Skip to main content
Log in

Effect of 10 MeV Electron Beam Irradiation on the Structure and Functional Properties of Wheat Starch

  • RESEARCH
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Electron beam irradiation (EBI) is now an effective and eco-friendly method to modify the properties of starch. In this study, wheat flour was irradiated at 10 MeV/up to 25 kGy of the electron beam, to analyze the effects of EBI on functional properties and the structure of wheat starch. The functional properties of wheat flour treated by EBI showed an increase in solubility from 15.19% to 50.48%, an increase in water/oil adsorption from 77.67% and 75% to 88.33% and 89.9%, and a decrease in swelling from 12.73 g/g to 5.98 g/g compared to the unirradiated wheat flour. EBI also decreased the rapidly digestible starch and therefore, increase the slowly digestible starch and resistant starch content. The structure of starch was characterized by scanning electron microscopy (SEM), polarized light microscopy (PLM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR), indicating that the long-range crystal structure and short-range ordered structure of wheat starch by EBI decreased. Our results, therefore, may provide some detailed understanding of functional property changes of high starch-based foods by electron beam irradiation treatment technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Gang Wang can be contacted for the data.

References

  1. A.R. Bentley, J. Donovan, K. Sonder et al., NAT FOOD 3(7), 483–486 (2022)

    Article  PubMed  Google Scholar 

  2. P. Guo, J. Yu, L. Copeland, S. Wang, S. Wang, FOOD HYDROCOLLOID 82, 370–378 (2018)

    Article  CAS  Google Scholar 

  3. M. Sunder, K.D. Mumbrekar, N. Mazumder, CURR RES FOOD SCI 5, 141–149 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. M. Li, S. Dhital, Y. Wei, COMPR REV FOOD SCI F 16(5), 1042–1055 (2017)

    Article  CAS  Google Scholar 

  5. R. Saiah, P.A. Sreekumar, N. Leblanc, J.M. Saiter, IND CROP PROD 29(1), 241–247 (2009)

    Article  CAS  Google Scholar 

  6. M.M. Martínez, J. Pico, M. Gómez, FOOD CHEM 167, 447–453 (2015)

    Article  PubMed  Google Scholar 

  7. Z. W. X. W. Xiaoling Tian and S. S. M. F. Binghua, J CEREAL SCI 104 103440 (2022)

  8. J. H. T. Barros, L. de Carvalho Oliveira, M. Cristianini and C. J. Steel, CRIT REV FOOD SCI, 1–17 (2021)

  9. F.C.K. Ocloo, A. Minnaar, N.M. Emmambux, FOOD CHEM 190, 12–19 (2016)

    Article  CAS  PubMed  Google Scholar 

  10. B. Todorov, G. Pekov, R. Djingova, J RADIOANAL NUCL CH 278(1), 9–15 (2008)

    Article  CAS  Google Scholar 

  11. R. Sobhi Amjad, M. Asadollahzadeh, R. Torkaman and M. Torab Mostaedi, The Canadian Journal of Chemical Engineering (2022)

  12. H. Atrous, N. Benbettaieb, M. Chouaibi, H. Attia, D. Ghorbel, INT J FOOD PROP 20(7), 1532–1546 (2017)

    Article  CAS  Google Scholar 

  13. C. S. Lecon Woo, Radiation Physics and Chemistry (63) 845–850 (2002)

  14. C.P. Feliciano, RADIAT PHYS CHEM 144, 34–36 (2018)

    Article  CAS  Google Scholar 

  15. A. Gani, S. Nazia, S.A. Rather et al., LWT Food Sci. Technol. 58(1), 239–246 (2014)

    Article  CAS  Google Scholar 

  16. X. Han, H. Wen, Y. Luo et al., FOOD HYDROCOLLOID 116, 106661 (2021)

    Article  CAS  Google Scholar 

  17. Y. Ma, W. Zhang, Y. Pan, B. Ali, D. Xu, X. Xu, FOOD HYDROCOLLOID 118, 106720 (2021)

    Article  CAS  Google Scholar 

  18. X. Kong, X. Zhou, Z. Sui, J. Bao, INT J BIOL MACROMOL 91, 1141–1150 (2016)

    Article  CAS  PubMed  Google Scholar 

  19. C. Li, S. Dhital, R.G. Gilbert, M.J. Gidley, CARBOHYD POLYM 245, 116557 (2020)

    Article  CAS  Google Scholar 

  20. Z. Du, J. Xing, X. Luo et al., PLoS One 14(12), e226633 (2019)

    Google Scholar 

  21. P. Xue, Y. Zhao, C. Wen, S. Cheng, S. Lin, FOOD CHEM 233, 467–475 (2017)

    Article  CAS  PubMed  Google Scholar 

  22. Y. Li, W. Cheng, X. Qiu et al., J CEREAL SCI 109, 103605 (2023)

    Article  CAS  Google Scholar 

  23. H. Shen, J. Yu, J. Bai et al., FOOD CHEM 398, 133938 (2023)

    Article  CAS  PubMed  Google Scholar 

  24. K. Bashir, T.L. Swer, K.S. Prakash, M. Aggarwal, LWT Food Sci. Technol. 76, 131–139 (2017)

    Article  CAS  Google Scholar 

  25. G. Wang, D. Wang, C. Qing, L. Chen, P. Gao, M. Huang, LWT 163, 113531 (2022)

    Article  CAS  Google Scholar 

  26. N. C. B. C. Dâmaris Carvalho Lima, Ozone: Science & Engineering 1–18 (2020)

  27. L. Chen, D.J. McClements, Z. Zhang et al., FOOD CHEM 309, 125681 (2020)

    Article  CAS  PubMed  Google Scholar 

  28. J. Wang, Y. Yu, Int. J. Food Sci. Technol. 44(4), 674–680 (2009)

    Article  CAS  Google Scholar 

  29. F. Zhu, FOOD HYDROCOLLOID 52, 201–212 (2016)

    Article  CAS  Google Scholar 

  30. H.S. Yoon, J.Y. Yoo, J.H. Kim et al., CARBOHYD POLYM 81(4), 961–963 (2010)

    Article  CAS  Google Scholar 

  31. A. Gani, M. Bashir, S.M. Wani, F.A. Masoodi, LWT 49(1), 162–169 (2012)

    Article  CAS  Google Scholar 

  32. H. Chung, Q. Liu, INT J BIOL MACROMOL 47(2), 214–222 (2010)

    Article  CAS  PubMed  Google Scholar 

  33. H. Kamal, G.M. Sabry, S. Lotfy et al., Journal of Macromolecular Science. Part A 8(44), 865–875 (2007)

    Google Scholar 

  34. B. R. Manupriya, Lathika, H. M. Somashekarappa, S. L. Patil and K. B. Shenoy, RADIAT PHYS CHEM (172) 108693 (2020)

  35. P. Zhu, M. Wang, X. Du, Z. Chen, C. Liu, H. Zhao, FOOD HYDROCOLLOID 109, 106091 (2020)

    Article  CAS  Google Scholar 

  36. H.J. Chung, Q. Liu, J FOOD SCI 5(74), C353–C361 (2009)

    Article  Google Scholar 

  37. H. Li, Y. Gui, J. Li, Y. Zhu, B. Cui, L. Guo, INT J BIOL MACROMOL 144, 500–508 (2020)

    Article  CAS  PubMed  Google Scholar 

  38. M. Wang, M. Sun, Y. Zhang, Y. Chen, Y. Wu, J. Ouyang, FOOD CHEM 298, 125015 (2019)

    Article  CAS  PubMed  Google Scholar 

  39. W.S.R.R. Hoover, FOOD CHEM 78, 489–498 (2002)

    Article  CAS  Google Scholar 

Download references

Funding

This work was made possible by Major science and technology projects in Sichuan Province Science and Technology Department (2019ZDZX0003).

Author information

Authors and Affiliations

Authors

Contributions

Gang Wang: Conceptualization, Methodology, Data curation, Writing – original draft.

Dan Wang: Supervision. Min Huang: Project Management. All authors reviewed the manuscript.

Corresponding author

Correspondence to Dan Wang.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Competing Interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Wang, D. & Huang, M. Effect of 10 MeV Electron Beam Irradiation on the Structure and Functional Properties of Wheat Starch. Food Biophysics 18, 470–477 (2023). https://doi.org/10.1007/s11483-023-09787-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-023-09787-6

Keywords

Navigation