors. Proc Biol Sci, 250(1329): 271–277

    Article  PubMed  CAS  Google Scholar 

  • Sucher N J, Akbarian S, Chi C L, Leclerc C L, Awobuluyi M, Deitcher D L, Wu M K, Yuan J P, Jones E G, Lipton S A (1995). Developmental and regional expression pattern of a novel NMDA receptor-like subunit (NMDAR-L) in the rodent brain. J Neurosci, 15(10): 6509–6520

    PubMed  CAS  Google Scholar 

  • Traynelis S F, Wollmuth L P, McBain C J, Menniti F S, Vance K M, Ogden K K, Hansen K B, Yuan H, Myers S J, Dingledine R (2010). Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev, 62(3): 405–496

    Article  PubMed  CAS  Google Scholar 

  • Thomas C G, Miller A J, Westbrook G L (2006). Synaptic and extrasynaptic NMDA receptor NR2 subunits in cultured hippocampal neurons. J Neurophysiol, 95(3): 1727–1734

    Article  PubMed  CAS  Google Scholar 

  • Tong G, Takahashi H, Tu S, Shin Y, Talantova M, Zago W, Xia P, Nie Z, Goetz T, Zhang D, Lipton S A, Nakanishi N (2007). Modulation of NMDA receptor properties and synaptic transmission by the NR3A subunit in mouse hippocampal and cerebrocortical neurons. J Neurophysiol, 99(1): 122–132

    Article  PubMed  Google Scholar 

  • Tovar K R, Westbrook G L (1999). The incorporation of NMDA receptors with a distinct subunit composition at nascent hippocampal synapses in vitro. J Neurosci, 19(10): 4180–4188

    PubMed  CAS  Google Scholar 

  • Tu W, Xu X, Peng L, Zhong X, Zhang W, Soundarapandian M M, Balel C, Wang M, Jia N, Zhang W, Lew F, Chan S L, Chen Y, Lu Y (2010). DAPK1 interaction with NMDA receptor NR2B subunits mediates brain damage in stroke. Cell, 140(2): 222–234

    Article  PubMed  CAS  Google Scholar 

  • Ulbrich M H, Isacoff E Y (2008). Rules of engagement for NMDA receptor subunits. Proc Natl Acad Sci USA, 105(37): 14163–14168

    Article  PubMed  CAS  Google Scholar 

  • Wenzel A, Fritschy J M, Mohler H, Benke D (1997). NMDA receptor heterogeneity during postnatal development of the rat brain: differential expression of the NR2A, NR2B, and NR2C subunit proteins. J Neurochem, 68(2): 469–478

    Article  PubMed  CAS  Google Scholar 

  • Wee K S, Zhang Y, Khanna S, Low C M (2008). Immunolocalization of NMDA receptor subunit NR3B in selected structures in the rat forebrain, cerebellum, and lumbar spinal cord. J Comp Neurol, 509(1): 118–135

    Article  PubMed  CAS  Google Scholar 

  • Yao Y, Harrison C B, Freddolino P L, Schulten K, Mayer M L (2008). Molecular mechanism of ligand recognition by NR3 subtype glutamate receptors. EMBO J, 27(15): 2158–2170

    Article  PubMed  CAS  Google Scholar 

  • Zhou L, Li F, Xu H B, Luo C X, Wu H Y, Zhu MM, Lu W, Ji X, Zhou Q G, Zhu D Y (2010). Treatment of cerebral ischemia by disrupting ischemia-induced interaction of nNOS with PSD-95. Nat Med, 16(12): 1439–1443

    Article  PubMed  CAS  Google Scholar 

  • Zukin R S, Bennett M V (1995). Alternatively spliced isoforms of the NMDARI receptor subunit. Trends Neurosci, 18(7): 306–313

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei-Hua Wu or Bo-Shiun Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, T., Wu, WH. & Chen, BS. NMDA receptor signaling: death or survival?. Front. Biol. 6, 468–476 (2011). https://doi.org/10.1007/s11515-011-1187-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-011-1187-6

Keywords

Navigation