Skip to main content
Log in

Isolation and Characterization of Pectin from African Star Apple (Chrysophyllum albidum) Fruit

  • Research
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Pectin was isolated from the African star apple (ASA) (Chrysophyllum albidum) fruit at a fully ripe stage from two geographical zones in Ghana. The study employed Box-Behnken design to determine the effects of extraction conditions, time (30–90 min), temperature (70-90oC), and pH (2.5–3.5) on yield, degree of esterification and uronic acid content of the pectin extracts. The optimal conditions of the design (90oC for 60 min at a pH of 2.5) predicted a yield of ~ 11%, with a degree of esterification of 65% and uronic acid content of 75%, which were similar to the experimental values of yield (8.5–10.6%), degree of esterification (DE) (66.8–67.1%) and uronic acid (UA) content (74.5–76.2%). The ASA pectin extracted were characterized in comparison with commercial citrus pectin based on their physicochemical properties. The emulsification capacity of the pectin revealed higher emulsion stability, closely related to commercial citrus pectin. FT-IR analysis of the pectin revealed the presence of a polygalacturonic acid in both samples. The study confirmed that commercial citrus pectin and the citric acid extracted pectin from ASA had comparable characteristics and could be utilized as an alternative extraction source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. H. Rohasmizah, M. Azizah, Pectin-based edible coatings and nanoemulsion for the preservation of fruits and vegetables: a review. Appl. Food Res. 2(2), 100221 (2022). https://doi.org/10.1016/j.afres.2022.100221

    Article  CAS  Google Scholar 

  2. S. Jaiswal, B. Dhillon, N.S. Sodhi, D.S. Sogi, Physico-chemical, antioxidant, textural and sensory analyses of jelly bars formulated with the incorporation of beetroot extract and guava pectin. J. Food Meas. Charact. 16(4), 2801–2810 (2022)

    Article  Google Scholar 

  3. J.E. Reji, L. Mathew, Plant resources and Functional Foods,Conservation and Sustainable Utilization of Bioresources, Springer, 2023, 39–57

  4. D. Panwar, P.S. Panesar, H.K. Chopra, Food Bioscience Ultrasound-assisted extraction of pectin from Citrus limetta peels: Optimization, characterization, and its comparison with commercial pectin, Food Biosci, vol. 51, no. November 2022, p. 102231, 2023, https://doi.org/10.1016/j.fbio.2022.102231

  5. M. Kamal, T. Sharmin, M. Rahman, S. Chandra, Optimization of extraction parameters for pectin from guava pomace using response surface methodology, J. Agric. Food Res, vol. 11, no. December 2022, p. 100530, 2023, https://doi.org/10.1016/j.jafr.2023.100530

  6. K. Alba, V. Kontogiorgos, Pectin at the oil-water interface: relationship of molecular composition and structure to functionality. Food Hydrocoll. 68, 211–218 (2017)

    Article  CAS  Google Scholar 

  7. J.P. Maran, B. Priya, N.A. Al-Dhabi, K. Ponmurugan, I.G. Moorthy, N. Sivarajasekar, Ultrasound assisted citric acid mediated pectin extraction from industrial waste of Musa balbisiana, Ultrasonics Sonochemistry, vol. 35. Elsevier BV, pp. 204–209, 2017. https://doi.org/10.1016/j.ultsonch.2016.09.019

  8. S.S. Hosseini, F. Khodaiyan, M.S. Yarmand, Optimization of microwave assisted extraction of pectin from sour orange peel and its physicochemical properties, Carbohydr. Polym, 2016, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0144861715012291

  9. S. Qiu, M.P. Yadav, H.K. Chau, L. Yin, Physicochemical characterization and rheological behavior of hemicelluloses isolated from sorghum bran, sorghum bagasse and sorghum biomass, Food Hydrocoll, 2020, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0268005X1930726X

  10. X. Wang, Q. Chen, X. Lü, Pectin extracted from apple pomace and citrus peel by subcritical water, Food Hydrocoll, 2014, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0268005X13003871

  11. F. Xu et al., Yeast fermentation of apple and grape pomaces affects subsequent aqueous pectin extraction: composition, structure, functional and antioxidant properties of pectins. Food Hydrocoll. 133, 107945 (2022). https://doi.org/10.1016/j.foodhyd.2022.107945. July

  12. X. Ma et al., Comparison of citrus pectin and apple pectin in conjugation with soy protein isolate (SPI) under controlled dry-heating conditions, Food Chem, 2020, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S030881461931619X

  13. R. Ciriminna, A. Fidalgo, A. Scurria, L.M. Ilharco, M. Pagliaro, Food Hydrocolloids Pectin: New science and forthcoming applications of the most valued hydrocolloid, Food Hydrocoll, vol. 127, no. December 2021, p. 107483, 2022, https://doi.org/10.1016/j.foodhyd.2022.107483

  14. Crit. Rev. food …, 2014, [Online]. Available: https://www.tandfonline.com/doi/abs/10.1080/10408398.2011.614702

  15. R. Ciriminna, A. Fidalgo, R. Delisi, L.M. Ilharco, M. Pagliaro, Pectin production and global market. Agro Food Ind. Hi Tech. 27(5), 17–20 (2016)

    CAS  Google Scholar 

  16. LWT, 2020, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0023643819309831

  17. N. Muñoz-Almagro, A. Montilla, M. Villamiel, Role of pectin in the current trends towards low-glycaemic food consumption. Food Res. Int. 140, 109851 (2021)

    Article  PubMed  Google Scholar 

  18. C. Sabater, M. Villamiel, A. Montilla, Integral use of pectin-rich by-products in a biorefinery context: a holistic approach. Food Hydrocoll. 128, 107564 (2022). https://doi.org/10.1016/j.foodhyd.2022.107564

    Article  CAS  Google Scholar 

  19. A. Chawafambira, Extraction and characterization of pectin from Snot Apple (Azanza Garckeana) fruits with potential use in Zimbabwe. Int. J. Fruit Sci. 21(1), 791–803 (2021). https://doi.org/10.1080/15538362.2021.1932693

    Article  Google Scholar 

  20. A.A. Sundarraj, R. Thottiam Vasudevan, G. Sriramulu, Optimized extraction and characterization of pectin from jackfruit (Artocarpus integer) wastes using response surface methodology. Int. J. Biol. Macromol. 106, 698–703 (2018). https://doi.org/10.1016/j.ijbiomac.2017.08.065

    Article  CAS  PubMed  Google Scholar 

  21. F.M. Kpodo et al., Food Hydrocolloids Pectin isolation and characterization from six okra genotypes. Food Hydrocoll. 72, 323–330 (2017). https://doi.org/10.1016/j.foodhyd.2017.06.014

    Article  CAS  Google Scholar 

  22. C. Freitas de Oliveira, D. Giordani, R. Lutckemier, P.D. Gurak, F. Cladera-Olivera, L.D. Ferreira, Marczak, Extraction of pectin from passion fruit peel assisted by ultrasound. LWT - Food Sci. Technol. 71, 110–115 (2016). https://doi.org/10.1016/j.lwt.2016.03.027

  23. P. Khamsucharit, K. Laohaphatanalert, P. Gavinlertvatana, K. Sriroth, K. Sangseethong, Characterization of pectin extracted from banana peels of different varieties. Food Sci. Biotechnol. 27(3) (2018). https://doi.org/10.1007/s10068-017-0302-0

  24. J.C.H. Lai, D. Mahesan, N.A.S.B. Abdul Samat, R. Baini, Characterization and optimization of extracted pectin from unripe banana and mango fruit peels, Mater. Today Proc, no. xxxx, 2022, https://doi.org/10.1016/j.matpr.2022.03.580

  25. I.K. Asare, A.A. Okyere, D. Duah-Bissiw, D.O. Ofosu, B. Darfour, Nutritional and phytochemical constituents of the African star apple (Chrysophyllum albidum G. Don). Annls Fd Sci. Tech., pp. 138–146, 2015

  26. O.M. Odeyemi, O.A. Fawole, 26 African Star Apple (Chrysophyllum albidum). Handb. Phytonutrients Indig Fruits Veg., p. 376, 2022

  27. Y. Du et al., Physicochemical, structural and emulsifying properties of RG-I enriched pectin extracted from unfermented or fermented cherry pomace, Food Chem, vol. 405, no. PB, p. 134985, 2023, https://doi.org/10.1016/j.foodchem.2022.134985

  28. N. Muñoz-Almagro, L. Valadez-Carmona, J.A. Mendiola, E. Ibáñez, M. Villamiel, Structural characterisation of pectin obtained from cacao pod husk. Comparison of conventional and subcritical water extraction. Carbohydr. Polym. 217, 69–78 (2019). Elsevier BV10.1016/j.carbpol.2019.04.040

    Article  CAS  PubMed  Google Scholar 

  29. Ind. Crop. …, 2011, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0926669011001142

  30. E. Kliemann et al., Optimisation of pectin acid extraction from passion fruit peel (Passiflora edulis flavicarpa) using response surface methodology. Int. J. Food Sci. Technol. 44(3), 476–483 (Mar. 2009). https://doi.org/10.1111/j.1365-2621.2008.01753.x

  31. K. vakilian, L. Nateghi, A. Javadi, N. Anarjan, Optimization of conventional and ultrasound-assisted extraction of pectin from unripe grape pomace: extraction yield, degree of esterification, and galacturonic acid content. J. Food Meas. Charact. 17(6), 5777–5793 (2023)

    Article  Google Scholar 

  32. J.P. Maran, V. Sivakumar, K. Thirugnanasambandham, R. Sridhar, Microwave assisted extraction of pectin from waste Citrullus lanatus fruit rinds. Carbohydr. Polym. 101, 786–791 (2014)

    Article  Google Scholar 

  33. M.M. Kamal, M.R. Ali, A. Hossain, M.R.I. Shishir, Optimization of microwave-assisted extraction of pectin from Dillenia indica fruit and its preliminary characterization. J. Food Process. Preserv. 44(6), 1–11 (2020). https://doi.org/10.1111/jfpp.14466

    Article  CAS  Google Scholar 

  34. O. Yuliarti, K.K.T. Goh, L. Matia-Merino, J. Mawson, C. Brennan, Extraction and characterisation of pomace pectin from gold kiwifruit (Actinidia chinensis). Food Chem. 187, 290–296 (2015). Elsevier BV10.1016/j.foodchem.2015.03.148

    Article  CAS  PubMed  Google Scholar 

  35. N. Maneerat, N. Tangsuphoom, A. Nitithamyong, Effect of extraction condition on properties of pectin from banana peels and its function as fat replacer in salad cream. J. Food Sci. Technol. 54(2), 386–397 (2017). https://doi.org/10.1007/s13197-016-2475-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. M.M. Kamal, M.R. Ali, M.R.I. Shishir, M. Saifullah, M.R. Haque, S.C. Mondal, Optimization of process parameters for improved production of biomass protein from Aspergillus Niger using banana peel as a substrate. Food Sci. Biotechnol. 28(6), 1693–1702 (2019). https://doi.org/10.1007/s10068-019-00636-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. G.J. Swamy, K. Muthukumarappan, Optimization of continuous and intermittent microwave extraction of pectin from banana peels. Food Chem. 220, 108–114 (2017). https://doi.org/10.1016/j.foodchem.2016.09.197

    Article  CAS  PubMed  Google Scholar 

  38. L.B.S. Filho, R.C. Coelho, E.C. Muniz, H.S. Barbosa, Optimization of pectin extraction using response surface methodology: a bibliometric analysis. Carbohydr. Polym. Technol. Appl. 4, 100229 (2022). https://doi.org/10.1016/j.carpta.2022.100229

    Article  CAS  Google Scholar 

  39. L.J. Denman, G.A. Morris, An experimental design approach to the chemical characterisation of pectin polysaccharides extracted from Cucumis melo Inodorus. Carbohydr. Polym. 117, 364–369 (Mar. 2015). https://doi.org/10.1016/j.carbpol.2014.09.081

  40. F.C. Codex, Committee on Food Chemicals Codex, Food Nutr. Board, Inst. Med. Natl. Acad. Sci. Publ. Natl. Acad. Press. Washington, DC, 1996

  41. R.M. McCready, E.A. McComb, Colorimetric determination of pectic substances. Anal. Chem. 24, 1630–1632 (1952)

    Article  Google Scholar 

  42. P. Rodsamran, R. Sothornvit, Microwave heating extraction of pectin from lime peel: Characterization and properties compared with the conventional heating method, Food Chem, 2019, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0308814618320053

  43. AOAC, Official methods of analysis of AOAC International. Volume I, agricultural chemicals, contaminants, drugs/edited by William Horwitz. Gaithersburg (Maryland): AOAC International, 1997., 2010

  44. Bradford, Measuring plant protein with the Bradford assay: 1. Evaluation and standard method. J. Chem. Ecol. 15, 979–992 (1989)

  45. C.S. Shivamathi et al., May., Process optimization and characterization of pectin derived from underexploited pineapple peel biowaste as a value-added product, Food Hydrocoll, vol. 123, no. 2021, p. 107141, 2022, https://doi.org/10.1016/j.foodhyd.2021.107141

  46. E.A. McComb, R.M. McCready, Determination of acetyl in pectin and in acetylated carbohydrate polymers. Anal. Chem. 29(5), 819–821 (1957)

    Article  CAS  Google Scholar 

  47. D. Mamiru, G.H. Gonfa, Extraction and characterization of pectin from Watermelon Rind using Acetic Acid. SSRN Electron. J. 9(2), e13525 (2022). https://doi.org/10.2139/ssrn.4203026

    Article  Google Scholar 

  48. L.C. Vriesmann, R.F. Teófilo, C. Lúcia, de O. Petkowicz, Extraction and characterization of pectin from cacao pod husks (Theobroma cacao L.) with citric acid. Lwt. 49(1), 108–116 (2012). https://doi.org/10.1016/j.lwt.2012.04.018

    Article  CAS  Google Scholar 

  49. F. Kar, N. Arslan, Effect of temperature and concentration on viscosity of orange peel pectin solutions and intrinsic viscosity-molecular weight relationship. Carbohydr. Polym. 40(4), 277–284 (1999). https://doi.org/10.1016/S0144-8617(99)00062-4

    Article  CAS  Google Scholar 

  50. H. Anger, G. Berth, Gel permeation chromatography and the Mark-Houwink relation for pectins with different degrees of esterification. Carbohydr. Polym. 6(3), 193–202 (1986)

    Article  CAS  Google Scholar 

  51. M.A. Masuelli, Mark-Houwink parameters for aqueous-soluble polymers and biopolymers at various temperatures. J. Polym. Biopolym Phys. Chem. 2(2), 37–43 (2014). https://doi.org/10.12691/jpbpc-2-2-2

    Article  CAS  Google Scholar 

  52. P.G. Dalev, L.S. Simeonova, Emulsifying properties of protein–pectin complexes and their use in oil-containing foodstuffs. J. Sci. Food Agric. 68(2), 203–206 (1995)

    Article  CAS  Google Scholar 

  53. C. Arrieta-Durango, L. Henao-Rivas, R. Andrade-Pizarro, Rheological behavior of passion fruit (Passiflora edulis) peel extract, Gels MDPI, Basel, Switzerland. 2022. [Online]. Available: http://www.xajzkjdx.cn/gallery/7-aug2020.pdf

  54. D.A. Darko et al., Antioxidant and Physicochemical Properties of Chrysophyllum Albidum Fruit at Different Ripening Stages, African J. Food, Agric. Nutr. Dev, vol. 21, no. 9, pp. 18694–18710, 2021, https://doi.org/10.18697/AJFAND.104.19055

  55. O. Adunni Abiodun, A.S. Oladapo, Physico-chemical properties of African star apple (Chrysophylum Albidum) components. Nutr. Food Sci. 41(1), 8–11 (2011). https://doi.org/10.1108/00346651111102847

    Article  Google Scholar 

  56. A.O. Dauda, Physico-chemical properties of Nigerian typed African star apple fruit. Int. J. Res. Agric. food Sci. 2(1), 2311–2476 (2014)

    Google Scholar 

  57. U. Ureigho, B. Ekeke, Nutrient Values of Chrysophyllum Albidum Linn African Star Apple as a domestic income Plantation species. Afr. Res. Rev. 4(2), 50–56 (2010). https://doi.org/10.4314/afrrev.v4i2.58288

    Article  Google Scholar 

  58. X. Lu et al., Nutrients and bioactives in citrus fruits: different citrus varieties, fruit parts, and growth stages. Crit. Rev. Food Sci. Nutr. 63(14), 2018–2041 (2023). https://doi.org/10.1080/10408398.2021.1969891

    Article  CAS  PubMed  Google Scholar 

  59. A.A. Polat, C. Durgaç, O. Kamiloǧlu, Determination of fruit quality parameters of sweet cherries grown in high elevation regions in Hatay, Turkey, Acta Hortic, vol. 795 PART 2, no. August, pp. 873–876, 2008, https://doi.org/10.17660/ActaHortic.2008.795.141

  60. R. Singh, R. Gehlot,. R., and, R. Sindhu, Physico-chemical characteristics of fresh banana and guava fruits. Int. J. Chem. Stud. 8(2), 1112–1114 (2020). https://doi.org/10.22271/chemi.2020.v8.i2q.8916

    Article  CAS  Google Scholar 

  61. M. Wongkaew et al., Relationships with Mango Peel Pectin Quality, pp. 1–20, 2021

  62. O.T. Adepoju, Proximate composition and micronutrient potentials of three locally available wild fruits in Nigeria. No June 2012. (2014). https://doi.org/10.5897/AJFS12.045

    Article  Google Scholar 

  63. S. Ullah, U. Said, Khan, and, Sultan, Proximate Composition and Biological activities of different cultivars of apples (Malus Domestica) grown at Swat, Pakistan. Ann. R S C B 25(6), 20074–20085 (2021)

  64. J. Navdeep, V. Ramesh, A. Kumar, S. Singh, M. Gare, Physico-chemical characteristics and antioxidant potential of selected underutilized fruits from North Gujarat, 12, 4, pp. 1399–1404, 2023

  65. V.A. Brown, J.E. Lozano, D.B. Genovese, Pectin extraction from quince (Cydonia oblonga) pomace applying alternative methods: Effect of process variables and preliminary optimization. Food Sci. Technol. Int. 20(2), 83–98 (2014). https://doi.org/10.1177/1082013212469616

    Article  CAS  PubMed  Google Scholar 

  66. J. Prakash Maran, V. Sivakumar, K. Thirugnanasambandham, R. Sridhar, Optimization of microwave assisted extraction of pectin from orange peel. Carbohydr. Polym. 97(2), 703–709 (2013). https://doi.org/10.1016/j.carbpol.2013.05.052

    Article  CAS  PubMed  Google Scholar 

  67. D.A. Méndez, M.J. Fabra, L. Gómez-Mascaraque, A. López-Rubio, A. Martinez-Abad, Modelling the extraction of pectin towards the valorisation of watermelon rind waste. Foods. 10(4), 1–16 (2021). https://doi.org/10.3390/foods10040738

    Article  CAS  Google Scholar 

  68. T.Í.S. Oliveira et al., Optimization of pectin extraction from banana peels with citric acid by using response surface methodology, Food Chemistry, vol. 198. Elsevier BV, pp. 113–118, 2016. https://doi.org/10.1016/j.foodchem.2015.08.080

  69. F. Jafari, F. Khodaiyan, H. Kiani, S.S. Hosseini, Pectin from carrot pomace: Optimization of extraction and physicochemical properties, Carbohydr. Polym, 2017, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0144861716312784

  70. Z. Raji, F. Khodaiyan, K. Rezaei, H. Kiani, International Journal of Biological macromolecules extraction optimization and physicochemical properties of pectin from melon peel. Int. J. Biol. Macromol. 98, 709–716 (2017). https://doi.org/10.1016/j.ijbiomac.2017.01.146

    Article  CAS  PubMed  Google Scholar 

  71. T. Mada, R. Duraisamy, F. Guesh, Optimization and characterization of pectin extracted from banana and papaya mixed peels using response surface methodology. Food Sci. Nutr. 10(4), 1222–1238 (2022). https://doi.org/10.1002/fsn3.2754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. T.A.T. Dao, H.K. Webb, F. Malherbe, Optimization of pectin extraction from fruit peels by response surface method: conventional versus microwave-assisted heating. Food Hydrocoll. 113, 106475 (2021)

    Article  Google Scholar 

  73. B. Bezus, J.C.C. Esquivel, S. Cavalitto, I. Cavello, Pectin extraction from lime pomace by cold-active polygalacturonase-assisted method, Int. J. Biol. Macromol, vol. 209, no. April, pp. 290–298, 2022, https://doi.org/10.1016/j.ijbiomac.2022.04.019

  74. E.C. Arollado, K.M.G. Ponsaran, M.M. Loquias, Isolation and characterization of pectin from the ripe fruit peels of jackfruit (Artocarpus heterophyllus Lam). Acta Med. Philipp. 52(5), 453–457 (2018). https://doi.org/10.47895/amp.v52i5.322

    Article  Google Scholar 

  75. M. Nouri, M. Mokhtarian, Optimization of Pectin Extractions from Walnut Green Husks and Characterization of the Extraction Physicochemical and Rheological Properties, Nutr. Food Sci. Res, 2020, [Online]. Available: http://nfsr.sbmu.ac.ir/browse.php?a_code=A-10-555-2sid=1slc_lang=en

  76. B. Pasandide, F. Khodaiyan, Z. Mousavi, S.S. Hosseini, Pectin extraction from Citron peel: optimization by Box–Behnken response surface design. Food Sci. Biotechnol. 27(4), 997–1005 (2018). https://doi.org/10.1007/s10068-018-0365-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. S. Sangheetha, D.C.K. Illeperuma, A.N. Navaratne, C. Jayasinghe, Effect of pH, temperature and time combinations on yield and degree of esterification of mango peel pectin: a box-behnken design based statistical modelling. Trop. Agric. Res. 30(2) (2018). https://doi.org/10.4038/tar.v30i2.8304

  78. X. Peng, G. Yang, Y. Shi, Y. Zhou, M. Zhang, S. Li, Box–Behnken design based statistical modeling for the extraction and physicochemical properties of pectin from sunflower heads and the comparison with commercial low-methoxyl pectin. Sci. Rep. 10(1), 1–10 (2020). https://doi.org/10.1038/s41598-020-60339-1

    Article  CAS  Google Scholar 

  79. C. Colodel, L.C. Vriesmann, R.F. Teófilo, C.L. de Oliveira Petkowicz, Extraction of pectin from ponkan (Citrus reticulata Blanco Cv. Ponkan) peel: optimization and structural characterization. Int. J. Biol. Macromol. 117, 385–391 (2018). https://doi.org/10.1016/j.ijbiomac.2018.05.048

    Article  CAS  PubMed  Google Scholar 

  80. F. Priyangini, S.G. Walde, R. Chidambaram, Extraction optimization of pectin from cocoa pod husks (Theobroma cacao L.) with ascorbic acid using response surface methodology, Carbohydrate Polymers, vol. 202. Elsevier BV, pp. 497–503, 2018. https://doi.org/10.1016/j.carbpol.2018.08.103

  81. S.Y. Chan, W.S. Choo, Effect of extraction conditions on the yield and chemical properties of pectin from cocoa husks. Food Chem. 141(4), 3752–3758 (2013). https://doi.org/10.1016/j.foodchem.2013.06.097

    Article  CAS  PubMed  Google Scholar 

  82. C.A. Nsude, African Star Apple (Chrysophyllum albidum) pectin: a potential substrate for enhanced pectinase production by Aspergillus Niger. EC Pharmacol. Toxicol. 9, 36–43 (2021)

    Google Scholar 

  83. M. Güzel, Ö. Akpınar, Valorisation of fruit by-products: production characterization of pectins from fruit peels. Food Bioprod. Process. 115, 126–133 (2019). https://doi.org/10.1016/j.fbp.2019.03.009

    Article  CAS  Google Scholar 

  84. E.M.A. Abdel Hamid et al., Production and characterization of pectin by acid extraction method from Orange Peels Waste Using Response Surface Methodology (RSM). Int. J. Ind. Sustain. Dev. 3(1), 34–45 (2022). https://doi.org/10.21608/ijisd.2022.145991.1014

    Article  Google Scholar 

  85. U. Altaf, G. Immanuel, F. Iftikhar, Extraction and characterization of pectin derived from papaya (carica papaya linn.) Peel. Int. J. Sci. Eng. Technol. 3(4), 1–5 (2015). https://doi.org/10.2348/ijset07150970

    Article  Google Scholar 

  86. M. Sarah, I.M. Hasibuan, E. Misran, S. Maulina, Optimization of microwave-assisted pectin extraction from Cocoa Pod Husk. Molecules. 27(19) (2022). https://doi.org/10.3390/molecules27196544

  87. O. Kurita, T. Fujiwara, E. Yamazaki, Characterization of the pectin extracted from citrus peel in the presence of citric acid. Carbohydr. Polym. (2008). https://doi.org/10.1016/j.carbpol.2008.04.033

    Article  Google Scholar 

  88. M. Kazemi, F. Khodaiyan, S.S. Hosseini, Eggplant peel as a high potential source of high methylated pectin: Ultrasonic extraction optimization and characterization, Lwt, vol. 105, no. January, pp. 182–189, 2019, https://doi.org/10.1016/j.lwt.2019.01.060

  89. M. Wongkaew, S.R. Sommano, T. Tangpao, P. Rachtanapun, K. Jantanasakulwong, Mango Peel Pectin by Microwave-assisted extraction. Foods. 9, 1–17 (2020)

    Article  Google Scholar 

  90. C. Colodel, C. Lúcia, D.O. Petkowicz, Food Hydrocolloids Acid extraction and physicochemical characterization of pectin from cubiu (Solanum sessili fl orum D.) fruit peel, Food Hydrocoll, vol. 86, no. June 2018, pp. 193–200, 2019, https://doi.org/10.1016/j.foodhyd.2018.06.013

  91. S. Chan, W. Choo, Effect of extraction conditions on the yield and chemical properties of pectin from cocoa husks. FOOD Chem. 141(4), 3752–3758 (2013). https://doi.org/10.1016/j.foodchem.2013.06.097

    Article  CAS  PubMed  Google Scholar 

  92. 93. M.C. Roy et al., Extraction and characterization of pectin from pomelo peel and its impact on nutritional properties of carrot jam during storage. J. Food Process. Preserv. 42(1) (2018). https://doi.org/10.1111/jfpp.13411

  93. Venzon, S.S., Canteri, M.H.G., Granato, D. et al. Physicochemical properties of modified citrus pectins extracted from orange pomace. J Food Sci Technol. 52, 4102–4112 (2015). https://doi.org/10.1007/s13197-014-1419-2

  94. H. Twinomuhwezi, A.C. Godswill, D. Kahunde, Extraction and characterization of pectin from Orange (Citrus sinensis), Lemon (Citrus limon) and tangerine (Citrus tangerina). Am. J. Phys. Sci. 1(1), 17–30 (2020)

    Google Scholar 

  95. N.E. Fihry, K. El Mabrouk, M. Eeckhout, H.A. Schols, Y. Filali-Zegzouti, H. Hajjaj, Physicochemical and functional chEl, N. Fihry, El K. Mabrouk, M. Eeckhout, H.A. Schols, Y. Filali-Zegzouti, H. Hajjaj, (2022). Physicochemical and functional characterization of pectin extracted from Moroccan citrus peels. Lwt, 162(April), 113508., Lwt, vol. 162, no. April, p. 113508, 2022, https://doi.org/10.1016/j.lwt.2022.113508

  96. J.R.G. Silva, E.D. de Resende, Potential of the passion fruit mesocarp flour as a source of pectin and its application as thickener and gelling agent. Int. J. Food Sci. Technol. 1766–1774 (2023). https://doi.org/10.1111/ijfs.16284

  97. Z. Rahmani, F. Khodaiyan, M. Kazemi, A. Sharifan, Optimization of microwave-assisted extraction and structural characterization of pectin from sweet lemon peel. Int. J. Biol. Macromol. 147, 1107–1115 (2020). https://doi.org/10.1016/j.ijbiomac.2019.10.079

    Article  CAS  PubMed  Google Scholar 

  98. E.E. Santos, R.C. Amaro, C.C.C. Bustamante, M.H.A. Guerra, L.C. Soares, R.E.S. Froes, Extraction of pectin from agroindustrial residue with an ecofriendly solvent: use of FTIR and chemometrics to differentiate pectins according to degree of methyl esterification. Food Hydrocoll. 107 (April, 2020). https://doi.org/10.1016/j.foodhyd.2020.105921

  99. S.M. Cardoso, M.A. Coimbra, J.A. Lopes da Silva, Temperature dependence of the formation and melting of pectin-Ca 2 + networks: a rheological study. Food Hydrocoll. 17(6), 801–807 (2003). https://doi.org/10.1016/S0268-005X(03)00101-2

    Article  CAS  Google Scholar 

  100. M. Zioga, E. Tsouko, S. Maina, A. Koutinas, I. Mandala, V. Evageliou, Physicochemical and rheological characteristics of pectin extracted from renewable orange peel employing conventional and green technologies. Food Hydrocoll. 132, 107887 (2022). https://doi.org/10.1016/j.foodhyd.2022.107887

    Article  CAS  Google Scholar 

  101. V. Urias-Orona, A. Rascón-Chu, J. Lizardi-Mendoza, E. Carvajal-Millán, A.A. Gardea, B. Ramírez-Wong, A novel pectin material: extraction, characterization and gelling properties. Int. J. Mol. Sci. 11(10), 3686–3695 (2010). https://doi.org/10.3390/ijms11103686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. G.A. Morris, J.G. de al Torre, A. Ortega, J. Castile, A. Smith, S.E. Harding, Molecular flexibility of citrus pectins by combined sedimentation and viscosity analysis. Food Hydrocoll. 22(8), 1435–1442 (2008). https://doi.org/10.1016/j.foodhyd.2007.09.005

    Article  CAS  Google Scholar 

  103. M. Kratchanova, E. Pavlova, I. Panchev, The effect of microwave heating of fresh orange peels on the fruit tissue and quality of extracted pectin, 56, pp. 181–185, 2004, https://doi.org/10.1016/j.carbpol.2004.01.009

  104. H. Chen, X. Fu, Z. Luo, Effect of molecular structure on emulsifying properties of sugar beet pulp pectin, Food Hydrocoll, 2016, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0268005X15300965

  105. M. Kazemi, F. Khodaiyan, M. Labbafi, S. Saeid Hosseini, M. Hojjati, Pistachio green hull pectin: Optimization of microwave-assisted extraction and evaluation of its physicochemical, structural and functional properties, Food Chem, vol. 271, no. July 2018, pp. 663–672, 2019, https://doi.org/10.1016/j.foodchem.2018.07.212

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

J.D., F.M.K., V.K., F.K.S. and J.K.A.: Conceptualization; J.D.: Investigation; J.D., F.M.K., F.K.S. and J.K.A.:Methodology; F.M.K., V.K., F.K.S. and J.K.A.:Supervision; J.D., V.K. and J.K.A.: Writing original draft; All authors reviewed the manuscript.

Corresponding author

Correspondence to Jacob K. Agbenorhevi.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duah, J., Kpodo, F.M., Kontogiorgos, V. et al. Isolation and Characterization of Pectin from African Star Apple (Chrysophyllum albidum) Fruit. Food Biophysics (2024). https://doi.org/10.1007/s11483-024-09840-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11483-024-09840-y

Keywords

Navigation