Skip to main content
Log in

Nonlinear Absorption of Cosh-Gaussian Laser Beam in Arrays of Vertically Aligned Carbon Nanotube

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The nonlinear absorption of high power cosh-Gaussian laser beam in arrays of vertically aligned carbon nanotube is theoretically investigated. Herein, the cosh-Gaussian (ChG) laser beam propagates perpendicular to the length of carbon nanotube arrays and is mounted on a planer surface. As the high-power laser beam interacts with the carbon nanotube, the electrons associated with it might be excited, undergo the ionized state, and formed the preformed plasma. By the result, the electron cylinder is displaced with respect to ion cylinder. The laser electric field produces the electrostatic restoration force due to the excursion of electrons with respect to ions. This restoration force causes to arise of nonlinearity. An analytical expression of effective nonlinear absorption coefficient of the cosh-Gaussian laser beam is derived. The absorption coefficient is resonantly enhanced as the laser beam frequency approaches near the surface plasmons frequency \(\omega \sim {\omega }_{\mathrm{pe}}/\sqrt{2}\). The presence of collisional frequency between electrons and ions leads to strengthen the absorption process. The laser beam decentered parameter associated with hyperbolic cosine term is a sensitive and effective parameter. This parameter much affects the effective absorption coefficient. The graphical results reveal that the absorption coefficient is strongly dependent on laser beam parameters and carbon nanotube array parameters. This enhanced and tunable absorption process of the cosh-Gaussian laser beam might be applicable in electron heating, self-focusing, and high harmonic generation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Availability of Data and Material

The data that supports the findings of this study are available within this article.

Code Availability

Not applicable.

References

  1. Beaudry G, Martineau J (1973) Plasma heating by beating of two laser beams. Phys Lett A 43:331–332

    Article  ADS  Google Scholar 

  2. Varma A, Kumar A (2022) Electron Bernstein wave aided heating of collisional nanocluster plasma by nonlinear interactions of two super-Gaussian laser beams. Laser Phys 32:016001

    Article  ADS  CAS  Google Scholar 

  3. Kumar A, Kumar A, Mishra SP, Yadav MS, Varma A (2022) Plasma wave aided heating of collisional nanocluster plasma by nonlinear interaction of two high power laser beams. Opt Quant Electron 54:753

    Article  Google Scholar 

  4. Varma A, Kumar A (2021) Electron Bernstein wave excitation and heating by nonlinear interactions of Laguerre and Hermite Gaussian laser beams in a magnetized plasma. Optik 228:166212

    Article  ADS  CAS  Google Scholar 

  5. Siahmazgi RN, Jafari S (2021) Soft X-ray emission from an anharmonic collisional nanoplasma by a laser–nanocluster interaction. J Plasma Phys 87:905870312

    Article  Google Scholar 

  6. Siahmazgi RN, Jafari S (2020) Tunable terahertz radiation generation using the beating of two super-Gaussian laser beams in the collisional nanocluster plasma. Journal of the Optical Society of America B 37:3296–3302

    Article  ADS  CAS  Google Scholar 

  7. Jeet R, Kumar A, Kumar A, Babu S, Varma A (2021) Acceleration of electrons by a lower hybrid wave in a magnetic mirror. J Korean Phys Soc 78:1179–1184

    Article  CAS  Google Scholar 

  8. Varma A, Kumar A (2021) Electron Bernstein wave excitation by beating of two copropagating super-Gaussian laser beam in a collisional nanocluster plasma. Optik 240:166872

    Article  ADS  CAS  Google Scholar 

  9. Iqbal T, Maryam I, Masood A, Tehseen A, Afsheen A, Qureshi MT, Hameed RSA, Mohamed D, Elaimi MA, Soliman MS (2022) Theoretical study of excitation of surface plasmon polaritons using silver metal. Plasmonics 17:1857–1867

    Article  CAS  Google Scholar 

  10. Shahid MU, Ghaffar A, Naz MY, Bhatti HN (2023) Electromagnetic waves in graphene-coated partially filled chiroplasma cylindrical waveguide. Plasmonics 18. https://doi.org/10.1007/s11468-023-01915-9

  11. Patil SD, Takale MV, Fulari VJ, Gupta DN, Suk H (2013) Combined effect of ponderomotive and relativistic self-focusing on laser beam propagation in a plasma. Appl Phys B 111:1–6

    Article  ADS  CAS  Google Scholar 

  12. Tyagi Y, Tripathi D, Kumar A (2016) Bernstein wave aided laser third harmonic generation in a plasma. Phys Plasmas 23:093115

    Article  ADS  Google Scholar 

  13. Tyagi Y, Tripathi D, Walia K (2017) Laser second harmonic generation in a magnetoplasma assisted by an electrostatic wave. Phys Plasmas 24:043104

    Article  ADS  Google Scholar 

  14. Babu S, Patel RJ, Kumar A, Kumar A, Varma A (2022) Parametric instability of an X-mode laser off a lower hybrid wave. Iranian journal of science and technology transaction A science 46:1719–1726

    Article  MathSciNet  Google Scholar 

  15. Babu S, Patel RJ, Kumar A, Kumar A, Varma A (2022) Decay instability of X-mode laser in a magnetized plasma embedded with clusters. Opt Quant Electron 55:119

    Article  Google Scholar 

  16. Hadi AJ, Nayef UM, Jabir MS, Mutlak FAH (2023) Laser-ablated tin dioxide nanoparticle synthesis for enhanced biomedical applications. Plasmonics 18. https://doi.org/10.1007/s11468-023-01888-9

  17. Hasan S, Khashan KS, Hadi AA (2023) Laser-induced synthesis of palladium @ silver core–shell NPs as an effective antibacterial agent. Plasmonics 18:689–699

    Article  CAS  Google Scholar 

  18. Ditmire T, Smith RA, Tisch JWG, Hutchinson MHR (1997) High intensity laser absorption by gases of atomic clusters. Phys Rev Lett 78:3121

    Article  ADS  CAS  Google Scholar 

  19. Kumar G, Tripathi VK (2007) Anomalous absorption of surface plasma wave by particles adsorbed on metal surface. Appl Phys Lett 91:161503

    Article  ADS  Google Scholar 

  20. Yadav M, Mandal S, Kumar A (2019) Nonlinear absorption and harmonic generation of laser in an assembly of CNT’s. Phys Plasmas 26:073110

    Article  ADS  Google Scholar 

  21. Ahmad A, Tripathi VK (2006) Nonlinear absorption of femtosecond laser on a metal surface embedded by metallic nanoparticles. Appl Phys Lett 89:153112

    Article  ADS  Google Scholar 

  22. Yadav M, Mandal S, Kumar A (2020) Nonlinear laser absorption on metal surfaces embedded with metallic nanoparticles and nanotubes. Phys Plasmas 27:043302

    Article  ADS  CAS  Google Scholar 

  23. Simon M, Chauhan P (2023) Nonlinear laser absorption on metal surface embedded with nanoparticles in the presence of external magnetic field. Phys Scr 98:065524

    Article  ADS  Google Scholar 

  24. Kumar M, Tripathi VK (2013) Nonlinear absorption and harmonic generation of laser in a gas with anharmonic clusters. Phys Plasmas 20:023302

    Article  ADS  Google Scholar 

  25. Kumar A (2012) Effect of nonlinear absorption on self-focusing of short laser pulse in a plasma. Phys Plasmas 19:063101

    Article  ADS  Google Scholar 

  26. Mulser P, Kanapathipillai M, Hoffmann DHH (2005) Two very efficient nonlinear laser absorption mechanisms in clusters. Phys Rev Lett 95:103401

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Rajouria SK, Kumar KKM, Tripathi VK (2013) Nonlinear resonance absorption of laser in an inhomogeneous plasma. Phys Plasmas 20:083112

    Article  ADS  Google Scholar 

  28. Liu CS, Parashar J (2007) Laser self-focusing and nonlinear absorption in expanding clusters. IEEE Trans Plasma Sci 35:1089–1097

    Article  ADS  Google Scholar 

  29. Kartashov DV, Kirsanov AV, Kiselev AM, Stepanov AN, Bochkarev NN, Ponomarev YN, Tikhomirov BA (2006) Nonlinear absorption of intense femtosecond laser radiation in air. Opt Express 14:7552–7558

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Jiang LJ, Maruo S, Osellame R, Xiong W, Campbell JH, Lu YF (2016) Femtosecond laser direct writing in transparent materials based on nonlinear absorption. MRS Bull 41:975–983

    Article  ADS  CAS  Google Scholar 

  31. Gupta N, Singh N, Singh A (2015) Second harmonic generation of q-Gaussian laser beam in preformed collisional plasma channel with nonlinear absorption. Phys Plasmas 22:113106

    Article  ADS  Google Scholar 

  32. Kanapathipillai M (2006) Nonlinear absorption of ultra short laser pulses by clusters. Laser Part Beams 24:9–14

    Article  ADS  CAS  Google Scholar 

  33. Gao Y, Wu W, Kong D, Ran L, Chang Q, Ye H (2012) Femtosecond nonlinear absorption of Ag nanoparticles at surface plasmon resonance. Physica E 45:162–165

    Article  ADS  CAS  Google Scholar 

  34. Varma A, Kumar A, Kumar A (2021) Nonlocal theory of excitation of electron Bernstein waves by a relativistic electron beam in plasma with loss-cone distribution of electrons. Braz J Phys 51:661–666

    Article  ADS  Google Scholar 

  35. Kumar A, Tripathi VK (2005) Electron Bernstein wave excitation by counterpropagating electromagnetic waves in a plasma. Phys Plasmas 12:102308

    Article  ADS  Google Scholar 

  36. Varma A, Kumar A (2021) Excitation of lower hybrid wave by counterpropagating cosh Gaussian laser beams in a magnetized plasma. Optik 231:166326

    Article  ADS  CAS  Google Scholar 

  37. Kumar A, Mishra SP, Kumar A, Varma A (2023) Electron Bernstein wave aided cosh-Gaussian laser beam absorption in plasma. Optik 273:170436

    Article  ADS  Google Scholar 

  38. Varma A, Mishra SP, Kumar A, Kumar A (2023) Electron Bernstein wave aided Hermite cosh-Gaussian laser beam absorption in collisional plasma. Laser Phys Lett 20:076001

    Article  ADS  Google Scholar 

  39. Varma A, Kumar A (2021) Electron Bernstein wave aided beat wave of Hermite-cosh-Gaussian laser beam absorption in a collisional nanocluster plasma. Optik 245:167702

    Article  ADS  CAS  Google Scholar 

  40. Kumar A (2015) Anomalous absorption of a lower hybrid wave in a plasma with density fluctuations. Phys Scr 90:065601

    Article  ADS  Google Scholar 

  41. Singh R, Sharma AK (2010) Anomalous absorption of a whistler in rippled density plasma. Phys Scr 82:015503

    Article  ADS  Google Scholar 

  42. Sharma A, Verma MP, Sodha MS (2004) Self-focusing of electromagnetic beams in collisional plasmas with nonlinear absorption. Phys Plasmas 11:4275

    Article  ADS  CAS  Google Scholar 

  43. Myatt J, Pesme D, Hüller S, Maximov A, Rozmus W, Capjack CE (2001) Nonlinear propagation of a randomized laser beam through an expanding plasma. Phys Rev Lett 87:255003

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Kargarian A, Hajisharifi K, Mehdian H (2016) Nonlinear absorption of short intense laser pulse in multispecies plasma. Phys Plasmas 23:082116

    Article  ADS  Google Scholar 

  45. Sharifian M, Ghoveisi F, Farrashbandi NF (2017) Inverse Bremsstrahlung absorption in under-dense plasma with Kappa distributed electrons. AIP Adv 7:055107

    Article  ADS  Google Scholar 

  46. Kumar A, Mishra SP, Kumar S, Kumar A, Varma A (2023) Excitation of electron Bernstein wave by nonlinear interaction of two copropagating Hermite-Gaussian laser beams in collisional plasma with static magnetic field. Opt Quant Electron 55:598

    Article  Google Scholar 

  47. Kumar A, Kumar A, Varma A (2021) Excitation of electron Bernstein waves by beating of two cosh-Gaussian laser beams in a collisional plasma. Laser Phys 31:106001

    Article  ADS  CAS  Google Scholar 

  48. Babu S, Jeet R, Kumar A, Kumar A, Varma A (2022) Decay instability of X-mode laser into upper hybrid and electron Bernstein waves in a plasma. Opt Quant Electron 54:710

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. V. K. Tripathi (IIT Delhi), Prof. M. S. Tiwari (Dr. H. S. Gaur University, Sagar) for valuable discussions and suggestion, and Prof. K. N. Uttam (Department of Physics, University of Allahabad, Prayagraj) for discussion in laser. We would like to thank Dr. P. N. Dongre (Principal) of K. N. Govt. P. G. College, Gyanpur-Bhadohi, for providing the research facilities.

Author information

Authors and Affiliations

Authors

Contributions

Ashish Varma developed the theory and write the manuscript. S P Mishra and Arvind Kumar plotted the graphs and analyze the results. Asheel Kumar supervised the whole problem.

Corresponding author

Correspondence to Ashish Varma.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Consent for Publication

The participant has consented to the submission of the case report to the journal.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varma, A., Mishra, S.P., Kumar, A. et al. Nonlinear Absorption of Cosh-Gaussian Laser Beam in Arrays of Vertically Aligned Carbon Nanotube. Plasmonics 19, 505–521 (2024). https://doi.org/10.1007/s11468-023-02001-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-02001-w

Keywords

Navigation