Skip to main content
Log in

Coupling Between Metamolecular Modes and Lattice Diffraction Modes of Metamaterials in Terahertz Region

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The coupling between plasmonic modes and lattice diffraction modes of circular split-ring resonators in terahertz (THz) region has been analyzed by changing the lattice constants. We discovered a blue shift of the individual eigenmode in short lattice constants, which is due to the longitudinal coupling of two adjacent eigenmodes from neighboring unit cells. We found an anti-crossing effect in long lattice constants for both TM and TE incidence as the lattice diffraction modes is fused with the plasmonic modes to form hybrid modes. Moreover, these hybrid modes are more sensitive to the refractive index change than the pure modes, which shows the promise to increase the sensitivity of metamaterials by coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lan C et al (2013) Hyperbolic metamaterial based on anisotropic Mie-type resonance. Opt Express 21(24):29592–29600

    Article  Google Scholar 

  2. Zheludev NI (2008) What diffraction limit? Nat Mater 7(6):420–422

    Article  CAS  Google Scholar 

  3. Rockstuhl C et al (2006) On the reinterpretation of resonances in split-ring-resonators at normal incidence. Opt Express 14(19):8827–8836

    Article  Google Scholar 

  4. Petschulat J et al (2009) Multipole nonlinearity of metamaterials. Phys Rev A 80(6):063828

    Article  Google Scholar 

  5. Giannini V, Vecchi G, Rivas JG (2010) Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas. Phys Rev Lett 105(26):266801

    Article  CAS  Google Scholar 

  6. Prodan E et al (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302(5644):419–422

    Article  CAS  Google Scholar 

  7. Liu N, Giessen H (2010) Coupling effects in optical metamaterials. Angew Chem Int Ed 49(51):9838–9852

    Article  CAS  Google Scholar 

  8. Zou S, Janel N, Schatz GC (2004) Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. J Chem Phys 120(23):10871–10875

    Article  CAS  Google Scholar 

  9. Al-Naib I et al (2014) Conductive coupling of split ring resonators: a path to THz metamaterials with ultrasharp resonances. Phys Rev Lett 112(18):183903

    Article  Google Scholar 

  10. Çetin AE et al (2011) Plasmon induced transparency in cascaded π-shaped metamaterials. Opt Express 19(23):22607–22618

    Article  Google Scholar 

  11. Huang Y et al (2015) Coupling tai chi chiral metamaterials with strong optical activity in terahertz region. Plasmonics 10(4):1005–1011

    Article  Google Scholar 

  12. Huang Y et al (2016) Manipulating Magnetoinductive coupling with graphene-based plasmonic metamaterials in THz region. Plasmonics 11(4):963–970

    Article  CAS  Google Scholar 

  13. Ameling R, Giessen H (2013) Microcavity plasmonics: strong coupling of photonic cavities and plasmons. Laser Photonics Rev 7(2):141–169

    Article  CAS  Google Scholar 

  14. Zhang S et al (2011) Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano Lett 11(4):1657–1663

    Article  CAS  Google Scholar 

  15. Liu J et al (2013) Double plasmon-induced transparency in hybrid waveguide-plasmon system and its application for localized plasmon resonance sensing with high figure of merit. Plasmonics 8(2):995–1001

    Article  CAS  Google Scholar 

  16. Bitzer A et al (2009) Lattice modes mediate radiative coupling in metamaterial arrays. Opt Express 17(24):22108–22113

    Article  CAS  Google Scholar 

  17. Christ A et al (2003) Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab. Phys Rev Lett 91(18):183901

    Article  CAS  Google Scholar 

  18. Liu H et al (2012) Controllable coupling of localized and propagating surface plasmons to Tamm plasmons. Plasmonics 7(4):749–754

    Article  Google Scholar 

  19. Wu X et al (2013) Sensing self-assembled alkanethiols by differential transmission interrogation with terahertz metamaterials. Appl Opt 52(20):4877–4883

    Article  CAS  Google Scholar 

  20. Wu X et al (2013) Self-referenced sensing based on terahertz metamaterial for aqueous solutions. Appl Phys Lett 102(15):151109

    Article  Google Scholar 

  21. Xie L et al (2015) Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics. Sci Rep 5:8671

  22. Wu X et al (2013) Alkanethiol-functionalized terahertz metamaterial as label-free, highly-sensitive and specificbiosensor. Biosens Bioelectron 42:626–631

    Article  CAS  Google Scholar 

  23. Fangrong Hu LW, Quan B, Xu X, Li Z, Pan ZAX (2013) Design of a polarization insensitive multiband terahertz metamaterial absorber. J Phys D Appl Phys 46:195103

    Article  Google Scholar 

  24. Fedotov V et al (2007) Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Phys Rev Lett 99(14):147401

    Article  CAS  Google Scholar 

  25. Homola J, Koudela I, Yee SS (1999) Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison. Sensors Actuators B Chem 54(1–2):16–24

    Article  CAS  Google Scholar 

  26. Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sensors Actuators B Chem 54(1–2):3–15

    Article  CAS  Google Scholar 

  27. Yu F et al (2004) Surface plasmon enhanced diffraction for label-free biosensing. Anal Chem 76(13):3530–3535

    Article  CAS  Google Scholar 

  28. Lubin SM et al (2013) Quasiperiodic Moiré plasmonic crystals. ACS Nano 7(12):11035–11042

    Article  CAS  Google Scholar 

  29. Zentgraf T et al (2009) Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems. Phys Rev B 80(19):195415

    Article  Google Scholar 

  30. Shelton DJ et al (2011) Strong coupling between nanoscale metamaterials and phonons. Nano Lett 11(5):2104–2108

    Article  CAS  Google Scholar 

  31. Xu X et al (2011) Flexible visible–infrared metamaterials and their applications in highly sensitive chemical and biological sensing. Nano Lett 11(8):3232–3238

    Article  CAS  Google Scholar 

  32. Jepsen PU, Jensen JK, Møller U (2008) Characterization of aqueous alcohol solutions in bottles with THz reflection spectroscopy. Opt Express 16(13):9318–9331

    Article  CAS  Google Scholar 

  33. Na Liu, MM, Weiss T, Hentschel M, Giessen H (2010) Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 10:2342–2348

    Article  Google Scholar 

  34. Becker J et al (2010) The optimal aspect ratio of gold nanorods for plasmonic bio-sensing. Plasmonics 5(2):161–167

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 11374240) and Guangxi Key Laboratory of Automatic Detecting Technology and Instruments (YQ17201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinlong Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L., Wang, Q., Hu, F. et al. Coupling Between Metamolecular Modes and Lattice Diffraction Modes of Metamaterials in Terahertz Region. Plasmonics 13, 961–969 (2018). https://doi.org/10.1007/s11468-017-0594-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0594-1

Keywords

Navigation