Culinary Biophysics: on the Nature of the 6X°C Egg

Abstract

Shell-on eggs cooked by immersion in water at low and constant temperatures (∼60–70 °C) yield yolks with very particular textures. Structure development in such unique cooking conditions is far from understood. The present study shows that egg yolk, despite its compositional complexity, follows typical gelation kinetics found in many globular proteins and that it can develop structure at temperatures as low as 56 °C. It follows that yolk texture is dictated by time/temperature combinations. Under isothermal, low temperature cooking conditions, the thickening and gelation kinetics of egg yolk follow Arrhenius-type kinetic relationships. The energy of activation of these processes was ∼470 kJ mol−1, which agrees well with the values reported for the denaturation and gelation of the thermally labile chicken serum albumin and immunoglobulin Y. Results are related to common foodstuffs in order to allow chefs and home cooks to achieve a priori conceived textures in egg yolks.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    C. Vega, Egg yolk: A library of Textures, in The kitchen as a laboratory: science reflections inspired by the kitchen, ed. by C. Vega, J. Ubbink, E. van der Linden (Columbia University Press, New York, 2011)

    Google Scholar 

  2. 2.

    C. Vega, J. Ubbink, Trends Food Sci. Technol. 19, 372–382 (2008)

    CAS  Article  Google Scholar 

  3. 3.

    D. Buay, S.K. Foong, D. Kiang, L. Kuppan, V.H. Liew, Eur. J. Phys. 27, 119–131 (2006)

    Article  Google Scholar 

  4. 4.

    P. Roura, P. Fort, J. Saurina, Eur. J. Phys. 21, 95–100 (2000)

    Article  Google Scholar 

  5. 5.

    P. Gadsby (2007) Cooking for eggheads. Discover magazine. Available at: http://discovermagazine.com/2006/feb/cooking-for-eggheads

  6. 6.

    H. This, Molecular Gastronomy: Exploring the Science of Flavor (Columbia University Press, New York, 2006)

    Google Scholar 

  7. 7.

    K. Mann, M. Mann, Proteomics 8, 178–191 (2008)

    CAS  Article  Google Scholar 

  8. 8.

    M. Le Denmat, M. Anton, V. Beaumal, Food Hydrocolloids 14, 539–549 (2000)

    Article  Google Scholar 

  9. 9.

    V. Kiosseoglou, A. Paraskevopoulou, Food Hydrocolloids 19, 527–532 (2005)

    CAS  Article  Google Scholar 

  10. 10.

    F. Guilmineau, I. Krause, U. Kulozik, J. Agric. Food Chem. 53, 9329–9336 (2005)

    CAS  Article  Google Scholar 

  11. 11.

    D.K. Dixon, O.J. Cotterill, J. Food Sci. 46, 981–983 (1981)

    CAS  Article  Google Scholar 

  12. 12.

    M. Le Denmat, M. Anton, G. Gandemer, J. Food Sci. 64, 194–197 (1999)

    Article  Google Scholar 

  13. 13.

    N. Matsudomi, K. Ito, Y. Yoshika, Biosci. Biotechnol. Biochem. 70, 836–842 (2006)

    CAS  Article  Google Scholar 

  14. 14.

    P.F. Predki, C. Harford, P. Brar, B. Sarkar, Biochem. J. 287, 211–215 (1992)

    CAS  Google Scholar 

  15. 15.

    C.W. Heizman, G. Muller, E. Jenny, K.J. Wilson, F. Landon, A. Olomucki, Proc. Natl Acad. Sci. USA 78, 74–77 (1981)

    CAS  Article  Google Scholar 

  16. 16.

    C. Giancola, C. De Sena, D. Fessas, G. Graziano, G. Barone, Int. J. Biol. Macromol. 20, 193–204 (1997)

    CAS  Article  Google Scholar 

  17. 17.

    Y. Moriyama, E. Watanabe, K. Kobayashi, H. Harano, E. Inui, K. Takeda, J. Phys. Chem. B 112, 16585–16589 (2008)

    CAS  Article  Google Scholar 

  18. 18.

    N. Matsudomi, D. Rector, J.E. Kinsella, Food Chem. 40, 55–69 (1991)

    CAS  Article  Google Scholar 

  19. 19.

    A. Tobitani, S.B. RossMurphy, Macromolecules 30, 4845–4854 (1997)

    CAS  Article  Google Scholar 

  20. 20.

    X. Cao, J. Li, X. Yang, Y. Duan, Y. Liu, C. Wang, Thermochim. Acta 467, 99–106 (2008)

    CAS  Article  Google Scholar 

  21. 21.

    S. Baier, J. McClements, J. Agric. Food Chem. 49, 2600–2608 (2001)

    CAS  Article  Google Scholar 

  22. 22.

    M. Shimizu, H. Nagashima, K. Hashimoto, Comp. Biochem. Physiol. B Biochem. Mol. Biol. 106, 255–261 (1993)

    CAS  Article  Google Scholar 

  23. 23.

    H.E. Indyk, J.W. Williams, H.A. Patel, Int. Dairy J. 18, 359–366 (2008)

    CAS  Google Scholar 

  24. 24.

    A.W.P. Vermeer, W. Norde, Biophys. J. 78, 394–404 (2000)

    CAS  Article  Google Scholar 

  25. 25.

    A.W.P. Vermeer, C.E. Giacomelli, W. Norde, Biochimica et Biophysica Acta (BBA)-General Subjects 1526, 61–69 (2001)

    CAS  Article  Google Scholar 

  26. 26.

    D.J. Oldfield, H. Singh, M.W. Taylor, K.N. Pearce, Int. Dairy J. 8, 311–318 (1998)

    Article  Google Scholar 

  27. 27.

    E. Lichan, A. Kummer, J.N. Losso, D.D. Kitts, S. Nakai, Food Res. Int. 28, 9–16 (1995)

    CAS  Article  Google Scholar 

  28. 28.

    C. D. H. Williams (2010) The science of boiling an egg. Available at: http://newton.ex.ac.uk/teaching/CDHW/egg/

  29. 29.

    S. Stølen, J. Vedde, Kunsten å koke et egg (2010) Available at: http://www.kjemi.uio.no/publikum/popularkjemi/egg/

  30. 30.

    S.L. Polley, O.P. Snyder, P. Kotnour, Food Technol. 34, 76–91 (1980)

    Google Scholar 

  31. 31.

    S. Almonacid, R. Simpson, A. Teixeira, J. Food Sci. 72, E508–E517 (2007)

    CAS  Article  Google Scholar 

  32. 32.

    S. Denys, J.G. Pieters, K. Dewettinck, J. Food Eng. 63, 281–290 (2004)

    Article  Google Scholar 

  33. 33.

    H. Yamashita, J. Ishibashi, Y.H. Hong, M. Hirose, Biosci. Biotechnol. Biochem. 62, 593–595 (1998)

    CAS  Article  Google Scholar 

  34. 34.

    M.A.M. Hoffmann, J.C. van Miltenburg, P.J.J.M. Van Mil, Thermochim. Acta 306, 45–49 (1997)

    CAS  Article  Google Scholar 

  35. 35.

    C. Le Bon, T. Nicolai, D. Durand, Macromolecules 32, 6120–6127 (1999)

    Article  Google Scholar 

  36. 36.

    E. Doi, Trends Food Sci. Technol. 4, 1–5 (1993)

    CAS  Article  Google Scholar 

  37. 37.

    A.H. Clark, G.M. Kavanagh, S.B. Ross-Murphy, Food Hydrocolloids 15, 383–400 (2001)

    CAS  Article  Google Scholar 

  38. 38.

    W.S. Gosal, S.B. Ross-Murphy, Curr. Opin. Colloid Interface Sci. 5, 188–194 (2000)

    CAS  Article  Google Scholar 

  39. 39.

    F. Cordobes, P. Partal, A. Guerrero, Rheologica Acta 43, 184–195 (2004)

    CAS  Article  Google Scholar 

  40. 40.

    M. Anton, M. Le Denmat, V. Beaumal, P. Pilet, Colloids Surf., B 21, 137–147 (2001)

    CAS  Article  Google Scholar 

  41. 41.

    F. Chambon, H.H. Winter, J. Rheol. 31, 683–697 (1987)

    CAS  Article  Google Scholar 

  42. 42.

    N.R. Pollen, C. Daubert, P. Prabhasankar, M. Drake, M.L. Gumpertz, J. Texture Stud. 35, 643–657 (2004)

    Article  Google Scholar 

  43. 43.

    A. Guerrero, J. Carmona, I. Martinez, F. Cordobes, P. Partal, Rheologica Acta 43, 539–549 (2004)

    CAS  Article  Google Scholar 

  44. 44.

    T. Tsutsui, J. Food Sci. 53, 1103–1106 (1988)

    CAS  Article  Google Scholar 

  45. 45.

    R. Nakamura, T. Fukano, M. Taniguchi, J. Food Sci. 47, 1449–1453 (1982)

    CAS  Article  Google Scholar 

  46. 46.

    J.M. Aguilar, F. Cordobes, A. Jerez, A. Guerrero, Rheologica Acta 46, 731–740 (2007)

    CAS  Article  Google Scholar 

  47. 47.

    F. Cordobes, J.A. Carmona, I. Martinez, P. Partal, A. Guerrero, Gums and Stabilizers for the Food Industry 12 (Springer, Berlin, 2004)

    Google Scholar 

  48. 48.

    S. Jayaraman, D. Gantz, O. Gursky, Biochemistry 44, 3965–3971 (2005)

    CAS  Article  Google Scholar 

  49. 49.

    F. Speroni, M.C. Puppo, N. Chapleau, M. de Lamballerie, O. Castellani, M.C. Anon, M. Anton, J. Agric. Food Chem. 53, 5719–5725 (2005)

    CAS  Article  Google Scholar 

  50. 50.

    P. Barham, L.H. Skibsted, W.L.P. Bredie, M. Bom Frøst, P. Møller, J. Risbo, P. Snitjær, L.M. Mortensen, Chem. Rev. 110, 2313–2365 (2010)

    CAS  Article  Google Scholar 

  51. 51.

    J. Unsworth, F.J. Duarte, Am. J. Phys. 47, 981–983 (1979)

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to César Vega.

Appendix

Appendix

The analytical solution of the dynamic process of heating by conduction of a sphere was provided by Unsworth and Duarte.51 The temperature at the centre of the sphere is given by

$$ {T_c}(t) = {T_b} - \left( {{T_b} - {T_0}} \right)\sum\limits_{{n = 1}}^{\infty } {{{\left( { - 1} \right)}^{{n + 1}}}{e^{{ - {n^2}\lambda t}}}} $$
(1)

where λ = π2 α/r 2; α is the thermal diffusivity, and r is the radius of the sphere. Buay et al.3 expanded Eq. 1 for prolate spheroids not too different than a sphere, using the equivalent radius r e instead of r.

$$ {r_e} = \frac{{2ab}}{{b + \beta a}} $$
(2)

where 2a and 2b are the major and minor axes, and β= arcsin(e)/e, where e is the ellipticity \( \left( {e = \sqrt {{1 - {b^2}/{a^2}}} } \right) \).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vega, C., Mercadé-Prieto, R. Culinary Biophysics: on the Nature of the 6X°C Egg. Food Biophysics 6, 152–159 (2011). https://doi.org/10.1007/s11483-010-9200-1

Download citation

Keywords

  • Egg yolk
  • Texture
  • Sous-vide
  • Gastronomy
  • Science-assisted cooking