Skip to main content
Log in

Au-MgF2-Coated Photonic Crystal Fiber Surface Plasmon Resonance Sensor with High FOM

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A surface plasmon resonance (SPR) sensor composed of photonic crystal fibers (PCFs) is designed for refractive index (RI) sensing with a high figure of merit (FOM). The dual Au-MgF2 layer is covered on the double-side polished D-type PCF to stimulate SPR. Our numerical analysis reveals that the maximum wavelength sensitivity and amplitude sensitivity of the PCF-SPR sensor are 59,000 nm/RIU and 6076 RIU−1, respectively, in the RI range of 1.25 ~ 1.43. The maximum FOM is 2033 RIU−1 and the resolution is 1.69 × 10−6. The results provide guidance and insights into the design of PCF-SPR sensors with high FOM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Due to personal privacy and intellectual property protection, the datasets generated and analyzed during the current study are not publicly available but are available from the corresponding author on reasonable request.

References

  1. Liu Q, Sun JD, Sun YD, Ren ZH, Liu C, Lv JW, Wang FM, Wang LY, Liu W, Sun T, Chu PK (2020) Surface plasmon resonance sensor based on photonic crystal fiber with indium tin oxide film. Opt Mater 102:1–8. https://doi.org/10.1016/j.optmat.2020.109800

    Article  ADS  CAS  Google Scholar 

  2. Zhang P, Liu L, He Y, Ji Y, Guo J, Ma H (2015) Temperature-regulated surface plasmon resonance imaging system for bioaffinity sensing. Plasmonics 11:771–779. https://doi.org/10.1007/s11468-015-0108-y

    Article  CAS  Google Scholar 

  3. Hinman SS, McKeating KS, Cheng Q (2017) Surface plasmon resonance: material and interface design for universal accessibility. Anal Chem 90:19–39. https://doi.org/10.1021/acs.analchem.7b04251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Srivastava A, Verma A, Prajapati YK (2021) Theoretical study of hazardous carbon-di-oxide gas sensing using MIM structure-based SPR sensing scheme. IET Optoelectron 15:167–177. https://doi.org/10.1049/ote2.12035

    Article  Google Scholar 

  5. Fakhri MA, Salim ET, Tariq SM, Ibrahim RK, Alsultany FH, Alwahib AA, Alhasan SFH, Gopinath SCB, Salim ZT, Hashim U (2023) A gold nanoparticles coated unclad single mode fiber-optic sensor based on localized surface plasmon resonance. Sci Rep 13:5680. https://doi.org/10.1038/s41598-023-32852-6

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kawata S, Tsai DP, Zuppella P, Corso AJ, Pelizzo MG, Cennamo N, Zeni L (2016) Refractometers for different refractive index range by surface plasmon resonance sensors in multimode optical fibers with different metals. Plasmonics: Design. Materials, Fabrication, Characterization, and Applications XIV 9921:1–6. https://doi.org/10.1117/12.2238143

    Article  Google Scholar 

  7. Chaudhary VS, Kumar D, Pandey BP, Kumar S (2023) Advances in photonic crystal fiber-based sensor for detection of physical and biochemical parameters—a review. IEEE Sens J 23:1012–1023. https://doi.org/10.1109/jsen.2022.3222969

    Article  ADS  CAS  Google Scholar 

  8. Yasli A (2021) Cancer detection with surface plasmon resonance-based photonic crystal fiber biosensor. Plasmonics 16:1605–1612. https://doi.org/10.1007/s11468-021-01425-6

    Article  CAS  Google Scholar 

  9. Thenmozhi H, Mani Rajan MS, Ahmed K (2019) D-shaped PCF sensor based on SPR for the detection of carcinogenic agents in food and cosmetics. Optik 180:264–270. https://doi.org/10.1016/j.ijleo.2018.11.098

    Article  ADS  CAS  Google Scholar 

  10. Liu W, Liu C, Wang J, Lv J, Lv Y, Yang L, An N, Yi Z, Liu Q, Hu C, Chu PK (2023) Surface plasmon resonance sensor composed of microstructured optical fibers for monitoring of external and internal environments in biological and environmental sensing. Results Phys 47:1–11. https://doi.org/10.1016/j.rinp.2023.106365

    Article  CAS  Google Scholar 

  11. Liu Q, Zhao J, Sun Y, Liu W, Liu C, Lv J, Lv T, Jiang Y, Li B, Wang F, Sun T, Chu PK (2021) High-sensitivity methane sensor composed of photonic quasi-crystal fiber based on surface plasmon resonance. J Opt Soc Am A: 38:1438–1442. https://doi.org/10.1364/JOSAA.432045

    Article  ADS  Google Scholar 

  12. Wu JJ, Dou C, Hu LC (2021) The D-shape elliptical stoma photonic crystal fiber based on surface plasmon resonance with both filtering and sensing. Opt Quant Electron 53:1–14. https://doi.org/10.1007/s11082-021-03044-1

    Article  CAS  Google Scholar 

  13. Liu Q, Jiang Y, Sun Y, Hu C, Sun J, Liu C, Lv J, Zhao J, Yi Z, Chu PK (2021) Surface plasmon resonance sensor based on U-shaped photonic quasi-crystal fiber. Appl Opt 60:1761–1766. https://doi.org/10.1364/AO.419518

    Article  ADS  PubMed  Google Scholar 

  14. Lv JW, Wang FM, Hu CJ, Yang L, Fu HH, Zeng YS, Chu PK, Liu C (2022) Numerical analysis of multifunctional biosensor with dual-channel photonic crystal fibers based on localized surface plasmon resonance. Coatings 12:1–11. https://doi.org/10.3390/coatings12060742

    Article  CAS  Google Scholar 

  15. Liu W, Hu C, Zhou L, Yi Z, Liu C, Lv J, Yang L, Chu PK (2022) A square-lattice D-shaped photonic crystal fiber sensor based on SPR to detect analytes with large refractive indexes. Physica E 138:1–8. https://doi.org/10.1016/j.physe.2021.115106

    Article  CAS  Google Scholar 

  16. Singh S, Prajapati YK (2022) Antimonene-gold based twin-core SPR sensor with a side-polished semi-arc groove dual sensing channel: an investigation with 2D material. Opt Quant Electron 54:1–14. https://doi.org/10.1007/s11082-021-03505-7

    Article  CAS  Google Scholar 

  17. Singh S, Prajapati YK (2019) Dual-polarized ultrahigh sensitive gold/MoS2/graphene based D-shaped PCF refractive index sensor in visible to near-IR region. Opt Quant Electron 52:1–15. https://doi.org/10.1007/s11082-019-2122-3

    Article  CAS  Google Scholar 

  18. Liang H, Shen T, Feng Y, Liu H, Han W (2020) A D-shaped photonic crystal fiber refractive index sensor coated with graphene and zinc oxide. Sensors 21:1–16. https://doi.org/10.3390/s21010071

    Article  ADS  CAS  Google Scholar 

  19. Wang S, Ma W, Cheng Q, Liu N, Lu Y, Wu X, Xiang J (2021) Dual-channel surface plasmon resonance–based photonic crystal fiber sensor with metal-Ta2O5 coating at near-infrared wavelength. Plasmonics 17:119–129. https://doi.org/10.1007/s11468-021-01503-9

    Article  CAS  Google Scholar 

  20. Islam MR, Khan MMI, Siraz S, Mehjabin F, Rahman M, Islam M, Anzum MS, Chowdhury JA, Noor F (2021) Design and analysis of a QC-SPR-PCF sensor for multipurpose sensing with supremely high FOM. Appl Nanosci 12:29–45. https://doi.org/10.1007/s13204-021-02150-6

    Article  ADS  CAS  Google Scholar 

  21. Wang D, Zhang S, Li Y, Li J (2022) Highly efficient asymmetric dual refractive index D-type photonic crystal fiber surface plasmon resonance sensor. Plasmonics 17:2063–2074. https://doi.org/10.1007/s11468-022-01694-9

    Article  CAS  Google Scholar 

  22. Das S, Guha S, Das PP, Ghadai RK (2020) Analysis of morphological, microstructural, electrochemical and nano mechanical characteristics of TiCN coatings prepared under N2 gas flow rate by chemical vapour deposition (CVD) process at higher temperature. Ceram Int 46:10292–10298. https://doi.org/10.1016/j.ceramint.2020.01.023

    Article  CAS  Google Scholar 

  23. Ghosh G, Endo M, Iwasaki T (1994) Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses. J Lightwave Technol 12:1338–1342. https://doi.org/10.1109/50.317500

    Article  ADS  CAS  Google Scholar 

  24. Vial A, Grimault A-S, Macías D, Barchiesi D, de la Chapelle ML (2005) Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method. Phys Rev B: Condens Matter Mater Phys 71:1–7. https://doi.org/10.1103/PhysRevB.71.085416

    Article  CAS  Google Scholar 

  25. Zhang H, Chen Y, Feng X, Xiong X, Hu S, Jiang Z, Dong J, Zhu W, Qiu W, Guan H, Lu H, Yu J, Zhong Y, Zhang J, He M, Luo Y, Chen Z (2019) Long-range surface plasmon resonance sensor based on side-polished fiber for biosensing applications. IEEE J Sel Top Quantum Electron 25:1–9. https://doi.org/10.1109/jstqe.2018.2868159

    Article  ADS  CAS  Google Scholar 

  26. Rakibul Islam M, Iftekher ANM, Anzum MS, Rahman M, Siraz S (2022) LSPR based double peak double plasmonic layered bent core PCF-SPR sensor for ultra-broadband dual peak sensing. IEEE Sens J 22:5628–5635. https://doi.org/10.1109/jsen.2022.3149715

    Article  ADS  CAS  Google Scholar 

  27. Sui P, Zhang A, Pan F, Chang P, Pan H, Liu F, Wang J, Cao C (2022) High sensitivity refractive index sensor with wide detection range and high linearity based on LSPR in hollow-core anti-resonance fiber. Opt Laser Technol 155:1–7. https://doi.org/10.1016/j.optlastec.2022.108427

    Article  CAS  Google Scholar 

  28. Ma Y, Liu F, Ren Q, Zhang H, Zhang A (2023) Dual-band highly-sensitive SPR photonic crystal fiber sensor based on birefringence analysis. Opt Commun 532:1–7. https://doi.org/10.1016/j.optcom.2022.129253

    Article  CAS  Google Scholar 

  29. Islam N, Faizul Huq Arif M, Abu Yousuf M, Asaduzzaman S (2023) Highly sensitive open channel based PCF-SPR sensor for analyte refractive index sensing. Results Phys 46:1–11. https://doi.org/10.1016/j.rinp.2023.106266

    Article  Google Scholar 

  30. Gauvreau B, Hassani A, Fassi Fehri M, Kabashin A, Skorobogatiy MA (2007) Photonic bandgap fiber-based surface plasmon resonance sensors. Opt Express 15:11413–11426. https://doi.org/10.1364/oe.15.011413

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Liu C, Su W, Liu Q, Lu X, Wang F, Sun T, Chu PK (2018) Symmetrical dual D-shape photonic crystal fibers for surface plasmon resonance sensing. Opt Express 26:9039–9049. https://doi.org/10.1364/OE.26.009039

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Mollah MA, Islam MS (2020) Novel single hole exposed-suspended core localized surface plasmon resonance sensor. IEEE Sens J 21:2813–2820. https://doi.org/10.1109/jsen.2020.3023975

    Article  CAS  Google Scholar 

  33. Shakya AK, Ramola A, Singh S, Van V (2022) Design of an ultra-sensitive bimetallic anisotropic PCF SPR biosensor for liquid analytes sensing. Opt Express 30:9233–9255. https://doi.org/10.1364/OE.432263

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Singh S, Prajapati YK (2020) TiO2/gold-graphene hybrid solid core SPR based PCF RI sensor for sensitivity enhancement. Optik 224:1–10. https://doi.org/10.1016/j.ijleo.2020.165525

    Article  CAS  Google Scholar 

  35. Ramani U, Kumar H, Kumar R, Singh BK, Pandey PC (2023) Rectangular-shape cladding-based photonic crystal fiber surface plasmon resonance-based refractive index sensor. Plasmonics 18:921–929. https://doi.org/10.1007/s11468-023-01820-1

    Article  CAS  Google Scholar 

Download references

Funding

This work was jointly supported by the Instructional Technology Plan of Daqing City (Grant no. zd-2023-19), Daqing Normal University Talent Project (Project no. 22RC006), Basic Research Support Project for the Excellent Youth Scholars of Heilongjiang Province, Heilongjiang Provincial Natural Science Foundation of China (Grant no. JQ2023F001), Local Universities Reformation and Development Personnel Training Supporting Project from Central Authorities, Natural Science Foundation of Heilongjiang Province (Grant no. LH2021F007), China Postdoctoral Science Foundation funded project (Project no. 2020M670881), City University of Hong Kong Strategic Research Grant (SRG) (Grant no. 7005505), and City University of Hong Kong Donation Research Grant (Grant no. DON-RMG 9229021).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: YS, SWa. Methodology: YS, QL. Formal analysis and investigation: SWa, SWe, XZ. Writing-original draft preparation: SWa. Writing-review and editing: PKC. Funding acquisition: CL. Resources: TL, JL. Validation: WL.

Corresponding author

Correspondence to Chao Liu.

Ethics declarations

Competing Interests

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Wang, S., Liu, Q. et al. Au-MgF2-Coated Photonic Crystal Fiber Surface Plasmon Resonance Sensor with High FOM. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02228-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02228-1

Keywords

Navigation