Skip to main content

Advertisement

Log in

Recent Advances in Optical Biosensors for Sensing Applications: a Review

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Merging engineering with medical science and adopting artificial intelligence to get further exact results specifically for preventive health care has made it challenging to detect the concentration or presence of biological analytes. The basic building blocks of such a system require recognition of an analyte, producing a signal that must be passed through a signal conditioning unit, and, finally, a detector that recognizes the specific analyte. The detection extends to the sensing of bacteria, tumor cells, tumor biomarkers, toxins, drugs, and other biomarkers with admirable accuracy with sensitivity. In optical biosensors, most commonly, it is the fluorescence technique. It measures the intensity, decay time, quenching efficiency, anisotropy, and quenching. Use plain sensor stripes, optical waveguide systems, arrays, and capillary-based technical sensors. This paper deals with the study of available optical biosensors, mentioning their working principle, merits, demerits, and application. The prime focus of this current study is the most widely used surface plasmon resonance (SPR) relied optical biosensors, including SPR imaging, and magneto-optical surface plasmon resonance. With this, some other optical biosensors are discussed, like evanescent wave fiber optic biosensor, evanescent wave fluorescence, and colorimetric polymerase chain reaction–based biosensor, as well as interferometric, ellipsometric, surface-enhanced Raman scattering biosensors, and Photonic crystal fiber sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

No data available.

References

  1. Bhalla N, Jolly P, Formisano N, Estrela P (2016) Introduction to biosensors. Essays Biochem 60(1):1–8. https://doi.org/10.1042/EBC20150001

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dey D, Goswami T (2011) Optical biosensors : a revolution towards quantum nanoscale electronics device fabrication. J Biomed Biotechnol 2011. https://doi.org/10.1155/2011/348218

  3. Schasfoort RB (ed) (2017) Handbook of surface plasmon resonance. R Soc Chem

  4. Suzuki M, Ohshima T, Hane S, Iribe Y, Tobita T (2007) Multiscale 2D-SPR biosensing for cell chips. J Robot Mechatronics 19(5):519–523. https://doi.org/10.20965/jrm.2007.p0519

  5. Choi Y, Kwak H, Hong S (2014) Quantification of arsenic(III) in aqueous media using a novel hybrid platform comprised of radially porous silica particles and a gold thin film. Anal Methods 6(17):7054–7061. https://doi.org/10.1039/c4ay01297f

    Article  CAS  Google Scholar 

  6. Riedel T, Rodriguez-emmenegger C, Santos ADL, Anna B, Jinoch P, Boltovets PM, Brynda E (2014) Biosensors and bioelectronics diagnosis of Epstein – Barr virus infection in clinical serum samples by an SPR biosensor assay. Biosensors and Bioelectronics J 55:278–284. https://doi.org/10.1016/j.bios.2013.12.011

    Article  CAS  Google Scholar 

  7. Bolduc OR, Pelletier JN, Masson JF (2010) SPR biosensing in crude serum using ultralow fouling binary patterned peptide SAM. Anal Chem 82(9):3699–3706. https://doi.org/10.1021/ac100035s

    Article  CAS  PubMed  Google Scholar 

  8. Darain F, Gan KL, Tjin SC (2009) Antibody immobilization on to polystyrene substrate - on-chip immunoassay for horse IgG based on fluorescence. Biomed Microdevices 11(3):653–661. https://doi.org/10.1007/s10544-008-9275-3

    Article  CAS  PubMed  Google Scholar 

  9. Singh S et al (2020) 2D nanomaterial-based surface plasmon resonance sensors for biosensing applications. Micromachines 11(8):1–28. https://doi.org/10.3390/mi11080779

    Article  Google Scholar 

  10. Pal A et al (2020) Prism Based Surface Plasmon Resonance Biosensor for Biomedical Applications. in ICOL-2019, Springer Proceedings in Physics 258, Springer Singapore, pp 1–4

  11. Hammond JL, Bhalla N, Rafiee SD, Estrela P (2014) Localized surface plasmon resonance as a biosensing platform for developing countries. Biosensors 4(2):172–188. https://doi.org/10.3390/bios4020172

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fernández F, Piliarik M, Sanchez-baeza F, Marco M (2010) Biosensors and Bioelectronics A label-free and portable multichannel surface plasmon resonance immunosensor for on site analysis of antibiotics in milk samples. Biosens Bioelectron 26(4):1231–1238. https://doi.org/10.1016/j.bios.2010.06.012

    Article  CAS  PubMed  Google Scholar 

  13. Wadkins RM, Golden JP, Pritsiolas LM, Ligler FS (1998) Detection of multiple toxic agents using a planar array immunosensor. Biosens Bioelectron 13(3–4):407–415. https://doi.org/10.1016/S0956-5663(97)00113-9

    Article  CAS  PubMed  Google Scholar 

  14. Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108(2):462–493. https://doi.org/10.1021/cr068107d

    Article  CAS  PubMed  Google Scholar 

  15. Cao J, Sun T, Grattan KTV (2014) Gold nanorod-based localized surface plasmon resonance biosensors: a review. Sensors Actuators, B Chem 195:332–351. https://doi.org/10.1016/j.snb.2014.01.056

    Article  CAS  Google Scholar 

  16. Mayer KM, Hafner JH (2011) Localized Surface Plasmon Resonance Sensors. Chem Rev 111(6):3828–3857

    Article  CAS  PubMed  Google Scholar 

  17. Estevez MC, Otte MA, Sepulveda B, Lechuga LM (2014) Trends and challenges of refractometric nanoplasmonic biosensors: a review. Anal Chim Acta 806:55–73. https://doi.org/10.1016/j.aca.2013.10.048

    Article  CAS  PubMed  Google Scholar 

  18. Piliarik M, Šípová H, Kvasni P, Galler N, Krenn JR (2012) High-resolution biosensor based on localized surface plasmons. Opt Express 20(1):672–680

    Article  CAS  PubMed  Google Scholar 

  19. Golden JP, Anderson GP, Ogert RA, Breslin KA, Ligler FS (1993) Evanescent-wave fiber optic biosensor: challenges for real-world sensing. Chemical, Biochemical, and Environmental Fiber Sensors IV, SPIE, vol 1796, pp 2–8

  20. Vasilescu A, Nunes G, Hayat A, Latif U, Marty JL (2016) Electrochemical affinity biosensors based on disposable screen-printed electrodes for detection of food allergens. Sensors (Switzerland) 16(11). https://doi.org/10.3390/s16111863

  21. Mar R, Marazuela D, Moreno-bondi C (2002) Fiber-optic biosensors – an overview. Anal Bioanal Chem 372:664–682. https://doi.org/10.1007/s00216-002-1235-9

    Article  CAS  Google Scholar 

  22. Sai VVR, Kundu T, Deshmukh C, Titus S, Kumar P, Mukherji S (2010) Label-free fiber optic biosensor based on evanescent wave absorbance at 280 nm. Sensors Actuators, B Chem 143(2):724–730. https://doi.org/10.1016/j.snb.2009.10.021

    Article  CAS  Google Scholar 

  23. Anderson GP, Taitt CR (2008) Evanescent Wave Fiber Optic Biosensors, Second Edi. Elsevier B.V.

  24. Sapsford K, Taitt CR, Ligler FS (2008) Planar waveguides for fluorescence biosensors. In Optical Biosensors, Elsevier, pp 139–184

  25. Harrick NJ, Beckmann KH (1974) Internal reflection spectroscopy. Springer, US, pp 215–245

  26. Kramer MF, Lim DV (2004) A rapid and automated fiber optic-based biosensor assay for the detection of Salmonella in spent irrigation water used in the sprouting of sprout seeds. J Food Prot 67(1):46–52. https://doi.org/10.4315/0362-028X-67.1.46

    Article  PubMed  Google Scholar 

  27. Valadez AM, Lana CA, Tu SI, Morgan MT, Bhunia AK (2009) Evanescent wave fiber optic biosensor for Salmonella detection in food. Sensors 9(7):5810–5824. https://doi.org/10.3390/s90705810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Homola J (2006) Electromagnetic Theory of Surface Plasmons. Surface plasmon resonance based sensors 3–44. https://doi.org/10.1007/5346_013

  29. Karki B, Vasudevan B, Uniyal A, Pal A, Srivastava V (2022) Hemoglobin detection in blood samples using a graphene-based surface plasmon resonance biosensor. Optik (Stuttg) 270:169947. https://doi.org/10.1016/j.ijleo.2022.169947

  30. Kashyap R et al (2019) Enhanced biosensing activity of bimetallic surface plasmon resonance sensor. Photonics 6(4). https://doi.org/10.3390/photonics6040108

  31. Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377(3):528–539. https://doi.org/10.1007/s00216-003-2101-0

    Article  CAS  PubMed  Google Scholar 

  32. Sun P et al (2019) Sensitivity enhancement of surface plasmon resonance biosensor based on graphene and barium titanate layers. Appl Surf Sci 475:342–347. https://doi.org/10.1016/j.apsusc.2018.12.283

    Article  CAS  Google Scholar 

  33. Shushama KN, Rana MM, Inum R, Hossain MB (2017) Sensitivity enhancement of graphene coated surface plasmon resonance biosensor. Opt Quantum Electron 49(11). https://doi.org/10.1007/s11082-017-1216-z

  34. Wu L et al (2017) Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor. Sensors Actuators, B Chem 249:542–548. https://doi.org/10.1016/j.snb.2017.04.110

    Article  CAS  Google Scholar 

  35. Nguyen HH, Park J, Kang S, Kim M (2015) Surface plasmon resonance: a versatile technique for biosensor applications. Sensors (Switzerland) 15(5):10481–10510. https://doi.org/10.3390/s150510481

    Article  CAS  Google Scholar 

  36. Bin T, Akib A (2022) A performance comparison of heterostructure surface plasmon resonance biosensor for the diagnosis of novel coronavirus SARS-CoV-2. Researchsquare. https://doi.org/10.21203/rs.3.rs-2406894/v1

  37. Li S, Yang M, Zhou W, Johnston TG, Wang R, Zhu J (2015) Dextran hydrogel coated surface plasmon resonance imaging (SPRi) sensor for sensitive and label-free detection of small molecule drugs. Appl Surf Sci 355:570–576. https://doi.org/10.1016/j.apsusc.2015.05.020

    Article  CAS  Google Scholar 

  38. Hayashi G, Hagihara M, Nakatani K (2008) Genotyping by allele-specific l-DNA-tagged PCR. J Biotechnol 135(2):157–160. https://doi.org/10.1016/j.jbiotec.2008.03.011

    Article  CAS  PubMed  Google Scholar 

  39. Lecaruyer P, Mannelli I, Courtois V, Goossens M, Canva M (2006) Surface plasmon resonance imaging as a multidimensional surface characterization instrument-application to biochip genotyping. Anal Chim Acta 573–574:333–340. https://doi.org/10.1016/j.aca.2006.03.003

    Article  CAS  PubMed  Google Scholar 

  40. Yu X, Cao J, Cai Y, Shi T, Li Y (2006) Predicting rRNA-, RNA-, and DNA-binding proteins from primary structure with support vector machines. J Theor Biol 240(2):175–184. https://doi.org/10.1016/j.jtbi.2005.09.018

    Article  CAS  PubMed  Google Scholar 

  41. Rebe Raz S, Liu H, Norde W, Bremer  MGEG (2010) Food allergens profiling with an imaging surface plasmon resonance-based biosensor. Anal Chem 82(20):8485–8491. https://doi.org/10.1021/ac101819g

  42. Yuk JS et al (2006) Analysis of protein interactions on protein arrays by a novel spectral surface plasmon resonance imaging. Biosens Bioelectron 21(8):1521–1528. https://doi.org/10.1016/j.bios.2005.07.009

    Article  CAS  PubMed  Google Scholar 

  43. Antiochia R, Bollella P, Favero G, Mazzei F (2016) Nanotechnology-based surface plasmon resonance affinity biosensors for in vitro diagnostics. Int J Anal Chem 2016. https://doi.org/10.1155/2016/2981931

  44. David S, Polonschii C, Luculescu C, Gheorghiu M, Gáspár S, Gheorghiu E (2015) Magneto-plasmonic biosensor with enhanced analytical response and stability. Biosens Bioelectron 63:525–532. https://doi.org/10.1016/j.bios.2014.08.004

    Article  CAS  PubMed  Google Scholar 

  45. Zvezdin AK, Kotov VA (1997) Modern magnetooptics and magnetooptical materials. CRC Press. https://doi.org/10.1887/075030362x

    Article  Google Scholar 

  46. Regatos D et al (2010) Au/Fe/Au multilayer transducers for magneto-optic surface plasmon resonance sensing. J Appl Phys 108(5). https://doi.org/10.1063/1.3475711

  47. Manera MG et al (2011) Enhanced gas sensing performance of TiO2 functionalized magneto-optical SPR sensors. J Mater Chem 21(40):16049–16056. https://doi.org/10.1039/c1jm11937k

    Article  CAS  Google Scholar 

  48. Manera MG et al (2012) Ethane-bridged Zn porphyrins dimers in langmuir-schäfer thin films: spectroscopic, morphologic, and magneto-optical surface plasmon resonance characterization. J Phys Chem C 116(19):10734–10742. https://doi.org/10.1021/jp3019843

    Article  CAS  Google Scholar 

  49. Rizal C, Belotelov V, Ignatyeva D, Zvezdin AK, Pisana S (2019) Surface plasmon resonance (SPR) to magneto-optic SPR. Condens Matter 4(2):1–7. https://doi.org/10.3390/condmat4020050

    Article  Google Scholar 

  50. Regatos D, Sepúlveda B, Fariña D, Carrascosa LG, Lechuga LM (2011) Suitable combination of noble/ferromagnetic metal multilayers for enhanced magneto-plasmonic biosensing. Opt Express 19(9):8336. https://doi.org/10.1364/oe.19.008336

    Article  CAS  PubMed  Google Scholar 

  51. Bonanni V et al (2011) Designer magnetoplasmonics with nickel nanoferromagnets. Nano Lett 11(12):5333–5338. https://doi.org/10.1021/nl2028443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang L, Du F, Chen G, Yasmeen A, Tang Z (2014) A novel colorimetric PCR-based biosensor for detection and quantification of hepatitis B virus. Anal Chim Acta 840:75–81. https://doi.org/10.1016/j.aca.2014.05.032

    Article  CAS  PubMed  Google Scholar 

  53. Du F, Tang Z (2011) Colorimetric detection of PCR product with dnazymes induced by 5’-nuclease activity of DNA polymerases. ChemBioChem 12(1):43–46. https://doi.org/10.1002/cbic.201000650

    Article  CAS  PubMed  Google Scholar 

  54. Zhao VXT, Wong TI, Zheng XT, Tan YN, Zhou X (2020) Colorimetric biosensors for point-of-care virus detections. Mater Sci Energy Technol 3:237–249. https://doi.org/10.1016/j.mset.2019.10.002

    Article  CAS  PubMed  Google Scholar 

  55. Babu BK, Sharma R (2015) TaqMan real-time PCR assay for the detection and quantification of Sclerospora graminicola, the causal agent of pearl millet downy mildew. Eur J Plant Pathol 142(1):149–158. https://doi.org/10.1007/s10658-015-0599-6

    Article  CAS  Google Scholar 

  56. Cheng K et al (2016) Colorimetric integrated PCR protocol for rapid detection of Vibrio parahaemolyticus. Sensors (Switzerland) 16(10):1–10. https://doi.org/10.3390/s16101600

    Article  CAS  Google Scholar 

  57. Xiao-hong Z, Lan-hua L, Wei-qi X, Bao-dong S, Jian-wu S, Miao H (2014) A reusable evanescent wave immunosensor for highly sensitive detection of bisphenol A in water samples. Sci Rep 4(1):4572. https://doi.org/10.1038/srep04572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chen FL, Fan YJ, Lin JD, Hsiao YC (2019) Label-free, color-indicating, and sensitive biosensors of cholesteric liquid crystals on a single vertically aligned substrate. Biomed Opt Express 10(9):4636. https://doi.org/10.1364/boe.10.004636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Szunerits S, Shalabney A, Boukherroub R, Abdulhalim I (2012) Dielectric coated plasmonic interfaces : their interest for sensitive sensing of analyte-ligand interactions. Rev Anal Chem 31(1):15–28. https://doi.org/10.1515/REVAC.2011.120

  60. Yin K, Wu Y, Wang S, Chen L (2016) A sensitive fluorescent biosensor for the detection of copper ion inspired by biological recognition element pyoverdine. Sensors Actuators, B Chem 232:257–263. https://doi.org/10.1016/j.snb.2016.03.128

    Article  CAS  Google Scholar 

  61. Yildirim N, Long F, Gao C, He M, Shi HC, Gu AZ (2012) Aptamer-based optical biosensor for rapid and sensitive detection of 17β-estradiol in water samples. Environ Sci Technol 46(6):3288–3294. https://doi.org/10.1021/es203624w

    Article  CAS  PubMed  Google Scholar 

  62. Lochhead MJ et al (2011) Rapid multiplexed immunoassay for simultaneous serodiagnosis of HIV-1 and coinfections. J Clin Microbiol 49(10):3584–3590. https://doi.org/10.1128/JCM.00970-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li K et al (2018) Fast and sensitive ellipsometry-based biosensing. Sensors (Switzerland) 18(1). https://doi.org/10.3390/s18010015

  64. Arwin H (1998) Spectroscopic ellipsometry and biology: recent developments and challenges. Thin Solid Films 313–314:764–774. https://doi.org/10.1016/S0040-6090(97)00993-0

    Article  Google Scholar 

  65. Sun H et al (2015) Detection of cytomegalovirus antibodies using a biosensor based on imaging ellipsometry. PLoS ONE 10(8):1–12. https://doi.org/10.1371/journal.pone.0136253

    Article  CAS  Google Scholar 

  66. Elwing H (1998) Protein absorption and ellipsometry in biomaterial research. Biomaterials 19(4–5):397–406. https://doi.org/10.1016/S0142-9612(97)00112-9

    Article  CAS  PubMed  Google Scholar 

  67. Rafique S, Idrees M, Bokhari H, Bhatti AS (2019) Ellipsometric-based novel DNA biosensor for label-free, real-time detection of Bordetella parapertussis. J Biol Phys 45(3):275–291. https://doi.org/10.1007/s10867-019-09528-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fei Y et al (2015) Characterization of receptor binding profiles of influenza a viruses using an ellipsometry-based label-free glycan microarray assay platform. Biomolecules 5(3):1480–1498. https://doi.org/10.3390/biom5031480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kozma P, Kehl F, Ehrentreich E, Stamm C, Bier FF (2014) Integrated planar optical waveguide interferometer biosensors: a comparative review. Biosens Bioelectron 58:287–307. https://doi.org/10.1016/j.bios.2014.02.049

    Article  CAS  PubMed  Google Scholar 

  70. Chen L et al (2020) Ultrahigh-sensitivity label-free optical fiber biosensor based on a tapered singlemode- no core-singlemode coupler for Staphylococcus aureus detection. Sensors Actuators, B Chem 320:128283. https://doi.org/10.1016/j.snb.2020.128283

  71. Zaytseva N, Miller W, Goral V, Hepburn J, Fang Y (2011) Microfluidic resonant waveguide grating biosensor system for whole cell sensing. Appl Phys Lett 98(16):1–4. https://doi.org/10.1063/1.3582611

    Article  CAS  Google Scholar 

  72. Xu J, Suarez D, Gottfried DS (2007) Detection of avian influenza virus using an interferometric biosensor. Anal Bioanal Chem 389(4):1193–1199. https://doi.org/10.1007/s00216-007-1525-3

    Article  CAS  PubMed  Google Scholar 

  73. Liu Y et al (2020) Long-range surface plasmon resonance configuration for enhancing SERS with an adjustable refractive index sample buffer to maintain the symmetry condition. ACS Omega 5(51):32951–32958. https://doi.org/10.1021/acsomega.0c03923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Damborský P, Švitel J, Katrlík J (2016) Optical biosensors. Essays Biochem 60(1):91–100. https://doi.org/10.1042/EBC20150010

    Article  PubMed  PubMed Central  Google Scholar 

  75. Zengin A, Tamer U, Caykara T (2017) SERS detection of hepatitis B virus DNA in a temperature-responsive sandwich-hybridization assay. J Raman Spectrosc 48(5):668–672. https://doi.org/10.1002/jrs.5109

    Article  CAS  Google Scholar 

  76. Zhan L, Zhen SJ, Wan XY, Gao PF, Huang CZ (2016) A sensitive surface-enhanced Raman scattering enzyme-catalyzed immunoassay of respiratory syncytial virus. Talanta 148:308–312. https://doi.org/10.1016/j.talanta.2015.10.081

    Article  CAS  PubMed  Google Scholar 

  77. Neng J, Harpster MH, Wilson WC, Johnson PA (2013) Surface-enhanced Raman scattering (SERS) detection of multiple viral antigens using magnetic capture of SERS-active nanoparticles. Biosens Bioelectron 41(1):316–321. https://doi.org/10.1016/j.bios.2012.08.048

    Article  CAS  PubMed  Google Scholar 

  78. Dinish US, Fu CY, Soh KS, Ramaswamy B, Kumar A, Olivo M (2012) Highly sensitive SERS detection of cancer proteins in low sample volume using hollow core photonic crystal fiber. Biosens Bioelectron 33(1):293–298. https://doi.org/10.1016/j.bios.2011.12.056

    Article  CAS  Google Scholar 

  79. Srivastava SK, Shalabney A, Khalaila I, Grüner C, Rauschenbach B, Abdulhalim I (2014) SERS biosensor using metallic nano-sculptured thin films for the detection of endocrine disrupting compound biomarker vitellogenin. Small 10(17):3579–3587. https://doi.org/10.1002/smll.201303218

    Article  CAS  PubMed  Google Scholar 

  80. Taya SA (2021) Highly sensitive nano-sensor based on a binary photonic crystal for the detection of mycobacterium tuberculosis bacteria. J Mater Sci Mater Electron 32(24):28406–28416. https://doi.org/10.1007/s10854-021-07220-7

    Article  CAS  Google Scholar 

  81. Kumar A, Verma P, Jindal P (2021) Decagonal solid core PCF based refractive index sensor for blood cells detection in terahertz regime. Opt Quantum Electron 53(4). https://doi.org/10.1007/s11082-021-02818-x

  82. Sen S, Abdullah-Al-Shafi M, Kabir MA (2020) Hexagonal photonic crystal Fiber (H-PCF) based optical sensor with high relative sensitivity and low confinement loss for terahertz (THz) regime. Sens Bio-Sensing Res 30:100377. https://doi.org/10.1016/j.sbsr.2020.100377

  83. Nangare S, Patil P (2021) Black phosphorus nanostructure based highly sensitive and selective surface plasmon resonance sensor for biological and chemical sensing: a review. Crit Rev Anal Chem 1–26. https://doi.org/10.1080/10408347.2021.1927669

  84. Kamran M, Faryad M (2019) Plasmonic sensor using a combination of grating and prism couplings 14(3). https://doi.org/10.1007/s11468-018-0859-3

  85. Li S et al (2009) Integrating waveguide biosensor. Methods Mol Biol 503(3):389–401. https://doi.org/10.1007/978-1-60327-567-5_22

    Article  CAS  PubMed  Google Scholar 

  86. Pennacchio A et al (2014) A surface plasmon resonance based biochip for the detection of patulin toxin. Opt Materials 36(10):1670–1675. https://doi.org/10.1016/j.optmat.2013.12.045

    Article  CAS  Google Scholar 

  87. Pimková K, Bocková M (2012) Surface plasmon resonance biosensor for the detection of VEGFR-1 — a protein marker of myelodysplastic syndromes. Anal Bioanal Chem 402:381–387. https://doi.org/10.1007/s00216-011-5395-3

    Article  CAS  PubMed  Google Scholar 

  88. Marchesini GR, Meulenberg E, Haasnoot W, Irth H (2005) Biosensor immunoassays for the detection of bisphenol A. Anal Chim Acta 528(1):37–45. https://doi.org/10.1016/j.aca.2004.06.066

    Article  CAS  Google Scholar 

  89. Wu Y et al (2022) Multiple biomarker simultaneous detection in serum via a nanomaterial-functionalized biosensor for ovarian tumor/cancer diagnosis. Micromachines 13(12). https://doi.org/10.3390/mi13122046

  90. Chang CC, Chiu NF, Lin DS, Chu-Su Y, Liang YH, Lin CW (2010) High-sensitivity detection of carbohydrate antigen 15–3 using a gold/zinc oxide thin film surface plasmon resonance-based biosensor. Anal Chem 82(4):1207–1212. https://doi.org/10.1021/ac901797j

    Article  CAS  PubMed  Google Scholar 

  91. Diculescu VC, Brett AMO (2012) DNA-electrochemical biosensors and oxidative damage to DNA: application to cancer. Biosens Cancer 187–210. https://doi.org/10.1201/b12737-15

  92. Silin V, Weetall H, Vanderah DJ (1997) SPR studies of the nonspecific adsorption kinetics of human IgG and BSA on gold surfaces modified by self-assembled monolayers (SAMs). J Colloid Interface Sci 185(1):94–103. https://doi.org/10.1006/jcis.1996.4586

    Article  CAS  PubMed  Google Scholar 

  93. Endo T et al (2006) Multiple Label-Free Detection of Antigen - Antibody Reaction Using Localized Surface Plasmon Resonance-Based Core - Shell Structured Nanoparticle Layer Nanochip. Anal Chem 78(18):6465–6475

    Article  CAS  PubMed  Google Scholar 

  94. Yuan J, Duan R, Yang H, Luo X, Xi M (2012) Detection of serum human epididymis secretory protein 4 in patients with ovarian cancer using a label-free biosensor based on localized surface plasmon resonance. Int J Nanomed 7:2921–2928. https://doi.org/10.2147/IJN.S32641

    Article  CAS  Google Scholar 

  95. Lee J, Kim B, Oh B, Choi J (2013) Highly sensitive localized surface plasmon resonance immunosensor for label-free detection of HIV-1. Nanomedicine 9(7):1018–1026. https://doi.org/10.1016/j.nano.2013.03.005

    Article  CAS  PubMed  Google Scholar 

  96. Li S et al (2009) Integrating waveguide biosensor. In: Rasooly A, Herold KE In Biosensors and Biodetection. Methods in Molecular Biology™, vol 503. Humana Press. https://doi.org/10.1007/978-1-60327-567-5_22

  97. Jia K, Eltzov E, Toury T, Marks RS, Ionescu RE (2012) A lower limit of detection for atrazine was obtained using bioluminescent reporter bacteria via a lower incubation temperature. Ecotoxicol Environ Saf 84:221–226. https://doi.org/10.1016/j.ecoenv.2012.07.009

    Article  CAS  PubMed  Google Scholar 

  98. Zhang Y, Chen Y, Jin G (2011) Sensors and actuators B : chemical serum tumor marker detection on PEGylated lipid membrane using biosensor based on total internal reflection imaging ellipsometry. Sensors Actuators B Chem 159(1):121–125. https://doi.org/10.1016/j.snb.2011.06.059

    Article  CAS  Google Scholar 

  99. Huang C, Chen Y, Wang C, Zhu W, Ma H, Jin G (2011) Detection of alpha-fetoprotein through biological signal amplification by biosensor based on imaging ellipsometry. Thin Solid Films 519(9):2763–2767. https://doi.org/10.1016/j.tsf.2010.11.064

    Article  CAS  Google Scholar 

  100. Rau S, Hilbig U, Gauglitz G (2014) Label-free optical biosensor for detection and quantification of the non-steroidal anti-inflammatory drug diclofenac in milk without any sample pretreatment. Anal Bioanal Chem 406(14):3377–3386. https://doi.org/10.1007/s00216-014-7755-2

    Article  CAS  PubMed  Google Scholar 

  101. Kumeria T, Kurkuri MD, Diener KR, Parkinson L, Losic D (2012) Biosensors and bioelectronics label-free reflectometric interference microchip biosensor based on nanoporous alumina for detection of circulating tumour cells. Biosens Bioelectron 35(1):167–173. https://doi.org/10.1016/j.bios.2012.02.038

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, A.U., G.S., A.P., S.T., and A.M.; investigation, A.U., G.S., and A.P.; writing—original draft preparation, A.U. and A.P.; writing—review and editing, S.T. and A.M.; visualization, A.U., G.S., and A.P.; supervision, S.T. and A.M.

Corresponding author

Correspondence to Amrindra Pal.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uniyal, A., Srivastava, G., Pal, A. et al. Recent Advances in Optical Biosensors for Sensing Applications: a Review. Plasmonics 18, 735–750 (2023). https://doi.org/10.1007/s11468-023-01803-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01803-2

Keywords

Navigation