Skip to main content
Log in

Sensitivity Improvement of Bimetallic Layer-Based SPR Biosensor Using ZnO and Black Phosphorus

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, a brand-novel surface plasmon resonance (SPR) biosensor structure built by bimetallic layers (Ag, \({\text{Al}}_{{2}} {\text{O}}_{{3}}\)), zinc oxide (ZnO), and black phosphorus (BP) is proposed. The incident light wave wavelength is 633 nm. The angular sensitivity (S), detection accuracy (DA), the figure of merit (FoM), and electric field strength of the proposed construction and other constructions are numerically investigated and compared. To optimize the sensor’s performance, the influence of the thickness of each layer on the proposed construction’s performance was simulated. The proposed construction utilizes the large surface-to-volume ratio of ZnO along with the high biomolecule adsorption of BP for sensing performance improvement. It is found that the proposed sensing structure’s highest sensitivity of 400 °/RIU, that is 294.75% higher than the conventional silver-based sensor. This sensing structure might provide ideas for the construction of precision detection suited SPR sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of Data and Materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Karki B, Vasudevan B, Uniyal A, Pal A, Srivastava V (2022) Hemoglobin detection in blood samples using a graphene-based surface plasmon resonance biosensor. Optik 270. https://doi.org/10.1016/j.ijleo.2022.169947

  2. Uniyal A, Pal A, Chauhan B (2023) Long-range SPR sensor employing platinum diselenide and cytop nanolayers giving improved performance. Physica B: Condensed Matter 649. https://doi.org/10.1016/j.physb.2022.414487

  3. Uniyal A, Srivastava G, Pal A, Taya S, Muduli A (2023) Recent Advances in Optical Biosensors for Sensing Applications: a Review. Plasmonics 18(2):735–750. https://doi.org/10.1007/s11468-023-01803-2

    Article  CAS  Google Scholar 

  4. Kamal Eddin FB, Fen YW, Omar NAS, Liew JYC, Daniyal W (2021) Femtomolar detection of dopamine using surface plasmon resonance sensor based on chitosan/graphene quantum dots thin film. Spectrochim Acta A Mol Biomol Spectrosc 263. 120202. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/34333400. https://doi.org/10.1016/j.saa.2021.120202

  5. Bouandas H, Chorfi H, Ayadi K (2021) Study of human colorectal Mucosa by SPR biosensor using admittance Loci method. Optik 225. https://doi.org/10.1016/j.ijleo.2020.165809

  6. Akib TBA, Mou SF, Rahman MM, Rana MM, Islam MR, Mehedi IM, Kouzani AZ (2021) Design and numerical analysis of a graphene-coated SPR biosensor for rapid detection of the novel coronavirus. Sensors (Basel), 21(10). Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/34067769. https://doi.org/10.3390/s21103491

  7. Panda A, Pukhrambam PD, Keiser G et al (2020) Performance analysis of graphene-based surface plasmon resonance biosensor for blood glucose and gas detection. Applied Physics A 126(3). https://doi.org/10.1007/s00339-020-3328-8

  8. Nagai H, Tomioka K, Okumura S et al (2019) Optimal conditions for the asymmetric polymerase chain reaction for detecting food pathogenic bacteria using a personal SPR sensor. Appl Biochem Biotechnol 187(1):323–337. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29943274. https://doi.org/10.1007/s12010-018-2819-y

  9. Zhao H, Wang F, Han Z, Cheng P, Ding Z (2023) Research advances on fiber-optic SPR sensors with temperature self-compensation. Sensors (Basel), 23(2). Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/36679440. https://doi.org/10.3390/s23020644

  10. Long S, Wang E, Wu M, Zhu H, Xu N, Wang Y, Cao J (2022) Sensing absorptive fluids with backside illuminated grating coupled SPR sensor fabricated by nanoimprint technology. Sens Actuator A Phys 337

  11. Wang S, Liu N, Cheng Q, Pang B, Lv J (2020) surface plasmon resonance on the antimonene–Fe2O3–copper layer for optical attenuated total reflection spectroscopic application. Plasmonics 16(2):559–566. https://doi.org/10.1007/s11468-020-01309-1

    Article  CAS  Google Scholar 

  12. Singh S, Sharma AK, Lohia P, Dwivedi DK (2022) Ferric oxide and heterostructure BlueP/MoSe2 nanostructure based SPR sensor using magnetic material nickel for sensitivity enhancements. Micro and Nanostructures 163. https://doi.org/10.1016/j.spmi.2021.107126

  13. Rahman MM, Rana MM, Rahman MS, Anower MS, Mollah MA, Paul AK (2020) Sensitivity enhancement of SPR biosensors employing heterostructure of PtSe2 and 2D materials. Opt Mater 107. https://doi.org/10.1016/j.optmat.2020.110123

  14. El barghouti M, Akjouj A Mir A (2022) Performance evaluation of multifunctional SPR bimetallic sensor using hybrid 2D-nanomaterials layers. Optik 269. https://doi.org/10.1016/j.ijleo.2022.169857

  15. Aliqab K, Uniyal A, Srivastava G, Muduli A, Alsharari M, Armghan A (2023) A theoretical analysis of refractive index sensor with improved sensitivity using titanium dioxide, graphene, and antimonene grating: Pseudomonas bacteria detection. Measurement 216. https://doi.org/10.1016/j.measurement.2023.112957

  16. Kumar A, Kumar A, Kushwaha AS, Dubey SK, Srivastava SK (2022) A comparative study of different types of sandwiched structures of SPR biosensor for sensitive detection of ssDNA. Photonics Nanostruct Fundam Appl 48. https://doi.org/10.1016/j.photonics.2021.100984

  17. Nur JN, Hasib MHH, Asrafy F, Shushama KN, Inum R, Rana MM (2019) Improvement of the performance parameters of the surface plasmon resonance biosensor using Al2O3 and WS2. Opt Quantum Electron 51(6). https://doi.org/10.1007/s11082-019-1886-9

  18. Singh MK, Pal S, Verma A, Mishra V, Prajapati YK (2021) Sensitivity enhancement using anisotropic black phosphorus and antimonene in bi-metal layer-based surface plasmon resonance biosensor. Superlattices and Microstructures 156. https://doi.org/10.1016/j.spmi.2021.106969

  19. Maheswari P, Subanya S, Nisha A, Ravi V, Rajesh KB, Jha R (2021) Sensitivity enhancement of SPR sensor using Ni/ZnO nanocomposite assisted with graphene. Opt Quantum Electron 53(12). https://doi.org/10.1007/s11082-021-03379-9

  20. Singh S, Mishra SK, Gupta BD (2013) Sensitivity enhancement of a surface plasmon resonance based fibre optic refractive index sensor utilizing an additional layer of oxides. Sens Actuator A Phys 193:136–140

    Article  CAS  Google Scholar 

  21. Kumar R, Pal S, Prajapati YK, Kumar S, Saini JP (2022) Sensitivity improvement of a MXene- immobilized SPR sensor with Ga-doped-ZnO for biomolecules detection. IEEE Sens J 22(7):6536–6543. https://doi.org/10.1109/jsen.2022.3154099

    Article  CAS  Google Scholar 

  22. Mostufa S, Paul AK, Chakrabarti K et al (2021) Detection of hemoglobin in blood and urine glucose level samples using graphene-coated SPR based bio-sensor. OSA Continuum

  23. Vasimalla Y, Pradhan HS (2022) Modeling of a novel SCHOTT B270 prism based SPR sensor using Ag-Si-BP/MXene structure for detection of specific biological samples. Opt Quantum Electron 54(10). https://doi.org/10.1007/s11082-022-04022-x

  24. Karki B, Uniyal A, Srivastava G, Pal A, Wu Q (2023) Black phosphorous and cytop nanofilm-based long-range SPR sensor with enhanced quality factor. J Sens 1–10. https://doi.org/10.1155/2023/2102915

  25. Verma A, Sharma AK, Prajapati YK (2021) On the sensing performance enhancement in SPR-based Biosensor using specific two-dimensional materials (Borophene and Antimonene). Opt Mater 119. https://doi.org/10.1016/j.optmat.2021.111355

  26. Cho SY, Lee Y, Koh HJ, Jung H, Kim JS, Yoo HW, Jung HT (2016) Superior chemical sensing performance of black phosphorus: comparison with MoS2and graphene. Adv Mater.

  27. Vasimalla Y, Pradhan HS, Pandya RJ et al (2021) Sensitivity enhancement of the SPR biosensor for Pseudomonas bacterial detection employing a silicon-barium titanate structure. Appl Opt 60(19):5588–5598. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/34263849. https://doi.org/10.1364/AO.427499

  28. Vasimalla Y, Pradhan HS (2021) A highly performed SPR biosensor based on bismuth ferrite-bromide materials-BP/graphene hybrid structure. Opt Quantum Electron 53(12). https://doi.org/10.1007/s11082-021-03347-3

  29. Uniyal A, Pal A, Chauhan B et al (2023) Long-range SPR sensor employing platinum diselenide and cytop nanolayers giving improved performance. Physica B: Condensed Matter 649. https://doi.org/10.1016/j.physb.2022.414487

  30. Feng Y, Liu Y, Teng J (2018) Design of an ultrasensitive SPR biosensor based on a graphene-MoS(2) hybrid structure with a MgF(2) prism. Appl Opt 57(14):3639–3644. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29791325. https://doi.org/10.1364/AO.57.003639

  31. Darenfad W, Guermat N, Mirouh K et al (2023) Thoughtful investigation of ZnO doped Mg and co-doped Mg/Mn, Mg/Mn/F thin films: A first study. J Mol Struct 1286. https://doi.org/10.1016/j.molstruc.2023.135574

  32. Łapiński M, Kozioł R, Syty P, Patela S, Sienkiewicz JE, Sadowski W, Kościelska B (2023) Tuning of the plasmon resonance location in Au nanostructures coated with a ultrathin film of Al2O3 – Optical measurements and FDTD simulations. Surf Sci 733. https://doi.org/10.1016/j.susc.2023.122289

  33. Zhang J, Reif J, Strobel C, Chava P, Erbe A, Voigt A, Kirchner R (2023) Dry release of MEMS origami using thin Al2O3 films for facet-based device integration. Micro and Nano Engineering 19. https://doi.org/10.1016/j.mne.2023.100179

  34. Agarwal S, Giri P, Prajapati YK, Chakrabarti P (2016) Effect of surface roughness on the performance of optical SPR sensor for sucrose detection: fabrication, characterization, and simulation study. IEEE Sens J 16(24):8865–8873. https://doi.org/10.1109/jsen.2016.2615110

    Article  CAS  Google Scholar 

  35. Gahlot APS, Paliwal A, Kapoor A (2022) Theoretical and experimental investigation on SPR gas sensor based on ZnO/polypyrrole interface for ammonia sensing applications. Plasmonics 17(4):1619–1632. https://doi.org/10.1007/s11468-022-01648-1

    Article  CAS  Google Scholar 

  36. Maurya JB, Prajapati YK (2020) Experimental demonstration of DNA hybridization using graphene based plasmonic sensor chip. J Light Technol 38(18):5191–5198. https://doi.org/10.1109/jlt.2020.2998138

    Article  CAS  Google Scholar 

  37. Shivangani Lohia P, Singh PK, Singh S, Dwivedi DK (2022) Design and modeling of reconfigurable surface plasmon resonance refractive index sensor using Al2O3, nickel, and heterostructure BlueP/WSe2 nanofilms. J Opt. https://doi.org/10.1007/s12596-022-00973-2

    Article  Google Scholar 

  38. Mei GS, Menon PS, Hegde G (2020) ZnO for performance enhancement of surface plasmon resonance biosensor: a review. Mater Res Express 7(1) 012003 (012016pp)

  39. Cai Y, Zhang G, Zhang YW (2014) Layer-dependent Band Alignment and Work Function of Few-Layer Phosphorene. Rep 4:6677

    CAS  Google Scholar 

  40. Lin Z, Chen S, Lin C et al (2020) Sensitivity improvement of a surface plasmon resonance sensor based on two-dimensional materials hybrid structure in visible region: a theoretical study. Sensors (Basel), 20(9). Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/32344827. https://doi.org/10.3390/s20092445

  41. Gupta BD, Sharma AK (2005) Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study. Sens Actuators B Chem 107(1):40–46

    Article  CAS  Google Scholar 

  42. Sharma Anuj K (2018) Analyzing the application of silicon-silver-2D nanomaterial-Al2O3 heterojunction in plasmonic sensor and its performance evaluation. Opt Commun 410:75–82

    Article  Google Scholar 

  43. Kumar Rajeev Kushwaha Angad S, Srivastava S (2018) Enhancement in sensitivity of graphene-based zinc oxide assisted bimetallic surface plasmon resonance (SPR) biosensor. Appl Phys A Mater Sci Process 124(3)

  44. Yesudasu V, Singh L, Pradhan HS, Kumar R, Belwal P (2022) Bimetallic-based SPR sensor for cancerous cell detection employing SnSe allotrope and tungsten disulfide. Hybrid Advances 1. https://doi.org/10.1016/j.hybadv.2022.100005

  45. Pal S, Verma A, Prajapati YK, Saini JP (2020) Sensitive detection using heterostructure of black phosphorus, transition metal di-chalcogenides and MXene in SPR sensor. Applied Physics A 126(10). https://doi.org/10.1007/s00339-020-03998-1

Download references

Funding

This work is partially supported by the National Natural Science Foundation of China (NSFC) (61771419), Hebei Province Natural Science Foundation (F2017203220) and Hebei Province Innovation Foundation for Postgraduate (CXZZSS2020051).

Author information

Authors and Affiliations

Authors

Contributions

Shutao Wang: conceptualization, writing—review and editing, supervision. Jinqing Zhang: conceptualization, methodology, software, writing—original draft. Na Liu: writing—review and editing. Jincong Wan: investigation, writing—review and editing.

Corresponding author

Correspondence to Jinqing Zhang.

Ethics declarations

Ethics Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Zhang, J., Liu, N. et al. Sensitivity Improvement of Bimetallic Layer-Based SPR Biosensor Using ZnO and Black Phosphorus. Plasmonics 18, 1873–1883 (2023). https://doi.org/10.1007/s11468-023-01889-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01889-8

Keywords

Navigation