Skip to main content
Log in

Cold Plasma: an Alternative Technology for the Starch Modification

  • REVIEW ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Cold plasma is an emerging novel non-thermal technology in the sector of food processing. In the present review we will discuss the recent scientific reports on properties of cold plasma treated starches. For industrial use native starch is subject to modification to enhance the properties. This paper reviews on the mechanism of starch modification by plasma reactive species, briefly discussing its effects on properties. The effect of cold plasma on starches depends on the type of feed gas, voltage applied and treatment time. The alteration in the properties is mainly due to depolymerization and cross linking of amylose and amylopectin side chains. After plasma treatment there is decrease in molecular weight, viscosity, and gelatinization temperatures. Plasma etching increased the surface energy and enhanced the hydrophilicity of the starch granules. We can conclude that cold plasma is as alternative technology to modify the properties of starch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. N.N. Misra, B.K. Tiwari, K.S.M.S. Raghavarao, P.J. Cullen, Food Eng. Rev. 3, 159–170 (2011)

    Article  Google Scholar 

  2. R. Thirumdas, C. Sarangapani, U.S. Annapure, Food Biophys. 10, 1–11 (2015a)

    Article  Google Scholar 

  3. N.N. Misra, S.K. Pankaj, A. Segat, K. Ishikawa, Trends Food Sci. Technol. 55, 39–47 (2016)

    Article  CAS  Google Scholar 

  4. R. Thirumdas, R.R. Deshmukh, U.S. Annapure, Innovative Food Sci. Emerg. Technol. 31, 83–90 (2015)

    Article  CAS  Google Scholar 

  5. C. Sarangapani, D. Yamuna, R. Thirumdas, U.S. Annapure, R.R. Deshmuk, LWT Food Sci. Technol. 63, 452–460 (2015)

    Article  CAS  Google Scholar 

  6. A. Bogaerts, E. Neyts, R. Gijbels, J. van der Mullen, Spectrochimica Acta Part B: Atomic Spectr. 57, 609–658 (2002)

    Article  Google Scholar 

  7. M.S. Banu, P. Sasikala, A. Dhanapal, V. Kavitha, G. Yazhini, L. Rajamani, Int. J. of Emerging trends in Eng. and Develop 4803–818 (2012)

  8. J.N. BeMiller, Starch-Stärke 49, 127–131 (1997)

    Article  CAS  Google Scholar 

  9. R. Colussi, V.Z. Pinto, S.L.M. El Halal, N.L. Vanier, F.A. Villanova, R.M. e Silva, A.R.G. Dias, Carbohydr. Polym. 103, 405–413 (2014)

    Article  CAS  Google Scholar 

  10. B. Zhang, L. Chen, X. Li, L. Li, H. Zhang, Food Hydrocoll. 50, 228–236 (2015)

    Article  CAS  Google Scholar 

  11. J. Zhu, L. Li, L. Chen, X. Li, Food Hydrocoll. 29, 116–122 (2012)

    Article  CAS  Google Scholar 

  12. F. Zhu, Food Hydrocoll. 52, 201–212 (2016)

    Article  CAS  Google Scholar 

  13. H. Liu, L. Wang, R. Cao, H. Fan, M. Wang, Carbohydr. Polym. 144, 1–8 (2016)

    Article  CAS  Google Scholar 

  14. C.Y. Lii, C.D. Liao, L. Stobinski, P. Tomasik, Carbohydr. Polym. 49, 499–507 (2002a)

    Article  CAS  Google Scholar 

  15. R. Wongsagonsup, P. Deeyai, W. Chaiwat, S. Horrungsiwat, et al., Carbohydr. Polym. 102, 790–798 (2014)

    Article  CAS  Google Scholar 

  16. Fridman, A. Cambridge Univ. Press (2008)

  17. I. Katsumata, M. Okazaki, Japanese J. Appl. Phys. 6, 123 (1967)

    Article  Google Scholar 

  18. J.J. Zou, C.J. Liu, B. Eliasson, Carbohydr. Polym. 55, 23–26 (2004)

    Article  CAS  Google Scholar 

  19. P. Deeyai, M. Suphantharika, R. Wongsagonsup, S. Dangtip, Chin. Phys. Lett. 30, 018103 (2013)

    Article  Google Scholar 

  20. P. Bie, H. Pu, B. Zhang, J. Su, L. Chen, X. Li, Innovative Food Sci. Emerg. Technol. 34, 196–204 (2015)

    Article  Google Scholar 

  21. S. Khorram, M.S. Zakerhamidi, Z. Karimzadeh, Carbohydr. Polym. 127, 72–78 (2015)

    Article  CAS  Google Scholar 

  22. B. Zhang, S. Xiong, X. Li, L. Li, F. Xie, L. Chen, Food Hydrocoll. 37, 69–76 (2014)

    Article  Google Scholar 

  23. P. Laovachirasuwan, J. Peerapattana, V. Srijesdaruk, P. Chitropas, M. Otsuka, Colloids Surf. B: Biointerfaces 78, 30–35 (2010)

    Article  CAS  Google Scholar 

  24. A.N. Jyothi, S.N. Moorthy, K.N. Rajasekharan, Starch-Stärke 58, 292–299 (2006)

    Article  CAS  Google Scholar 

  25. C.S. Schmitz, K.N. De Simas, et al., Int. J. Food Sci. Technol. 41, 681–687 (2006)

    Article  CAS  Google Scholar 

  26. H.L. Han, F.W. Sosulski, Starch-Stärke 50, 487–492 (1998)

    Article  CAS  Google Scholar 

  27. Zia-ud-Din, X. Hanguo, F. Peng, Crit. Rev. Food Sci. Nutr. (2015). doi:10.1080/10408398.2015.1087379

    Google Scholar 

  28. V. Sanguanpong, S. Chotineeranat, K. Piyachomkwan, C.G. Oates, P. Chinachoti, K. Sriroth, J. Sci. Food Agric. 83, 760–768 (2003)

    Article  CAS  Google Scholar 

  29. S.M.L. El Halal, C. Rosana, et al., Food Chem. 168, 247–256 (2015)

    Article  Google Scholar 

  30. M.W. Rutenberg, D. Solarek, Starch: Chem. Technol 2, 311–388 (1984)

    Google Scholar 

  31. P.N. Bhandari, R.S. Singhal, Carbohydr. Polym. 48, 233–240 (2002)

    Article  CAS  Google Scholar 

  32. M. Sujka, J. Jamroz, Food Hydrocoll. 31, 413–419 (2013)

    Article  CAS  Google Scholar 

  33. Z. Luo, X. Fu, X. He, F. Luo, Q. Gao, S. Yu, Starch-Stärke 60, 646–653 (2008)

    Article  CAS  Google Scholar 

  34. Z. Han, X.A. Zeng, J.S. Yu, B.S. Zhang, X.D. Chen, Innovative Food Sci. Emerg. Technol. 10, 481–485 (2009)

    Article  CAS  Google Scholar 

  35. J.N. BeMiller, K.C. Huber, Annu. Rev. Food Sci. Technol. 6, 19–69 (2015)

    Article  CAS  Google Scholar 

  36. K. Neelam, S. Vijay, S. Lalit, Int. Res. J. Pharm. 3, 25–31 (2012)

    Google Scholar 

  37. M.Z. Sitohy, S.M. Labib, S.S. El-Saadany, M.F. Ramadan, Starch-Stuttgart 52, 95–100 (2000)

    Article  CAS  Google Scholar 

  38. E.H. Nabeshima, M.V.E. Grossmann, Carbohydr. Polym. 45, 347–353 (2001)

    Article  CAS  Google Scholar 

  39. J.N. Bemiller, Carbohydrate Chemistry for Food Scientists, second ed. AACC Int. (2007)

  40. L.A. Bello-Pérez, E. Agama-Acevedo, P.B. Zamudio-Flores, G. Mendez-Montealvo, S.L. Rodriguez-Ambriz, LWT Food Sci. Technol. 43, 1434–1440 (2010)

    Article  Google Scholar 

  41. C.W. Chiu, D. Solarek, Starch: Chem. Technol. 3, 629–655 (2009)

    Article  Google Scholar 

  42. M.R. Hansen, A. Blennow, S. Pedersen, L. Nørgaard, S.B. Engelsen, Food Hydrocoll. 22, 1551–1566 (2008)

    Article  CAS  Google Scholar 

  43. Z. Ao, S. Simsek, G. Zhang, M. Venkatachalam, B.L. Reuhs, B.R. Hamaker, J. Agric. Food Chem. 55, 4540–4547 (2007)

    Article  CAS  Google Scholar 

  44. B. Kaur, F. Ariffin, R. Bhat, A.A. Karim, Food Hydrocoll. 26, 398–404 (2012)

    Article  CAS  Google Scholar 

  45. A.O. Ashogbon, E.T. Akintayo, Starch-Stärke 66, 41–57 (2014)

    Article  CAS  Google Scholar 

  46. Z. Han, X.A. Zeng, B.S. Zhang, S.J. Yu, J. Food Eng. 93, 318–323 (2009)

    Article  CAS  Google Scholar 

  47. R. Bhat, A.A. Karim, Food Chem. 113, 1160–1164 (2009)

    Article  CAS  Google Scholar 

  48. R. Morent, N. De Geyter, T. Desmet, P. Dubruel, C. Leys, Plasma Process. Polym. 8, 171–190 (2011)

    Article  CAS  Google Scholar 

  49. H. Conrads, M. Schmidt, Plasma Sources Sci. Technol. 9, 441–454 (2000)

    Article  CAS  Google Scholar 

  50. T. Desmet, R. Morent, N.D. Geyter, C. Leys, E. Schacht, P. Dubruel, Biomacromol. 10, 2351–2378 (2009)

    Article  CAS  Google Scholar 

  51. K.S. Siow, L. Britcher, S. Kumar, H.J. Griesser, Plasma Process. Polym. 3, 392–418 (2006)

    Article  CAS  Google Scholar 

  52. S.M. Desai, R.P. Singh, Long-Term Prop. Polyolefins 169, 231–293 (2004)

    Article  CAS  Google Scholar 

  53. M.P. Esteves, F.M. Girio, M.T. Amaral-Collaço, M.E. Andrade, J. Empis, Sci. Des. Alimen. 17, 289–298 (1997)

    CAS  Google Scholar 

  54. R.L. Whistler, J.R. Daniel, Starch John Wiley & Sons, Inc. (1978)

  55. N. Gomathi, A. Sureshkumar, S. Neogi, Curr. Sci. Bangalore 94, 1478 (2008)

    CAS  Google Scholar 

  56. J. Duan, D.L. Kasper, Glycobiology 21, 401–409 (2011)

    Article  CAS  Google Scholar 

  57. C.C. Winterbourn, Nat. Chem. Biol. 4, 278–286 (2008)

    Article  CAS  Google Scholar 

  58. A. Allah, Y.H. Foda, R. El Saadany, Starch-Stärke 26, 89–93 (1974)

    Article  Google Scholar 

  59. C.Y. Lii, C.D. Liao, L. Stobinski, P. Tomasik, Carbohydr. Polym. 49, 449–456 (2002b)

    Article  CAS  Google Scholar 

  60. C.Y. Lii, C.D. Liao, L. Stobinski, P. Tomasik, Eur. Polym. J. 38, 1601–1606 (2002c)

    Article  CAS  Google Scholar 

  61. G.O. Phillips, Adv. Carbohydr. Chem. 16, 13–58 (1962)

    Google Scholar 

  62. A.S. Sokhey, M.A. Hanna, Food Struct. 12, 2 (1993)

    Google Scholar 

  63. J.P. Michel, J. Raffi, L. Saint-Lèbe, Starch-Stärke 32, 295–298 (1980)

    Article  CAS  Google Scholar 

  64. J.J. Raffi, J.P.L. Agnel, J. Phys. Chem. 87, 2369–2373 (1983)

    Article  CAS  Google Scholar 

  65. C.Y. Lii, C.D. Liao, L. Stobinski, P. Tomasik, J. Food Agri, Environment 1, 143–149 (2003)

    CAS  Google Scholar 

  66. K. Harth, H. Hibst, Surf. Coat. Technol. 59, 350–355 (1993)

    Article  CAS  Google Scholar 

  67. M.A. Lieberman, A.J. Lichtenberg, John Wiley & Sons (2005)

  68. H.H. Chen, Y. Chen, C.H. Chang, Food Chem. 135, 74–79 (2012)

    Article  CAS  Google Scholar 

  69. R. Thirumdas, C. Saragapani, M.T. Ajinkya, R.R. Deshmukh, U.S. Annapure, Innovative Food Sci. Emerg. Technol. 37, 53–60 (2016b)

    Article  CAS  Google Scholar 

  70. A.M. Wrobel, B. Lamontagne, M.R. Wertheimer, Plasma Chem. Plasma Process. 8, 315–329 (1988)

    Article  CAS  Google Scholar 

  71. C.M. Ferreira, M. Moisan, (Eds.) Springer Science & Business Media 30 (2013)

  72. V. Jokinen, P. Suvanto, S. Franssila, Biomicrofluidics 6, 016501 (2012)

    Article  Google Scholar 

  73. M.R. Nemtanu, M. Braşoveanu, Edited by M. Eknashar, 319 (2010)

  74. J. Bao, Z. Ao, J.L. Jane, Starch-Stärke 57, 480–487 (2005)

    Article  CAS  Google Scholar 

  75. H. Kamal, G.M. Sabry, S. Lotfy, N.M. Abdallah, P. Ulanski, J. Rosiak, E.S.A. Hegazy, J. Macromol. Sci. Part A: Pure Appl. Chem. 44, 865–875 (2007)

    Article  CAS  Google Scholar 

  76. S. Perez, E. Bertoft, Starch-Stärke 62, 389–420 (2010)

    Article  CAS  Google Scholar 

  77. H.H. Chen, Food Bioprocess Technol. 7, 2484–2491 (2014)

    Article  CAS  Google Scholar 

  78. P. Bie, X. Li, F. Xie, L. Chen, B. Zhang, L. Li, Innovative Food Sci. Emerg. Technol. 34, 336–343 (2016)

    Article  CAS  Google Scholar 

  79. P. Deeyai, P. Jitsomboonmit, W. Soonthonchaikul, M. Suphatharika, S. Dangtip, J. Microsc. Soc. Thai. 24, 112–116 (2010)

  80. Y. Ai, J.L. Jane, Starch-Stärke 67, 213–224 (2015)

    Article  CAS  Google Scholar 

  81. V.C. Sabularse, J.A. Liuzzo, R.M. Rao, R.M. Grodner, J. Food Sci. 57, 143–145 (1992)

    Article  CAS  Google Scholar 

  82. W. Li, C. Shu, P. Zhang, Q. Shen, Food Bioprocess Technol. 4, 814–821 (2011)

    Article  CAS  Google Scholar 

  83. N. Singh, J. Singh, L. Kaur, N.S. Sodhi, B.S. Gill, Food Chem. 81, 219–231 (2003)

    Article  CAS  Google Scholar 

  84. D.D. Pan, J.L. Jane, Biomacromolecules 1, 126–132 (2000)

    Article  CAS  Google Scholar 

  85. R. Thirumdas, R.R. Deshmukh, U.S. Annapure, J. Food Sci. Technol. 53, 2742–2751 (2016)

    Article  CAS  Google Scholar 

  86. R. Thirumdas, A. Trimukhe, R.R. Deshmukh, U.S. Annapure, Carbohydr. Polym. 157, 1723–1731 (2017)

    Article  CAS  Google Scholar 

  87. S. Bußler, V. Steins, J. Ehlbeck, O. Schlüter, J. Food Eng. 167, 166–174 (2015)

    Article  Google Scholar 

  88. D. Boehm, C. Heslin, P.J. Cullen, P. Bourke, Scientific reports 6, (2016)

Download references

Acknowledgements

We are grateful to Union grants commission [UGC], India for support to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. S. Annapure.

Ethics declarations

Conflict of Interest

The authors do not have any conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thirumdas, R., Kadam, D. & Annapure, U.S. Cold Plasma: an Alternative Technology for the Starch Modification. Food Biophysics 12, 129–139 (2017). https://doi.org/10.1007/s11483-017-9468-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-017-9468-5

Keywords

Navigation