Skip to main content
Log in

Ultrathin planar broadband absorber through effective medium design

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Ultrathin planar absorbers hold promise in solar energy systems because they can reduce the material, fabrication, and system cost. Here, we present a general strategy of effective medium design to realize ultrathin planar broadband absorbers. The absorber consists of two ultrathin absorbing dielectrics to design an effective absorbing medium, a transparent layer, and metallic substrate. Compared with previous studies, this strategy provides another dimension of freedom to enhance optical absorption; therefore, destructive interference can be realized over a broad spectrum. To demonstrate the power and simplicity of this strategy, we both experimentally and theoretically characterized an absorber with 5-nm-thick Ge, 10-nm-thick Ti, and 50-nm-thick SiO2 films coated on an Ag substrate fabricated using simple deposition methods. Absorptivity higher than 80% was achieved in 15-nm-thick (1/50 of the center wavelength) Ge and Ti films from 400 nm to near 1 μm. As an application example, we experimentally demonstrated that the absorber exhibited a normal solar absorptivity of 0.8 with a normal emittance of 0.1 at 500 °C, thus demonstrating its potential in solar thermal systems. The effective medium design strategy is general and allows material versatility, suggesting possible applications in real-time optical manipulation using dynamic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Major, J. D.; Treharne, R. E.; Phillips, L. J.; Durose, K. A low-cost non-toxic post-growth activation step for CdTe solar cells. Nature 2014, 511, 334–337.

    Article  Google Scholar 

  2. Dotan, H.; Kfir, O.; Sharlin, E.; Blank, O.; Gross, M.; Dumchin, I.; Ankonina, G.; Rothschild, A. Resonant light trapping in ultrathin films for water splitting. Nat. Mater. 2013, 12, 158–164.

    Article  Google Scholar 

  3. Ghasemi, H.; Ni, G.; Marconnet, A. M.; Loomis, J.; Yerci, S.; Miljkovic, N.; Chen, G. Solar steam generation by heat localization. Nat. Commun. 2014, 5, 4449.

    Article  Google Scholar 

  4. Neumann, O.; Urban, A. S.; Day, J.; Lal, S.; Nordlander, P.; Halas, N. J. Solar vapor generation enabled by nanoparticles. ACS Nano 2013, 7, 42–49.

    Article  Google Scholar 

  5. Kats, M. A.; Blanchard, R.; Genevet, P.; Capasso, F. Nanometre optical coatings based on strong interference effects in highly absorbing media. Nat. Mater. 2013, 12, 20–24.

    Article  Google Scholar 

  6. Khodasevych, I. E.; Wang, L. P.; Mitchell, A.; Rosengarten, G. Micro- and nano-structured surfaces for selective solar absorption. Adv. Opt. Mater. 2015, 3, 852–881.

    Article  Google Scholar 

  7. Park, J.; Kang, J. H.; Vasudev, A. P.; Schoen, D. T.; Kim, H.; Hasman, E.; Brongersma, M. L. Omnidirectional near-unity absorption in an ultrathin planar semiconductor layer on a metal substrate. ACS Photonics 2014, 1, 812–821.

    Article  Google Scholar 

  8. Park, J.; Kim, S. J.; Brongersma, M. L. Condition for unity absorption in an ultrathin and highly lossy film in a Gires–Tournois interferometer configuration. Opt. Lett. 2015, 40, 1960–1963.

    Article  Google Scholar 

  9. Song, H. M.; Guo, L. Q.; Liu, Z. J.; Liu, K.; Zeng, X.; Ji, D. X.; Zhang, N.; Hu, H. F.; Jiang, S. H.; Gan, Q. Q. Nanocavity enhancement for ultra-thin film optical absorber. Adv. Mater. 2014, 26, 2737–2743.

    Article  Google Scholar 

  10. Kats, M. A.; Byrnes, S. J.; Blanchard, R.; Kolle, M.; Genevet, P.; Aizenberg, J.; Capasso, F. Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings. Appl. Phys. Lett. 2013, 103, 101104.

    Article  Google Scholar 

  11. Lee, K. T.; Lee, J. Y.; Seo, S.; Guo, L. J. Colored ultrathin hybrid photovoltaics with high quantum efficiency. Light Sci. Appl. 2014, 3, e215.

    Article  Google Scholar 

  12. Lee, J. Y.; Lee, K. T.; Seo, S.; Guo, L. J. Decorative power generating panels creating angle insensitive transmissive colors. Sci. Rep. 2014, 4, 4192.

    Google Scholar 

  13. Han, Q.; Fu, Y. Q.; Jin, L.; Zhao, J. J.; Xu, Z. W.; Fang, F. Z.; Gao, J. S.; Yu, W. X. Germanium nanopyramid arrays showing near-100% absorption in the visible regime. Nano Res. 2015, 8, 2216–2222.

    Article  Google Scholar 

  14. Li, W.; Guler, U.; Kinsey, N.; Naik, G. V.; Boltasseva, A.; Guan, J. G.; Shalaev, V. M.; Kildishev, A. V. Refractory plasmonics with titanium nitride: Broadband metamaterial absorber. Adv. Mater. 2014, 26, 7959–7965.

    Article  Google Scholar 

  15. Chou, J. B.; Yeng, Y. X.; Lee, Y. E.; Lenert, A.; Rinnerbauer, V.; Celanovic, I.; Soljačić, M.; Fang, N. X.; Wang, E. N.; Kim, S. G. Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals. Adv. Mater. 2014, 26, 8041–8045.

    Article  Google Scholar 

  16. Li, P. F.; Liu, B. A.; Ni, Y. Z.; Liew, K. K.; Sze, J.; Chen, S.; Shen, S. Large-scale nanophotonic solar selective absorbers for high-efficiency solar thermal energy conversion. Adv. Mater. 2015, 27, 4585–4591.

    Article  Google Scholar 

  17. Liu, D.; Bierman, D. M.; Lenert, A.; Yu, H. T.; Yang, Z.; Wang, E. N.; Duan, Y. Y. Ultrathin planar hematite film for solar photoelectrochemical water splitting. Opt. Express 2015, 23, A1491–A1498.

    Article  Google Scholar 

  18. Born, M.; Wolf, E. Principles of Optics, 7th ed.; Cambridge University Press: Cambridge, UK, 1999.

    Book  Google Scholar 

  19. Giovampaola, C. D.; Engheta, N. Digital metamaterials. Nat. Mater. 2014, 13, 1115–1121.

    Article  Google Scholar 

  20. RREDC. Reference Solar Spectral Irradiance: Air Mass 1.5. http://rredc.nrel.gov/solar/spectra/am1.5/ (accessed Oct, 2015).

  21. Yang, C. Y.; Ji, C. G.; Shen, W. D.; Lee, K. T.; Zhang, Y. G.; Liu, X.; Guo, L. J. Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption. ACS Photonics 2016, 3, 590–596.

    Article  Google Scholar 

  22. Yao, Y.; Kats, M. A.; Shankar, R.; Song, Y.; Kong, J.; Loncar, M.; Capasso, F. Wide wavelength tuning of optical antennas on graphene with nanosecond response time. Nano Lett. 2014, 14, 214–219.

    Article  Google Scholar 

  23. Zhu, Y. Y.; Antao, D. S.; Xiao, R.; Wang, E. N. Real-time manipulation with magnetically tunable structures. Adv. Mater. 2014, 26, 6442–6446.

    Article  Google Scholar 

  24. Manjavacas, A.; de Abajo, F. J. G. Tunable plasmons in atomically thin gold nanodisks. Nat. Commun. 2014, 5, 3548.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanyuan Duan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Yu, H., Yang, Z. et al. Ultrathin planar broadband absorber through effective medium design. Nano Res. 9, 2354–2363 (2016). https://doi.org/10.1007/s12274-016-1122-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1122-x

Keywords

Navigation