Skip to main content

Advertisement

Log in

Highly Efficient Semiconductor-Based Metasurface for Photoelectrochemical Water Splitting: Broadband Light Perfect Absorption with Dimensions Smaller than the Diffusion Length

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, we demonstrate a highly efficient light trapping design that is made of a metal-oxide-semiconductor-semiconductor (nanograting/nanopatch) (MOSSg/p) four-layer design to absorb light in a broad wavelength regime in dimensions smaller than the hole diffusion length of the active layer. For this aim, we first adopt a modeling approach based on the transfer matrix method (TMM) to find out the absorption bandwidth (BW) limits of a simple hematite (α-Fe2O3)-based metal-oxide-semiconductor (MOS) cavity design. Our modeling findings show that this design architecture can provide near-perfect absorption in shorter wavelengths. To extend the absorption toward longer wavelengths, a nanostructured semiconductor is placed on top of this MOS design. This nanostructure supports the Mie resonance and adds a new resonance in longer wavelengths without disrupting the lower wavelength absorption capability of MOS cavity. By this way, a polarization-insensitive absorption above 0.8 can be acquired up to λ=565 nm. Moreover, to have a better qualitative comparison, the water-splitting photocurrent of this design has been estimated. Our calculations show that a photocurrent as high as 10.6 mA cm−2 can be achieved with this design that is quite close to the theoretical limit of 12.5 mA cm−2 for hematite-based water-splitting photoanode. This paper proposes a design approach in which the superposition of cavity modes and Mie resonances can lead to a broadband, polarization-insensitive, and omnidirectional near-perfect light absorption in dimensions smaller than the carrier’s diffusion length. This can be considered as a winning strategy to design highly efficient and ultrathin optoelectronic designs in a variety of applications including photoelectrochemical water splitting and photovoltaics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Soukoulis CM, Wegener M (2011) Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat Photonics 523

  2. Ozbay E (2006) Plasmonics : Merging Photonics and Electronics at Nanoscale Dimensions. Science (80- ) 311:189

    Article  CAS  Google Scholar 

  3. Yu N, Capasso F (2014) Flat optics with designer metasurfaces. Nat Mater 13:139

    Article  PubMed  CAS  Google Scholar 

  4. Ghobadi A, Hajian H, Butun B, Ozbay E (2018) Strong Light-Matter Interaction in Lithography-Free Planar Metamaterial Perfect Absorbers. ACS Photonics 5:4203

    Article  CAS  Google Scholar 

  5. Hajian H, Ghobadi A, Butun B, Ozbay E (2019) Active metamaterial nearly perfect light absorbers: a review [Invited]. J Opt Soc Am B 36:F131

    Article  CAS  Google Scholar 

  6. Ghobadi A, Hajian H, Butun B, Ozbay E (2019) Strong Interference in Planar Multilayer Perfect Absorbers. IEEE Nanotechnol Mag 13:34

    Article  Google Scholar 

  7. Ghobadi A, Ulusoy Ghobadi TG, Karadas F, Ozbay E (2019) Semiconductor Thin Film Based Metasurfaces and Metamaterials for Photovoltaic and Photoelectrochemical Water Splitting Applications. Adv Opt Mater 7:1900028

    Article  CAS  Google Scholar 

  8. Ji C, Lee K, Xu T, Zhou J, Park HJ, Guo LJ (2017) Engineering Light at the Nanoscale : Structural Color Filters and Broadband Perfect Absorbers. Adv Opt Mater 5:1700368

    Article  CAS  Google Scholar 

  9. Cui Y, Fung KH, Xu J, Ma H, Jin Y, He S, Fang NX (2012) Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Lett 12:1443

    Article  PubMed  CAS  Google Scholar 

  10. Ghobadi A, Hajian H, Gokbayrak M, Butun B, Ozbay E (2019) Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nanophotonics 8:823

    Article  CAS  Google Scholar 

  11. Ghobadi A, Hajian H, Soydan MC, Butun B, Ozbay E (2019) Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings. Sci Rep 9:1

    Article  CAS  Google Scholar 

  12. Yildirim DU, Ghobadi A, Soydan MC, Atesal O, Toprak A, Caliskan MD, Ozbay E (2019) Ultra-broadband , wide angle absorber utilizing metal insulator multilayers stack with a multi- thickness metal surface texture. ACS Photonics 6:1812

    Article  CAS  Google Scholar 

  13. Hajian H, Ghobadi A, Butun B, Ozbay E (2018) Visible light nearly perfect absorber: an optimum unit cell arrangement for near absolute polarization insensitivity. Opt Express 26:16940

    Article  PubMed  CAS  Google Scholar 

  14. Yildirim DU, Ghobadi A, Ozbay E (2018) Disordered Nanohole Patterns in Metal-Insulator Multilayer for Ultra-broadband Light Absorption: Atomic Layer Deposition for Lithography Free Highly repeatable Large Scale Multilayer Growth. Sci Rep 8:1

    Article  CAS  Google Scholar 

  15. Soydan MC, Ghobadi A, Yildirim DU, Behcet V, Ekmel E (2019) Large-area, Lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films. Plasmonics 1:1

    Google Scholar 

  16. Aydin K, Ferry VE, Briggs RM, Atwater HA (2011) Structural Coloring of Glass Using Dewetted Nanoparticles and Ultrathin Films of Metals. Nat Commun 2:1

    Article  CAS  Google Scholar 

  17. Li Z, Palacios E, Butun S, Kocer H, Aydin K (2015) Broadband light absorption enhancement in thin-film silicon solar cells. Sci Rep 5:1

    Google Scholar 

  18. Ghobadi A, Dereshgi SA, Hajian H, Bozok B, Butun B (2017) Bismuth-based metamaterials: From narrowband reflective color filter to extremely broadband near perfect absorber. Sci Rep 7:4755

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Ghobadi A, Hajian H, Gokbayrak M, Dereshgi SA, Toprak A, Butun B, Ozbay E (2017) Lithography-Free Planar Band-Pass Reflective Color Filter Using Series Connection of Cavities. Opt Express 25:27624

    Article  PubMed  CAS  Google Scholar 

  20. Ghobadi A, Hajian H, Dereshgi SA, Bozok B, Butun B, Ozbay E (2017) Disordered and Densely Packed ITO Nanorods as an Excellent Lithography-Free Optical Solar Reflector Metasurface. Sci Rep 7:1

    Article  CAS  Google Scholar 

  21. Li Z, Butun S, Aydin K (2015) Tunable , omnidirectional , and nearly perfect resonant absorptions by a graphene-hBN- based hole array metamaterial. ACS Photonics 2:183

    Article  CAS  Google Scholar 

  22. Yu R, Mazumder P, Borrelli NF, Carrilero A, Ghosh DS, Maniyara RA, Baker D, García De Abajo FJ, Pruneri V (2016) Near-absolute polarization insensitivity in graphene based ultra-narrowband perfect visible light absorber. ACS Photonics 3:1194

    Article  CAS  Google Scholar 

  23. Wang W, Wu S, Reinhardt K, Lu Y, Chen S (2010) All Ceramic-Based Metal-Free Ultra-broadband Perfect Absorber. Nano Lett 10:2012

    Article  PubMed  CAS  Google Scholar 

  24. Liu N, Mesch M, Weiss T, Hentschel M, Giessen H, Institut P (2010) Infrared Perfect Absorber and Its Application As Plasmonic Sensor. Nano Lett 10:2342

    Article  PubMed  CAS  Google Scholar 

  25. Tittl A, Mai P, Taubert R, Dregely D, Liu N, Giessen H (2011) Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing. Nano Lett 11:4366

    Article  PubMed  CAS  Google Scholar 

  26. Yildirim DU, Ghobadi A, Soydan MC, Gokbayrak M, Toprak A, Butun B, Ozbay E (2019) Colorimetric and Near-Absolute Polarization-Insensitive Refractive-Index Sensing in All-Dielectric Guided-Mode Resonance Based Metasurface. J Phys Chem C 123:19125

    Article  CAS  Google Scholar 

  27. Lee T, Jang J, Jeong H, Rho J (2018) Plasmonic- and dielectric-based structural coloring: from fundamentals to practical applications. Nano Converg 5:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Pu M, Ma X, Li X, Guo Y, Luo X (2017) Merging plasmonics and metamaterials by two-dimensional subwavelength structures. J Mater Chem C 5:4361

    Article  CAS  Google Scholar 

  29. Hajian H, Ghobadi A, Butun B, Ozbay E (2017) Nearly perfect resonant absorption and coherent thermal emission by hBN-based photonic crystals. Opt Express 25

  30. Lee BJ, Fu CJ, Zhang ZM (2005) Coherent thermal emission from one-dimensional photonic crystals. Appl Phys Lett 87:071904

    Article  CAS  Google Scholar 

  31. Zheludev NI (2010) The road ahead for metamaterials. Science (80-.):328:582

  32. Enoch S, Tayeb G, Sabouroux P, Guérin N, Vincent P (2002) A Metamaterial for Directive Emission. Phys Rev Lett 89:1

    Article  CAS  Google Scholar 

  33. Vora A, Gwamuri J, Pala N, Kulkarni A, Pearce JM, Güney DO (2014) Exchanging ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics. Sci Rep 4:1

    Google Scholar 

  34. Wu C, Neuner B, John J, Milder A, Zollars B, Savoy S, Shvets G (2012) Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems. J Opt 14:1

    Article  CAS  Google Scholar 

  35. Molesky S, Dewalt CJ, Jacob Z (2013) High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics. Opt Express 21:A96

    Article  PubMed  Google Scholar 

  36. Guo CF, Sun T, Cao F, Liu Q, Ren Z (2014) Metallic nanostructures for light trapping in energy-harvesting devices. Light Sci Appl 42:1

    Google Scholar 

  37. Chen X, Jia B, Zhang Y, Gu M (2013) Exceeding the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets. Light Sci. Appl. 2:1

    CAS  Google Scholar 

  38. Su YH, Ke YF, Cai SL, Yao QY (2012) Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell. Light Sci. Appl. 1:2

    Article  CAS  Google Scholar 

  39. Li W, Valentine J (2014) Metamaterial perfect absorber based hot electron photodetection. Nano Lett 14:3510

    Article  PubMed  CAS  Google Scholar 

  40. Ghobadi A, Demirag Y, Hajian H, Toprak A, Butun B, Ozbay E (2019) Spectrally Selective Ultrathin Photodetectors Using Strong Interference in Nanocavity Design. IEEE Electron Device Lett 40:1

    Article  Google Scholar 

  41. Li W, Coppens ZJ, Vázquez L, Wang W, Govorov AO, Valentine J (2015) Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nat Commun 6:1

    Google Scholar 

  42. Zhao F, Zhou X, Shi Y, Qian X, Alexander M, Zhao X, Mendez S, Yang R, Qu L, Yu G (2018) Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat Nanotechnol 13:489

    Article  PubMed  CAS  Google Scholar 

  43. Lee J, Mubeen S, Ji X, Stucky GD, Moskovits M (2012) Plasmonic photoanodes for solar water splitting with visible light. Nano Lett 12:5014

    Article  PubMed  CAS  Google Scholar 

  44. Ghobadi TGU, Ghobadi A, Ozbay E, Karadas F (2018) Strategies for Plasmonic Hot-Electron-Driven Photoelectrochemical Water Splitting. ChemPhotoChem 2:161

    Article  CAS  Google Scholar 

  45. Ghobadi A, Ghobadi TGU, Karadas F, Ozbay E (2018) Angstrom Thick ZnO Passivation Layer to Improve the Photoelectrochemical Water Splitting Performance of a TiO2 Nanowire Photoanode: The Role of Deposition Temperature. Sci Rep 8:16322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sust Energ Rev 11:401

    Article  CAS  Google Scholar 

  47. Moniz SJA, Shevlin SA, Martin DJ, Guo ZX, Tang J (2015) Visible-light driven heterojunction photocatalysts for water splitting-a critical review. Energy Environ Sci 8:731

    Article  CAS  Google Scholar 

  48. Ahmad H, Kamarudin SK, Minggu LJ, Kassim M (2015) Hydrogen from photo-catalytic water splitting process: A review. Renew Sust Energ Rev 43:599

    Article  CAS  Google Scholar 

  49. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253

    Article  PubMed  CAS  Google Scholar 

  50. Shen S, Lindley SA, Chen X, Zhang JZ (2016) Hematite heterostructures for photoelectrochemical water splitting: Rational materials design and charge carrier dynamics. Energy Environ Sci 9:2744

    Article  CAS  Google Scholar 

  51. Sivula K, Le Formal F, Grätzel M (2011) Solar water splitting: Progress using hematite (α-Fe 2O3) photoelectrodes. ChemSusChem 4:432

    Article  PubMed  CAS  Google Scholar 

  52. Tamirat AG, Rick J, Dubale AA, Su WN, Hwang BJ (2016) Using hematite for photoelectrochemical water splitting: A review of current progress and challenges. Nanoscale Horiz 1:243

    Article  PubMed  CAS  Google Scholar 

  53. Mao A, Shin K, Kim JK, Wang DH, Han GY, Park JH (2011) Controlled synthesis of vertically aligned hematite on conducting substrate for photoelectrochemical cells: Nanorods versus nanotubes. ACS Appl Mater Interfaces 3:1852

    Article  PubMed  CAS  Google Scholar 

  54. Lin Y, Zhou S, Sheehan SW, Wang D (2011) Nanonet-Based hematite heteronanostructures for efficient solar water splitting. J Am Chem Soc 133:2398

    Article  PubMed  CAS  Google Scholar 

  55. Goncalves RH, Lima BHR, Leite ER (2011) Magnetite colloidal nanocrystals: A facile pathway to prepare mesoporous hematite thin films for photoelectrochemical water splitting. J Am Chem Soc 133:6012

    Article  PubMed  CAS  Google Scholar 

  56. Wang G, Ling Y, Wheeler DA, George KEN, Horsley K, Heske C, Zhang JZ, Li Y (2011) Back electron-hole recombination in hematite photoanodes for water splitting. Nano Lett 11:3503

    Article  PubMed  CAS  Google Scholar 

  57. Li L, Yu Y, Meng F, Tan Y, Hamers RJ, Jin S (2012) Review of Sn-Doped hematite nanostructures for photoelectrochemical water splitting. Nano Lett 12:724

    Article  PubMed  CAS  Google Scholar 

  58. Mohapatra SK, John SE, Banerjee S, Misra M (2009) Nanostructured hematite thin films produced by spin-coating deposition solution: Application in water splitting. Chem Mater 21:3048

    Article  CAS  Google Scholar 

  59. Le Formal F, Pendlebury SR, Cornuz M, Tilley SD, Grätzel M, Durrant JR (2014) Activation of hematite nanorod arrays for photoelectrochemical water splitting. J Am Chem Soc 136:2564

    Article  PubMed  CAS  Google Scholar 

  60. Ling Y, Li Y (2014) Light-induced water splitting with hematite: Improved nanostructure and iridium oxide catalysis. Part Part Syst Charact 31:1113

    Article  CAS  Google Scholar 

  61. Souza FL, Lopes KP, Nascente PAP, Leite ER (2009) Formation of iron oxide nanoparticles for the photooxidation of water: Alteration of finite size effects from ferrihydrite to hematite. Sol Energy Mater Sol Cells 93:362

    Article  CAS  Google Scholar 

  62. Morrish R, Rahman M, MacElroy JMD, Wolden CA (2011) Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: Nanostructure-directing effect of Si-doping. ChemSusChem 4:474

    Article  PubMed  CAS  Google Scholar 

  63. Tilley SD, Cornuz M, Sivula K, Grtzel M (2010) Passivating surface states on water splitting hematite photoanodes with alumina overlayers. Angew Chem Int Ed 49:6405

    Article  CAS  Google Scholar 

  64. Schwaminger SP, Surya R, Filser S, Wimmer A, Weigl F, Fraga-García P, Berensmeier S (2017) Facile synthesis of highly photoactive α-Fe2O3-based films for water oxidation. Sci Rep 7:1

    Article  CAS  Google Scholar 

  65. Cesar I, Kay A, Martinez JAG, Grätzel M (2006) Facile solution synthesis of α-FeF3•3H2O nanowires and their conversion to α-Fe2O3 nanowires for photoelectrochemical application. J Am Chem Soc 128:4582

    Article  PubMed  CAS  Google Scholar 

  66. Le Formal F, Tétreault N, Cornuz M, Moehl T, Grätzel M, Sivula K (2011) Water photooxidation by smooth and ultrathin R-Fe2O3 nanotube arrays. Chem Sci 2:737

    Article  Google Scholar 

  67. Liu J, Cai YY, Tian ZF, Ruan GS, Ye YX, Liang CH, Shao GS (2014) Highly oriented Ge-doped hematite nanosheet arrays for photoelectrochemical water oxidation. Nano Energy 9:282

    Article  CAS  Google Scholar 

  68. Peerakiatkhajohn P, Yun JH, Chen H, Lyu M, Butburee T, Wang L (2016) Stable Hematite Nanosheet Photoanodes for Enhanced Photoelectrochemical Water Splitting. Adv Mater 28:6405

    Article  PubMed  CAS  Google Scholar 

  69. Bu X, Wang G, Tian Y (2017) Foreign In3+ treatment improving the photoelectrochemical performance of a hematite nanosheet array for water splitting. Nanoscale 9:17513

    Article  PubMed  CAS  Google Scholar 

  70. Liu J, Liang C, Zhang H, Tian Z, Zhang S (2012) General strategy for doping impurities (Ge, Si, Mn, Sn, Ti) in hematite nanocrystals. J Phys Chem C 116:4986

    Article  CAS  Google Scholar 

  71. Ji M, Cai J, Ma Y, Qi L (2016) Controlled Growth of Ferrihydrite Branched Nanosheet Arrays and Their Transformation to Hematite Nanosheet Arrays for Photoelectrochemical Water Splitting. ACS Appl Mater Interfaces 8:3651

    Article  PubMed  CAS  Google Scholar 

  72. Wang KX, Yu Z, Liu V, Brongersma ML, Jaramillo TF, Fan S (2014) Nearly Total Solar Absorption in Ultrathin Nanostructured Iron Oxide for Efficient Photoelectrochemical Water Splitting. ACS Photonics 1

  73. Qiu Y, Leung SF, Zhang Q, Hua B, Lin Q, Wei Z, Tsui KH, Zhang Y, Yang S, Fan Z (2014) Efficient photoelectrochemical water splitting with ultrathin films of hematite on three-dimensional nanophotonic structures. Nano Lett 14:2123

    Article  PubMed  CAS  Google Scholar 

  74. Li J, Qiu Y, Wei Z, Lin Q, Zhang Q, Yan K, Chen H, Xiao S, Fan Z, Yang S (2014) A three-dimensional hexagonal fluorine-doped tin oxide nanocone array: A superior light harvesting electrode for high performance photoelectrochemical water splitting. Energy Environ Sci 7:3651

    Article  CAS  Google Scholar 

  75. Li J, Cushing SK, Zheng P, Meng F, Chu D, Wu N (2013) Plasmon-induced photonic and energy-transfer enhancement of solar water splitting by a hematite nanorod array. Nat Commun 4(2651):1

    Google Scholar 

  76. Pincella F, Isozaki K, Miki K (2014) A visible light-driven plasmonic photocatalyst. Light Sci Appl 3:1

    Article  CAS  Google Scholar 

  77. Gao H, Liu C, Jeong HE, Yang P (2012) Plasmon-enhanced photocatalytic activity of iron oxide on gold nanopillars. ACS Nano 6:234

    Article  PubMed  CAS  Google Scholar 

  78. Wang L, Wang L, Hu H, Truong N, Zhang Y, Schmuki P, Bi Y (2017) Plasmon-Induced Hole-Depletion Layer on Hematite Nanoflake Photoanodes for Highly Efficient Solar Water Splitting. Nano Energy 35:171

    Article  CAS  Google Scholar 

  79. Liu D, Bierman DM, Lenert A, Yu H-T, Yang Z, Wang EN, Duan Y-Y (2015) Ultrathin planar hematite film for solar photoelectrochemical water splitting. Opt Express 23:A1491

    Article  PubMed  CAS  Google Scholar 

  80. Dotan H, Kfir O, Sharlin E, Blank O, Gross M, Dumchin I, Ankonina G, Rothschild A (2012) Resonant light trapping in ultrathin films for water splitting. Nat Mater 12:158

    Article  PubMed  CAS  Google Scholar 

  81. Kim SJ, Thomann I, Park J, Kang JH, Vasudev AP, Brongersma ML (2014) Light trapping for solar fuel generation with Mie resonances. Nano Lett 14:1446

    Article  PubMed  CAS  Google Scholar 

  82. Liu D, Yu H, Duan Y, Li Q, Xuan Y (2016) New Insight into the Angle Insensitivity of Ultrathin Planar Optical Absorbers for Broadband Solar Energy Harvesting. Sci Rep 6:32515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Liu D, Yu H, Yang Z, Duan Y (2016) Ultrathin planar broadband absorber through effective medium design. Nano Res 9:2354

    Article  Google Scholar 

  84. Mirshafieyan SS, Guo J (2014) Silicon colors: spectral selective perfect light absorption in single layer silicon films on aluminum surface and its thermal tunability. Opt Express 22:31545

    Article  PubMed  CAS  Google Scholar 

  85. Park J, Kang J, Vasudev AP, Schoen DT, Kim H, Hasman E, Brongersma ML (2014) Omnidirectional Near-Unity Absorption in an Ultrathin Planar Semiconductor Layer on a Metal Substrate. ACS Photon 1:812

    Article  CAS  Google Scholar 

  86. Yoo YJ, Lim JH, Lee GJ, Jang KI, Song YM (2017) Ultra-thin films with highly absorbent porous media fine-tunable for coloration and enhanced color purity. Nanoscale 9:2986

    Article  PubMed  CAS  Google Scholar 

  87. Kats MA, Blanchard R, Genevet P, Capasso F (2012) Nanometre optical coatings based on strong interference effects in highly absorbing media. Nat Mater 12:20

    Article  PubMed  CAS  Google Scholar 

  88. Palik ED (1998) Handbook of optical constants of solids. Vol. 3 (Academic press

  89. Ghobadi A, Hajian H, Rashed AR, Butun B, Ozbay E (2018) Tuning the metal filling fraction in metal-insulator-metal ultra-broadband perfect absorbers to maximize the absorption bandwidth. Photon Res 6:168

    Article  CAS  Google Scholar 

  90. In Lumerical Solut. Inc. (n.d.) http://Www.Lumerical.Com/Tcad-Products/Fdtd/

  91. Xie X, Li K, De Zhang W (2016) Photoelectrochemical properties of Ti-doped hematite nanosheet arrays decorated with CdS nanoparticles. RSC Adv 6:74234

    Article  CAS  Google Scholar 

  92. Lei R, Ni H, Chen R, Gu H, Zhang B, Zhan W (2018) Hydrothermal synthesis of CdS nanorods anchored on α-Fe2O3nanotube arrays with enhanced visible-light-driven photocatalytic properties. J Colloid Interface Sci 514:496

    Article  PubMed  CAS  Google Scholar 

  93. Ghobadi A, Ulusoy TG, Garifullin R, Guler MO, Okyay AK (2016) A Heterojunction Design of Single Layer Hole Tunneling ZnO Passivation Wrapping around TiO2 Nanowires for Superior Photocatalytic Performance. Sci Rep 6:30587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Ghobadi A, Yavuz HI, Ulusoy TG, Icli KC, Ozenbas M, Okyay AK (2015) Enhanced Performance of Nanowire-Based All-TiO2 Solar Cells using Subnanometer-Thick Atomic Layer Deposited ZnO Embedded Layer. Electrochim Acta 157

Download references

Funding

This work is supported by the Scientific and Technological Research Council of Turkey (TUBITAK), grant number 215Z249. This work is supported by the projects DPT-HAMIT and TUBITAK under Project Nos. 113E331, 114E374, and 115F560. One of the authors (E. O.) also acknowledges partial support from the Turkish Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Ghobadi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghobadi, A., Ghobadi, T.G.U., Karadas, F. et al. Highly Efficient Semiconductor-Based Metasurface for Photoelectrochemical Water Splitting: Broadband Light Perfect Absorption with Dimensions Smaller than the Diffusion Length. Plasmonics 15, 829–839 (2020). https://doi.org/10.1007/s11468-019-01095-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-01095-5

Keywords

Navigation