Skip to main content
Log in

Urokinase-targeted recombinant bacterial protein toxins — a rationally designed and engineered anticancer agent for cancer therapy

  • Review Article
  • Published:
Frontiers of Biology in China

Abstract

Urokinase-targeted recombinant bacterial protein toxins are a sort of rationally designed and engineered anticancer recombinant fusion proteins representing a novel class of agents for cancer therapy. Bacterial protein toxins have long been known as the primary virulence factor(s) for a variety of pathogenic bacteria and are the most powerful human poisons. On the other hand, it has been well documented that urokinase-type plasminogen activator (uPA) and urokinase plasminogen activator receptor (uPAR), making up the uPA system, are over-expressed in a variety of human tumors and tumor cell lines. The expression of uPA system is highly correlated with tumor invasion and metastasis. To exploit these characteristics in the design of tumor cell-selective cytotoxins, two prominent bacterial protein toxins, i.e., the diphtheria toxin and anthrax toxin are deliberately engineered through placing a sequence targeted specifically by the uPA system to form anticancer recombinant fusion proteins. These uPA system-targeted bacterial protein toxins are activated selectively on the surface of uPA system-expressing tumor cells, thereby killing these cells. This article provides a review on the latest progress in the exploitation of these recombinant fusion proteins as potent tumoricidal agents. It is perceptible that the strategies for cancer therapy are being innovated by this novel therapeutic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abi-Habib R J, Liu S H, Bugge T H, Leppla S H, Frankel A E (2004). A urokinase-activated recombinant diphtheria toxin targeting the granulocyte-macrophage colony-stimulating factor receptor is selectively cytotoxic to human acute myeloid leukemia blasts. Blood, 104: 2143–2148

    Article  PubMed  CAS  Google Scholar 

  • Abi-Habib R J, Singh R, Liu S, Bugge TH, Leppla SH, Frankel A E (2006). A urokinase-activated recombinant anthrax toxin is selectively cytotoxic to many human tumor cell types. Mol Cancer Ther, 5: 2556–2562

    Article  PubMed  CAS  Google Scholar 

  • Arora N, Leppla S H (1993). Residues 1–254 of anthrax toxin lethal factor are sufficient to cause cellular uptake of fused polypeptides. J Biol Chem, 268: 3334–3341

    PubMed  CAS  Google Scholar 

  • Choong P F, Nadesapillai A P (2003). Urokinase plasminogen activator system: a multifunctional role in tumor progression and metastasis. Clin Orthop Relat Res, 415(Suppl): S46–58

    Article  PubMed  Google Scholar 

  • Duffy MJ (2004). The urokinase plasminogen activator system: role in malignancy. Curr Pharm Design, 10: 39–49

    Article  CAS  Google Scholar 

  • Duffy M J, Duggan C (2004). The urokinase plasminogen activator system: a rich source of tumour markers for the individualized management of patients with cancer. Clinical Biochemistry, 37: 541–548 Special Issue: Recent Advances in Cancer Biomarkers

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich P (1956). The relationship existing between chemical constitution, distribution, and pharmacologic action. In: Himmelweite F, Marquardt M, Dale H, ed. The Collected Papers of Paul Ehrlich, 1. London: Pergamon Press, 596–618

    Google Scholar 

  • FitzGerald D J, Kreitman R, Wilson W, Squires D, Pastan I (2004). Recombinant immunotoxins for treating cancer. Int J Med Microbiol, 293: 577–582

    Article  PubMed  CAS  Google Scholar 

  • Frankel A E, Beran M, Hogge D E, Powell B L, Thorburn A, Chen Y Q, Vallera D A (2002). Malignant progenitors from patients with CD87+ acute myelogenous leukemia are sensitive to a diphtheria toxin-urokinase fusion protein. Exp Hematol, 30: 1316–1323

    Article  PubMed  CAS  Google Scholar 

  • Frankel A E, Rossi P, Kuzel T M, Foss F (2002). Diphtheria fusion protein therapy of chemoresistant malignancies. Curr Cancer Drug Targets, 2: 19–36

    Article  PubMed  CAS  Google Scholar 

  • Holmes R K (2000). Biology and molecular epidemiology of diphtheria toxin and the tox gene. J Infect Dis, 181 Suppl 1: S156–167

    Article  PubMed  CAS  Google Scholar 

  • Klimpel K R, Molloy S S, Thomas G, Leppla S H (1992). Anthrax toxin protective antigen is activated by a cell surface protease with the sequence specificity and catalytic properties of furin. Proc Natl Acad Sci USA, 89: 10277–10281

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Aaronson H, Mitola D J, Leppla S H, Bugge T H (2003). Potent antitumor activity of a urokinase-activated engineered anthrax toxin. Proc Natl Acad Sci U S A, 100: 657–662

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Bugge TH, Leppla SH (2001). Targeting of tumor cells by cell surface urokinase plasminogen activator-dependent anthrax toxin. J Biol Chem, 276: 17976–17984

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Redeye V, Kuremsky J G, Kuhnen M, Molinolo A, Bugge T H, Leppla S H (2005). Intermolecular complementation achieves high-specificity tumor targeting by anthrax toxin. Nat Biotechnol, 23: 725–730

    Article  PubMed  Google Scholar 

  • Liu S, Schubert R L, Bugge T H, Leppla S H (2003). Anthrax toxin: structures, functions and tumour targeting. Expert Opin Biol Ther, 3: 843–853

    Article  PubMed  CAS  Google Scholar 

  • Mogridge J, Cunningham K, Collier R J (2002). Stoichiometry of anthrax toxin complexes. Biochemistry, 41: 1079–1082

    Article  PubMed  CAS  Google Scholar 

  • Moolten F L, Capparell N J, Zajdel S H, Cooperband S R (1975). Antitumor Effects of Antibody-Diphtheria Toxin Conjugates. II. Immunotherapy with Conjugates Directed against Tumor Antigens Induced by Simian Virus 40. J Natl Cancer Inst, 55: 473–477

    PubMed  CAS  Google Scholar 

  • Ramage J G, Vallera DA, Black J H, Aplan P D, Kees U R, Frankel A E (2003). The diphtheria toxin/urokinase fusion protein (DTAT) is selectively toxic to CD87 expressing leukemic cells. Leuk Res, 27: 79–84

    Article  PubMed  CAS  Google Scholar 

  • Rønø B, Rømer J, Liu S, Bugge T H, Leppla S H, Kristjansen P E (2006). Antitumor efficacy of a urokinase activation-dependent anthrax toxin. Mol Cancer Ther, 5: 89–96

    Article  PubMed  Google Scholar 

  • Rustamzadeh E, Hall W A, Todhunter D A, Vallera V D, Low W C, Liu H, Panoskaltsis-Mortari A, Vallera D A (2006). Intracranial therapy of glioblastoma with the fusion protein DTAT in immunodeficient mice. Int J Cancer, 120: 411–419

    Article  Google Scholar 

  • Rustamzadeh E, Vallera D A, Todhunter D A, Low W C, Panoskaltsis-Mortari A, Hall W A (2006). Immunotoxin pharmacokinetics: a comparison of the anti-glioblastoma bi-specific fusion protein (DTAT13) to DTAT and DTIL13. J Neurooncol, 77: 257–266

    Article  PubMed  CAS  Google Scholar 

  • Schlessinger D, Schaechter M (1993). Bacterial toxins. In: Schaechter M, Medoff G, Eisenstein BI, editors. Mechanisms of microbial disease. 2nd ed.Baltimore: Williams and Wilkins, 162–175

    Google Scholar 

  • Su Y, Ortiz J, Liu S, Bugge T H, Singh R, Leppla S H, Frankel A E (2007). Systematic urokinase-activated anthrax toxin therapy produces regressions of subcutaneous human non-small cell lung tumor in athymic nude mice. Cancer Res, 67: 3329–3336

    Article  PubMed  CAS  Google Scholar 

  • Todar K (2008a). Bacterial Protein Toxins. In: Todar’s Online Textbook of Bacteriology (http://www.textbookofbacteriology.net/proteintoxins.html)

  • Todar K (2008b). Diphtheria. In: Todar’s Online Textbook of Bacteriology (http://www.textbookofbacteriology.net/diphtheria.html)

  • Todar K (2008c). Pseudomonas aeruginosa. In: Todar’s Online Textbook of Bacteriology (http://www.textbookofbacteriology.net/pseudomonas.html)

  • Todar K (2008d). Bacillus anthracis and anthrax. In: Todar’s Online Textbook of Bacteriology (http://www.textbookofbacteriology.net/Anthrax.html)

  • Todhunter D A, Hall W A, Rustamzadeh E, Shu Y, Doumbia S O, Vallera D A (2004). A bispecific immunotoxin (DTAT13) targeting human IL-13 receptor (IL-13R) and urokinase-type plasminogen activator receptor (uPAR) in a mouse xenograft model. Protein Eng Des Sel, 17: 157–164

    Article  PubMed  CAS  Google Scholar 

  • Vallera D A, Li C, Jin N, Panoskaltsis-Mortari A, Hall W A (2002). Targeting urokinase-type plasminogen activator receptor on human glioblastoma tumors with diphtheria toxin fusion protein DTAT. J Natl Cancer Inst, 94: 597–606

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Yan Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Li, SY. Urokinase-targeted recombinant bacterial protein toxins — a rationally designed and engineered anticancer agent for cancer therapy. Front. Biol. China 4, 1–6 (2009). https://doi.org/10.1007/s11515-008-0074-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-008-0074-2

Keywords

Navigation