Skip to main content
Log in

Photon Management for Near-Total Solar Absorption in Hematite Photoanodes

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Using first-principles full-field electromagnetic simulations, we demonstrate that near-perfect above-band-gap solar absorption can be achieved in nanostructured, ultra-thin-film iron oxide photoanodes for photoelectrochemical (PEC) water splitting. In our designed core-shell nanocone structures, all regions of hematite (α-iron oxide) are away from the interface between hematite and water by a minimum distance of less than the hole diffusion length in hematite, which is assumed to be no greater than 20nm. The optical absorption in our structure corresponds to a photocurrent density of 12.5mA/cm2 if one assumes an air mass 1.5 solar spectrum and a unity absorbed photon-to-current efficiency (APCE) for all wavelengths in that spectrum. Our photon management strategy eliminates the trade-off between optical absorption and carrier collection as commonly found in conventional designs of PEC cells, and variants of the strategy are generally applicable to other material systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R van de Krol and M. Grätzel, Photoelectrochemical Hydrogen Production (Springer, Berlin, 2012).

    Book  Google Scholar 

  2. K. Sivula, F.L. Formal, and M. Grätzel, Chem. Sus. Chem. 4, 432–449 (2011).

    Article  CAS  Google Scholar 

  3. J.H. Kennedy and K.W. Frese, J. Electrochem. Soc. 125, 709 (1978).

    Article  CAS  Google Scholar 

  4. M.P. Dare-Edwards, J.B. Goodenough, A. Hamnett, and P.R. Trevellick, J. Chem. Soc., Faraday Trans. 1(79), 2027 (1983).

    Article  Google Scholar 

  5. K. Itoch and J.O. Bockris, J. Electrochem. Soc. 131, 1266–1271 (1984).

    Article  Google Scholar 

  6. O. Khaselev and J.A. Turner, Science 280, 425 (1998).

    Article  CAS  Google Scholar 

  7. J. Brillet, J.-H. Yum, M. Cornuz, T. Hisatomi, R. Solarska, J. Augustynski, M. Grätzel, and K. Sivula, Nat. Photonics 6, 824 (2012).

    Article  CAS  Google Scholar 

  8. U. Bjorksten, J. Moser, and M. Grätzel, Chem. Mater. 6, 858–863 (1994).

    Article  Google Scholar 

  9. A. Kay, I. Cesar, and M. Grätzel, J. Am. Chem. Soc. 128, 15714–15721 (2006).

    Article  CAS  Google Scholar 

  10. J. Brillet, M. Grätzel, and K. Sivula, Nano Lett. 10, 4155–4160 (2010).

    Article  CAS  Google Scholar 

  11. S.W. Boettcher, E.I. Warren, M.C. Putnam, E.A. Santori, D. Turner-Evans, M.D. Kelzenberg, M.G. Walter, J.R. McKone, B.S. Brunschiwig, H.A. Atwater, and N.S. Lewis, J. Am. Chem. Soc. 133, 1216–1219 (2011).

    Article  CAS  Google Scholar 

  12. N.P. Dasgupta and P. Yang, Front. Phys. 2095–0462, 1–14 (2013).

    Google Scholar 

  13. J.Y. Kim, G. Magesh, D.H. Youn, J.-W. Jang, J. Kubota, K. Domen, and J.S. Lee, Sci. Rep. 3, 2681 (2013).

    Article  Google Scholar 

  14. J.A. Schuller, E.S. Barnard, W. Cai, Y.C. Jun, J.S. White, and M.L. Brongersma, Nat. Mater. 9, 193 (2010).

    Article  CAS  Google Scholar 

  15. S.C. Warren and E. Thimsen, Energy Environ. Sci. 5, 5133–5146 (2012).

    Article  CAS  Google Scholar 

  16. J. Lee, S. Mubeen, X. Ji, G.D. Stucky, and M. Moskovits, Nano Lett. 12, 5014–5019 (2012).

    Article  CAS  Google Scholar 

  17. Z. Chen, T.F. Jaramillo, T.G. Deutsch, A. Kleiman-Schwarsctein, A.J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E.W. McFarland, K. Domen, E.L. Miller, J.A. Turner, and H.N. Dinh, J. Mater. Res. 25, 3–16 (2010).

    Article  Google Scholar 

  18. K. Ernst, A. Belaidi, and R. Konenkamp, Semicond. Sci. Technol. 18, 475–479 (2003).

    Article  CAS  Google Scholar 

  19. Y.J. Hwang, C.H. Wu, C. Hahn, H.E. Jeong, and P. Yang, Nano Lett. 12, 1678–1682 (2012).

    Article  CAS  Google Scholar 

  20. H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, Nature Materials 12, 158 (2013).

    Article  CAS  Google Scholar 

  21. K. Sivula, F.L. Formal, and M. Grätzel, Chem. Mater. 21, 2862–2867 (2009).

    Article  CAS  Google Scholar 

  22. K.X. Wang, Z. Yu, V. Liu, M.L. Brongersma, T.F. Jaramillo, and S. Fan, ACS Photonics 1, 235–240 (2014).

    Article  CAS  Google Scholar 

  23. B.M. Klahr, A.B.F. Martinson, and T.W. Hamann, Langmuir 27, 461–468 (2011).

    Article  CAS  Google Scholar 

  24. V. Liu and S. Fan, Computer Physics Communications 183, 2233–2244 (2012).

    Article  CAS  Google Scholar 

  25. E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

    Google Scholar 

  26. Collaboration: Authors and editors of the volumes III/17G-41D: Hematite (alpha-Fe2O3): optical properties, dielectric constants. Madelung O., Rossler, U., Schulz, M. (ed.). SpringerMaterials - The Landolt-Bornstein Database (http://www.springermaterials.com). DOI: 10.1007/10681735_552

Download references

Acknowledgments

This work is supported by the Center on Nanostructuring for Efficient Energy Conversion (CNEEC) at Stanford University, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science and Office of Basic Energy Sciences under award number DE-SC0001060. The simulations were performed on the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number OCI-1053575.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K.X., Yu, Z., Liu, V. et al. Photon Management for Near-Total Solar Absorption in Hematite Photoanodes. MRS Online Proceedings Library 1670, 8–13 (2014). https://doi.org/10.1557/opl.2014.417

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2014.417

Navigation