Skip to main content
Log in

Highly Sensitive Dual-core Photonic Crystal Fiber Based on a Surface Plasmon Resonance Sensor with Gold Film

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A highly sensitive surface plasmon resonance (SPR) sensor comprising a dual-core photonic crystal fiber (PCF) is designed to detect minute changes in analyte refractive indices (RIs) between 1.33 and 1.42. In order to simplify the fabrication process and analytical protocol, a gold film is deposited on the external surface of the fiber to excite surface plasmon polaritons (SPPs). The larger diameter air holes are used in the photonic crystal fiber (PCF) cladding, which not only simplifies the actual production, but also makes the energy of the core more concentrated, and can more fully generate surface plasmon resonance with surface plasmon polaritons (SPPs). The dual-core PCF-SPR sensor is analyzed by the finite-element method (FEM), and the various structural parameters are investigated systematically and optimized. The optimized PCF-SPR sensor shows a maximum wavelength sensitivity of 29,500 nm/RIU and resolution of 3.39 × 10−6 RIU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chu S, Nakkeeran K, Abobaker AM et al (2020) A surface plasmon resonance bio-sensor based on dual core D-shaped photonic crystal fibre embedded with silver nanowires for multi-sensing. IEEE Sens J 21(1):76–84

    Article  Google Scholar 

  2. Wang FM et al (2018) A high-sensitivity photonic crystal fiber (PCF) based on the surface plasmon resonance (SPR) biosensor for detection of density alteration in non-physiological cells (DANCE). Opto-Electron 26:50–56

    Article  Google Scholar 

  3. An G, Li S et al (2016) High-sensitivity and tunable refractive index sensor based on dual-core photonic crystal fiber. J Opt Soc Am B 33(7):1330–1334

    Article  Google Scholar 

  4. Gupta A, Singh H, Singh A et al (2020) D-shaped photonic crystal fiber-based surface plasmon resonance biosensors with spatially distributed bimetallic layers. Plasmonics 15(1–2):1323–1330

    Article  CAS  Google Scholar 

  5. Wang XX, Zhu JK et al (2019) A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer. Chinese Phys B 28:044201

  6. Wang YY, Chen ZQ et al (2020) Triple-band perfect metamaterial absorber with good operating angle polarization tolerance based on split ring arrays. Results Phys 16:102951

  7. Tong K, Wang FC et al (2018) D-shaped photonic crystal fiber biosensor based on silver-graphene. Optik 168:467–474

    Article  CAS  Google Scholar 

  8. Jamali AA, Witzigmann B (2014) Plasmonic perfect absorbers for biosensing applications. Plasmonics 9(6):1265–1270

    Article  CAS  Google Scholar 

  9. Haque E, Mahmuda S, Hossain MA et al (2019) Highly sensitive dual-core PCF based plasmonic refractive index sensor for low refractive index detection. IEEE Photon J 11:1–9

    Article  Google Scholar 

  10. Rodrigues PE, Lima AMN, Oliveira LC et al (2018) Surface plasmon resonance features of corrugated gold films: wavelength interrogation mode for exhaled gas detection. J Phys Conf Ser 1044(1):012062

  11. Rifat AA, Ahmed R, Yetisen AK et al (2016) Photonic crystal fiber based plasmonic sensors. Sens Actuators B Chem 243:311–325

    Article  Google Scholar 

  12. Dash JN, Jha R (2016) Highly sensitive side-polished birefringent PCF-based SPR sensor in near IR. Plasmonics 11(6):1505–1509

    Article  CAS  Google Scholar 

  13. Islam MS, Cordeiro CMB, Sultana J et al (2019) A Hi-Bi ultra-sensitive surface plasmon resonance fber sensor. IEEE Access 7:79085–79094

    Article  Google Scholar 

  14. Chakma S, Khalek MA, Paul BK, Ahmed K et al (2018) Gold-coated photonic crystal fiber biosensor based on surface plasmon resonance: design and analysis. Sens Bio-Sens Res 18:7–12

    Article  Google Scholar 

  15. Chen X, Xia L, Li C (2018) Surface plasmon resonance sensor based on a novel D-shaped photonic crystal fiber for low refractive index detection. IEEE Photon J 10(1):1–9

    Google Scholar 

  16. Rifat A, Mahdiraji G, Chow D et al (2015) Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core. Sensors 15(5):11499–11510

    Article  CAS  Google Scholar 

  17. Rifat AA, Mahdiraji GA, Sua YM et al (2016) Highly sensitive multi-core fat fiber surface plasmon resonance refractive index sensor. Opt Express 24(3):2485–2495

    Article  CAS  Google Scholar 

  18. Monfared YE (2020) Refractive index sensor based on surface plasmon resonance excitation in a D-shaped photonic crystal fber coated by titanium nitride. Plasmonics 15:535–542

    Article  Google Scholar 

  19. Liu M, Yang X, Zhao B et al (2017) Square array photonic crystal fiber based surface plasmon resonance refractive index sensor. Mod Phys Lett B 31(1):1750352

    Article  CAS  Google Scholar 

  20. Chakma S,  Khalek MA,  Paul BK, et al (2018) Gold-coated photonic crystal fiber biosensor based on surface plasmon resonance: Design and analysis[J]. Sensing and Bio-Sensing Research S2214-1804(17)30206-4.

    Google Scholar 

  21. Kaur V, Singh S (2019) Design of titanium nitride coated PCF-SPR sensor for liquid sensing applications. Opt Fiber Technol 48:159–164

    Article  CAS  Google Scholar 

  22. Revathi AA, Rajeswari D (2020) Surface plasmon resonance biosensor-based dual-core photonic crystal fiber: design and analysis. J Opt 49(2):163–167

  23. Liu C, Yang L, Su W et al (2017) Numerical analysis of a photonic crystal fiber based on a surface plasmon resonance sensor with an annular analyte channel. Opt Commun 382:162–166

    Article  CAS  Google Scholar 

  24. Fan ZK, Li SG, Liu Q et al (2015) High sensitivity of refractive index sensor based on analyte-filled photonic crystal fiber with surface plasmon resonance. IEEE Photon J 7:1–9

    Article  Google Scholar 

  25. Jiao SX, Gu SF, Fang HR et al (2019) Analysis of dual-core photonic crystal fiber based on surface plasmon resonance sensor with segmented silver film. Plasmonics 14:685–693

    Article  CAS  Google Scholar 

  26. An G, Hao X, Li S et al (2017) D-shaped photonic crystal fiber refractive index sensor based on surface plasmon resonance. Appl Opt 56(24):6988–6992

    Article  CAS  Google Scholar 

  27. Liu C, Wang F, Lv J, Sun T, Liu Q, Mu H, Chu PK (2015) Design and theoretical analysis of a photonic crystal fiber based on surface plasmon resonance sensing. J Nanophoton 9(1):093050

  28. Akowuah EK, Gorman T, Ademgil H et al (2012) Numerical analysis of a photonic crystal fiber for biosensing applications. IEEE J Quantum Electron 48(11):1403–1410

    Article  CAS  Google Scholar 

  29. Liu C, Fu GL, Wang FM et al (2019) Ex-centric core photonic crystal fiber sensor with gold nanowires based on surface plasmon resonance. Optik 196:163173

  30. Wang F, Sun Z, Liu C, Sun T, Chu PK (2017) A highly sensitive dual-core photonic crystal fiber based on a surface plasmon resonance biosensor with silver-graphene layer. Plasmonics 12(6):1847–1853

    Article  Google Scholar 

  31. Yan B, Wang AR, Liu EX et al (2018) Polarization filtering in the visible wavelength range using surface plasmon resonance and a sunflower-type photonic quasi-crystal fiber. J Phys D Appl Phys 51:155105

  32. Liu C, Wang J, Wang F et al (2020) Surface plasmon resonance (SPR) infrared sensor based on D-shape photonic crystal fibers with ITO coatings. Opt Commun 464:125496

  33. Haque E, Hossain MA, Ahmed F, Namihira Y (2018) Surface plasmon resonance sensor based on modified D-shaped photonic crystal fiber for wider range of refractive index detection. IEEE Sens J 18(20):8287–8293

    Article  CAS  Google Scholar 

  34. Yang XC, Lu Y, Liu BL, Yao JQ (2016) Analysis of graphene-based photonic crystal fiber sensor using birefringence and surface plasmon resonance. Plasmonics 12:1–8

    CAS  Google Scholar 

  35. Chu S, Nakkeeran K, Abobaker AM et al (2019) Design and analysis of surface-plasmon-resonance based photonic quasi-crystal fiber biosensor for high-refractive-index liquid analytes. IEEE J Sel Top Quantum Electron 25(2):1–9

    Article  Google Scholar 

  36. Paul AK, Sarkar AK, Khaleque A (2019) Dual-core photonic crystal fiber plasmonic refractive index sensor: A numerical analysis. Photon Sens 9:151–161

    Article  CAS  Google Scholar 

  37. Islam M et al (2018) Dual-polarized highly sensitive plasmonic sensor in the visible to near-IR spectrum. Opt Express 26:30347–30361

    Article  CAS  Google Scholar 

  38. Rifat AA, Mahdiraji GA et al (2016) Copper-graphene-based photonic crystal fiber plasmonic biosensor. IEEE Photon J 8:2510632

  39. Zhang FL, Li C, Fan YC et al (2019) Phase-modulated scattering manipulation for exterior cloaking in metal-dielectric hybrid metamaterials. Adv Mater 31:1903206

    Article  Google Scholar 

  40. Gupta M, Srivastava YK, Manjappa M, Singh R (2017) Sensing with toroidal metamaterial. Appl Phys Lett 110:121108

  41. Yang RS, Xu J, Shen NH et al (2021) Subwavelength optical localization with toroidal excitations in plasmonic and Mie metamaterials. InfoMat 3:577–597

    Article  CAS  Google Scholar 

Download references

Funding

This work was jointly supported by the National Natural Science Foundation of China (Grant number 51474069) and City University of Hong Kong Strategic Research Grant (SRG) (Grant number 7005505).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Liu.

Ethics declarations

Ethics Approval

Approved.

Consent to Participate

Approved.

Consent for Publication

Approved.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, M., Yang, L., Lv, J. et al. Highly Sensitive Dual-core Photonic Crystal Fiber Based on a Surface Plasmon Resonance Sensor with Gold Film. Plasmonics 17, 543–550 (2022). https://doi.org/10.1007/s11468-021-01543-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01543-1

Keywords

Navigation