Skip to main content
Log in

Optimization of conventional and ultrasound-assisted extraction of pectin from unripe grape pomace: extraction yield, degree of esterification, and galacturonic acid content

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The optimization of extraction of pectin from unripe grape pomace (PUGP) was studied using response surface methodology (RSM) and Box Behnken design (BBD). Conventional and ultrasound-assisted extractions (CE and UAE) were considered to optimize the pH, temperature and time conditions. For CE method, pH, temperature and time were 1–3, 60–90 °C, and 60–120 min while for UAE, 1–3, 50–70 °C, and 10–30 min, respectively. Extraction yield (EY, %), degree of esterification (ES, %), and galacturonic acid (GA, %) were optimized. The optimum conditions for CE were 2.95, 80.27 °C, and 120 min that led to 18.48% of EY, 43.49% of DE, and 53.76% of GA while for UAE were 3, 58.84 °C, and 30 min that led to 28.43%, 31.02%, and 63.94%, respectively. Emulsifying activity (EA, %) and emulsifying stability (ES, %) of optimum PUGP of UAE method were higher (36.10% and 70.71%) than those obtained for PUGP of CE (25.59% and 55.17%), while both were lower than those of commercial apple (63.23% and 88.67%) and citrus pectins (72.13% and 92.94%). Fourier transform infrared spectroscopy analysis of PUGP of UAE confirmed lower DE than PUGP of CE. Scanning electron microscopy of PUGP of UAE indicated disintegrated regions attributed to sonication effects. Differential scanning calorimetry exhibited that the thermal stability of PUGP of UAE was lower than that obtained for PUGP of CE. Overall, UAE led to extraction of pectin from PUGP at a significant low time, high EY and GA, and low DE, which can be incorporated into dairy products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Spinei, M. Oroian, Int. J. Biol. Macromol. 224, 739 (2023)

    CAS  PubMed  Google Scholar 

  2. A.S. Sengar, A. Rawson, M. Muthiah, S.K. Kalakandan, Ultrason. Sonochem. 61, 104812 (2020)

    CAS  PubMed  Google Scholar 

  3. S. Paidari, N. Zamindar, R. Tahergorabi, M. Kargar, S. Ezzati, N. shirani, S.H. Musavi, J. Food Meas. Charact. 15, 4205 (2021)

    Google Scholar 

  4. F. Xu, S. Zhang, G.I.N. Waterhouse, T. Zhou, Y. Du, D. Sun-Waterhouse, P. Wu, Food Hydrocoll. 133, 107945 (2022)

    CAS  Google Scholar 

  5. R. Minjares-Fuentes, A. Femenia, M.C. Garau, J.A. Meza-Velázquez, S. Simal, C. Rosselló, Carbohydr. Polym. 106, 179 (2014)

    CAS  PubMed  Google Scholar 

  6. T.A. Thu Dao, H.K. Webb, F. Malherbe, Food Hydrocoll. 113, 106475 (2021)

    CAS  Google Scholar 

  7. A. Kashani, M. Hasani, L. Nateghi, M.J. Asadollahzadeh, P. Kashani, Iran. J Chem Chem Eng. 41, 1288 (2022)

    Google Scholar 

  8. L. Nateghi, F. Zarei, M. Zarei, Iran. J Chem Chem Eng (2022)

  9. H. Mirzaee, F. Khodaiyan, J.F. Kennedy, S.S. Hosseini, Carbohydr. Polym. Technol. Appl. 1, 100004 (2020)

    Google Scholar 

  10. S. paidari, H. Ahari, A. Pasqualone, A.A. Anvar, S. Allah Yari Beyk, and, S. Moradi, J. Food Meas. Charact. 17, 2595 (2023)

  11. Y. Esmaeili, S. Paidari, S.A. Baghbaderani, L. Nateghi, A.A. Al-Hassan, F. Ariffin, J. Food Meas. Charact. 16, 507 (2022)

    Google Scholar 

  12. E.E. Santos, R.C. Amaro, C.C.C. Bustamante, M.H.A. Guerra, L.C. Soares, R.E.S. Froes, Food Hydrocoll. 107, 105921 (2020)

    CAS  Google Scholar 

  13. S. Ezzati, A. Ayaseh, B. Ghanbarzadeh, M.K. Heshmati, Int. J. Biol. Macromol. 165, 776 (2020)

    CAS  PubMed  Google Scholar 

  14. C. Colodel, L.C. Vriesmann, R.F. Teófilo, C.L. de Oliveira, Petkowicz, Int. J. Biol. Macromol. 161, 204 (2020)

    CAS  PubMed  Google Scholar 

  15. T.M. Pellicanò, A.M. Giuffrè, C. Zappia, M. Capocasale, (n.d.).

  16. J. Yu, M. Ahmedna, Int. J. Food Sci. Technol. 48, 221 (2013)

    CAS  Google Scholar 

  17. S.R.F. Iora, G.M. Maciel, A.A.F. Zielinski, M.V. da Silva, P.V. Pontes, C.W.I. Haminiuk, D. Granato, Int. J. Food Sci. Technol. 50, 62 (2015)

  18. G. Ruberto, A. Renda, C. Daquino, V. Amico, C. Spatafora, C. Tringali, N. De Tommasi, Food Chem. 100, 203 (2007)

    CAS  Google Scholar 

  19. M. Spinei, M. Oroian, Foods 2021, Vol. 10, Page 867 10, 867 (2021)

  20. P. Van Hung, M.N.T. Anh, P.N. Hoa, N.T.L. Phi, J. Food Meas. Charact. 15, 1541 (2021)

    Google Scholar 

  21. M.M. Alancay, M.O. Lobo, C.M. Quinzio, L.B. Iturriaga, J. Food Meas. Charact. 11, 2119 (2017)

    Google Scholar 

  22. D.L. Su, P.J. Li, S.Y. Quek, Z.Q. Huang, Y.J. Yuan, G.Y. Li, Y. Shan, Food Chem. 286, 1 (2019)

    CAS  PubMed  Google Scholar 

  23. A. Rezvankhah, Z. Emam-Djomeh, M. Safari, G. Askari, M. Salami, J. Food Sci. Technol. 56, 4198 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  24. S.A. Mousavi, L. Nateghi, M. Javanmard Dakheli, Y. Ramezan, Z. Piravi-Vanak, S. Paidari, A. Mohammadi, Nafchi, J. Food Meas. Charact. 16, 4236 (2022)

    Google Scholar 

  25. A. Rezvankhah, Z. Emam-Djomeh, M. Safari, G. Askari, M. Salami, J. Food Process. Preserv 42, (2018)

  26. K. Asgari, M. Labbafi, F. Khodaiyan, M. Kazemi, S.S. Hosseini, Int. J. Biol. Macromol. 152, 1274 (2020)

    PubMed  Google Scholar 

  27. D.A. Mendez, M.J. Fabra, A. Martínez-Abad, M. Μartínez-Sanz, Gorria, and A. López-Rubio, Food Hydrocoll. 120, 106957 (2021)

  28. 15, 91 (2019)

  29. I.G. Moorthy, J.P. Maran, S. Ilakya, S.L. Anitha, S.P. Sabarima, B. Priya, Ultrason. Sonochem. 34, 525 (2017)

    CAS  PubMed  Google Scholar 

  30. W. Wang, X. Ma, P. Jiang, L. Hu, Z. Zhi, J. Chen, T. Ding, X. Ye, D. Liu, Food Hydrocoll. 61, 730 (2016)

    CAS  Google Scholar 

  31. A. Rezvankhah, M.S. Yarmand, B. Ghanbarzadeh, H. Mirzaee, J. Food Process. Preserv. 45, e15932 (2021)

    CAS  Google Scholar 

  32. C.S. Shivamathi, I.G. Moorthy, R.V. Kumar, M.R. Soosai, J.P. Maran, R.S. Kumar, P. Varalakshmi, Carbohydr. Polym. 225, 115240 (2019)

    CAS  PubMed  Google Scholar 

  33. I.G. Moorthy, J.P. Maran, S.M. Surya, S. Naganyashree, C.S. Shivamathi, Int. J. Biol. Macromol. 72, 1323 (2015)

    CAS  PubMed  Google Scholar 

  34. W.W. Wai, A.F.M. Alkarkhi, A.M. Easa, Food Bioprod. Process. 88, 209 (2010)

    CAS  Google Scholar 

  35. S.H. Jong, N. Abdullah, N. Muhammad, Carbohydr. Polym. Technol. Appl. 5, 100263 (2023)

    CAS  Google Scholar 

  36. T.Ã.S. Oliveira, M.F. Rosa, F.L. Cavalcante, P.H.F. Pereira, G.K. Moates, N. Wellner, S.E. Mazzetto, K.W. Waldron, H.M.C. Azeredo, Food Chem. 198, 113 (2016)

    CAS  PubMed  Google Scholar 

  37. M. Masmoudi, S. Besbes, M. Chaabouni, C. Robert, M. Paquot, C. Blecker, H. Attia, Carbohydr. Polym. 74, 185 (2008)

    CAS  Google Scholar 

  38. J. Chen, H. Cheng, Z. Zhi, H. Zhang, R.J. Linhardt, F. Zhang, S. Chen, X. Ye, Food Hydrocoll. 112, 106160 (2021)

    CAS  Google Scholar 

  39. K. Kumar, S. Srivastav, V.S. Sharanagat, Ultrason. Sonochem. 70, 105325 (2021)

    CAS  PubMed  Google Scholar 

  40. C.F. de Oliveira, D. Giordani, R. Lutckemier, P.D. Gurak, F. Cladera-Olivera, L.D.F. Marczak, LWT-Food Sci. Technol. 71, 110 (2016)

    Google Scholar 

  41. E. Polanco-Lugo, J.I. Martínez-Castillo, J.C. Cuevas-Bernardino, T. González-Flores, R. Valdez-Ojeda, N. Pacheco, T. Ayora-Talavera, Http://Mc.Manuscriptcentral.Com/Tcyt. 17, 463 (2019)

    CAS  Google Scholar 

  42. B.M.N. Nguyen, T. Pirak, Http://Www.Editorialmanager.Com/Cogentagri 5, (2019)

  43. R.M. Zaid, P. Mishra, A.R. Siti Noredyani, S. Tabassum, Z. Ab, Wahid, A.M. Mimi, Sakinah, Food Bioprod. Process. 123, 134 (2020)

    CAS  Google Scholar 

  44. A. Rezvankhah, Z. Emam-Djomeh, M. Safari, M. Salami, G. Askari, J. Food Process. Preserv e16554 (2022)

  45. E. Kliemann, K.N. De Simas, E.R. Amante, E.S. Prudêncio, R.F. Teófilo, M.M.C. Ferreira, R.D.M.C. Amboni, Int. J. Food Sci. Technol. 44, 476 (2009)

    CAS  Google Scholar 

  46. M. Spinei, M. Oroian, Sci Rep. 2022. 121(12), 1 (2022)

    Google Scholar 

  47. M. Spinei, M. Oroian, Polym. 2022, Vol. 14, Page 1378 14, 1378 (2022)

  48. J.P. Maran, B. Priya, Carbohydr. Polym. 115, 732 (2015)

    CAS  PubMed  Google Scholar 

  49. Y.S. Duwee, P.L. Kiew, W.M. Yeoh, J. Food Meas. Charact. 16, 1710 (2022)

    Google Scholar 

  50. A. Rezvankhah, M.S. Yarmand, B. Ghanbarzadeh, H. Mirzaee, J. Food Meas. Charact. 15, 5021 (2021)

    Google Scholar 

  51. A. Rezvankhah, S. Mohammad, Yarmand, | Babak Ghanbarzadeh, and | Homaira Mirzaee, Food Sci. Nutr. 00, 1 (2023)

  52. E.D. Ngouémazong, S. Christiaens, A. Shpigelman, A. Van Loey, M. Hendrickx, Compr. Rev. Food Sci. Food Saf. 14, 705 (2015)

    Google Scholar 

  53. A. Rezvankhah, M.S. Yarmand, B. Ghanbarzadeh, J. Food Meas. Charact. 1 (2022)

  54. M. Marhamati, G. Ranjbar, M. Rezaie, J. Mol. Liq. 340, 117218 (2021)

    CAS  Google Scholar 

  55. L. Wan, Q. Chen, M. Huang, F. Liu, S. Pan, Food Hydrocoll. 93, 146 (2019)

    CAS  Google Scholar 

  56. X. Yang, T. Nisar, Y. Hou, X. Gou, L. Sun, Y. Guo, Food Hydrocoll. 85, 30 (2018)

    CAS  Google Scholar 

  57. S.H.E. Verkempinck, C. Kyomugasho, L. Salvia-Trujillo, S. Denis, M. Bourgeois, A.M. Van Loey, M.E. Hendrickx, T. Grauwet, Food Hydrocoll. 85, 144 (2018)

    CAS  Google Scholar 

  58. A. Rezvankhah, Z. Emam-Djomeh, G. Askari, Dry. Technol. 38, 235 (2020)

    CAS  Google Scholar 

  59. Z. Emam-Djomeh, A. Rezvankhah, Release Bioavailab. Nanoencapsulated Food Ingredients (Elsevier, 2020), pp. 79–120

  60. Z. Rahmani, F. Khodaiyan, M. Kazemi, A. Sharifan, Int. J. Biol. Macromol. 147, 1107 (2020)

    CAS  PubMed  Google Scholar 

  61. W. Wang, X. Ma, Y. Xu, Y. Cao, Z. Jiang, T. Ding, X. Ye, D. Liu, Food Chem. 178, 106 (2015)

    CAS  PubMed  Google Scholar 

  62. N. Haghighatpanah, H. Mirzaee, F. Khodaiyan, J.F. Kennedy, A. Aghakhani, S.S. Hosseini, K. Jahanbin, Int. J. Biol. Macromol. 152, 305 (2020)

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Nateghi.

Ethics declarations

Conflict of interest

None of authors declare conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

vakilian, K., Nateghi, L., Javadi, A. et al. Optimization of conventional and ultrasound-assisted extraction of pectin from unripe grape pomace: extraction yield, degree of esterification, and galacturonic acid content. Food Measure 17, 5777–5793 (2023). https://doi.org/10.1007/s11694-023-02085-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-02085-2

Keywords

Navigation