Skip to main content
Log in

A Spectrally Tunable Plasmonic Photosensor with an Ultrathin Semiconductor Region

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Surface plasmon resonance (SPR) has been widely utilized to improve the absorption performance in the photosensors. Graphene has emerged as a promising plasmonic material, which supports tunable SPR and shows significant flexibility over metals. In this letter, a hybrid photosensor based on the integration of periodic cross-shaped graphene arrays with an ultrathin light-absorbing semiconductor is proposed. A tenfold absorption enhancement over a large range of the incidence angle for both light polarizations as well as a considerably high photogeneration rate (∼ 1037) is demonstrated at the resonance. Compared with traditional metal-based plasmon-enhanced photosensors, the absorption enhancement here can be expediently tuned with manipulating the Fermi energy of graphene. The proposed photosensor can amplify the photoresponse to the incidence light at the selected wavelength and thus be utilized in photosensing with high efficiency and tunable spectral selectivity in the mid-infrared (mid-IR) and terahertz (THz) regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Le Perchec J, Desieres Y, de Lamaestre RE (2009) Plasmon-based photosensors comprising a very thin semiconducting region. Appl Phys Lett 94:181104

  2. Knight MW, Sobhani H, Nordlander P, Halas NJ (2011) Photodetection with active optical antennas. Science 332:702–704

    Article  CAS  Google Scholar 

  3. Choi H, Ko SJ, Choi Y, Joo P, Kim T, Lee BR, Jung JW, Choi HJ, Cha M, Jeong JR, Hwang IW, Song MH, Kim BS, Kim JY (2013) Versatile surface plasmon resonance of carbon-dot-supported silver nanoparticles in polymer optoelectronic devices. Nat Photonics 7:732–738

    Article  CAS  Google Scholar 

  4. Wu K, Zhan Y, Wu S, Deng J, Li X (2015) Surface-plasmon enhanced photodetection at communication band based on hot electrons. J Appl Phys 118:063101

    Article  Google Scholar 

  5. Luo LB, Zheng K, Ge CW, Zou YF, Lu R, Wang Y, Wang DD, Zhang TF, Liang FX (2016) Surface plasmon-enhanced nano-photodetector for green light detection. Plasmonics 11:619–625

    Article  CAS  Google Scholar 

  6. Song S, Chen Q, Jin L, Sun F (2013) Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber. Nanoscale 5:9615–9619

    Article  CAS  Google Scholar 

  7. Cai Y, Zhu J, Liu QH (2015) Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers. Appl Phys Lett 106:043105

    Article  Google Scholar 

  8. Xiong F, Zhang J, Zhu Z, Yuan X, Qin S (2015) Ultrabroadband, more than one order absorption enhancement in graphene with plasmonic light trapping. Sci Rep 5:16998

    Article  CAS  Google Scholar 

  9. Guo W, Liu Y, Han T (2016) Ultra-broadband infrared metasurface absorber. Opt Express 24:20586–20592

    Article  CAS  Google Scholar 

  10. Wang BX, Wang GZ, Wang LL (2016) Design of a novel dual-band terahertz metamaterial absorber. Plasmonics 11:523–530

    Article  CAS  Google Scholar 

  11. Yi Z, Liu M, Luo J, Zhao Y, Zhang W, Yi Y, Yi Y, Duan T, Wang C, Tang Y (2017) Multiple surface plasmon resonances of square lattice nanohole arrays in Au-SiO 2-Au multilayer films. Opt Commun 390:1–6

    Article  CAS  Google Scholar 

  12. Yu H, Zhao Z, Qian Q, Xu J, Gou P, Zou Y, Cao J, Yang L, Qian J, An Z (2017) Metamaterial perfect absorbers with solid and inverse periodic cross structures for optoelectronic applications. Opt Express 25:8288–8295

    Article  CAS  Google Scholar 

  13. Grigorenko AN, Polini M, Novoselov KS (2012) Graphene plasmonics. Nat Photonics 6:749–758

    Article  CAS  Google Scholar 

  14. Garcia de Abajo FJ (2014) Graphene plasmonics: challenges and opportunities. ACS Photonics 1:135–152

    Article  CAS  Google Scholar 

  15. Li HJ, Wang LL, Liu JQ, Huang ZR, Sun B, Zhai X (2014) Tunable, mid-Infrared ultra-narrowband filtering effect induced by two coplanar graphene strips. Plasmonics 9:1239–1243

    Article  CAS  Google Scholar 

  16. He X, Gao P, Shi W (2016) A further comparison of graphene and thin metal layers for plasmonics. Nanoscale 8:10388–10397

    Article  CAS  Google Scholar 

  17. Li HJ, Wang LL, Liu JQ, Huang ZR, Sun B, Zhai X (2013) Investigation of the graphene based planar plasmonic filters. Appl Phys Lett 103:211104

    Article  Google Scholar 

  18. Lin Q, Zhai X, Wang L, Wang B, Liu G, Xia S (2015) Combined theoretical analysis for plasmon-induced transparency in integrated graphene waveguides with direct and indirect couplings. EPL 111:34004

    Article  Google Scholar 

  19. Linder J, Halterman K (2016) Graphene-based extremely wide-angle tunable metamaterial absorber. Sci Rep 6:31225

    Article  CAS  Google Scholar 

  20. Fu G L, Zhai X, Li H J, Xia S X, Wang L L (2016) Tunable plasmon-induced transparency based on bright-bright mode coupling between two parallel graphene nanostrips. Plasmonics 11:1597C1602

    Google Scholar 

  21. Yan X, Wang T, Han X, Xiao S, Zhu Y, Wang Y (2016) High sensitivity nanoplasmonic sensor based on plasmon-induced transparency in a graphene nanoribbon waveguide coupled with detuned graphene square-nanoring resonators. Plasmonics at press. doi:10.1007/s11468-016-0405-0

  22. Xiao S, Wang T, Jiang X, Yan X, Cheng L, Wang B, Xu C (2017) Strong interaction between graphene layer and Fano resonance in terahertz metamaterials. J Phys D Appl Phys 5:195101

    Article  Google Scholar 

  23. Fang Z, Liu Z, Wang Y, Ajayan PM, Nordlander P, Halas NJ (2012) Graphene-antenna sandwich photodetector. Nano Lett 12:3808–3813

    Article  CAS  Google Scholar 

  24. Rogalski A (2005) Hgcdte infrared detector material: history, status and outlook. Rep Prog Phys 68:2267

    Article  CAS  Google Scholar 

  25. Gao W, Shu J, Qiu C, Xu Q (2012) Excitation of plasmonic waves in graphene by guided-mode resonances. ACS Nano 6:7806–7813

    Article  CAS  Google Scholar 

  26. Zeng C, Guo J, Liu X (2014) High-contrast electro-optic modulation of spatial light induced by graphene-integrated Fabry-Prot microcavity. Appl Phys Lett 105:121103

    Article  Google Scholar 

  27. Xia SX, Zhai X, Wang LL, Lin Q, Wen SC (2016) Excitation of crest and trough surface plasmon modes in in-plane bended graphene nanoribbons. Opt Express 24:427–436

    Article  CAS  Google Scholar 

  28. Zhang J, Guo C, Liu K, Zhu Z, Ye W, Yuan X, Qin S (2014) Coherent perfect absorption and transparency in a nanostructured graphene film. Opt Express 22:12524–12532

    Article  Google Scholar 

  29. Zhang J, Zhu Z, Liu W, Yuan X, Qin S (2015) Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering. Nanoscale 7:13530–13536

    Article  CAS  Google Scholar 

  30. Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel HA, Liang X, Zettl A, Shen YR, Wang F (2011) Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol 6:630–634

    Article  CAS  Google Scholar 

  31. Hu H, Zhai F, Hu D, Li Z, Bai B, Yang X, Dai Q (2015) Broadly tunable graphene plasmons using an ion-gel top gate with low control voltage. Nanoscale 7:19493–19500

    Article  CAS  Google Scholar 

  32. Berenger JP (1994) A perfectly matched layer for the absorption of electromagnetic waves. J Comput Phys 114:185–200

    Article  Google Scholar 

  33. Berenger JP (2007) Perfectly matched layer (PML) for computational electromagnetics. Synth Lect Comput Electromagn 2:1–117

    Article  Google Scholar 

  34. Ke S, Wang B, Huang H, Long H, Wang K, Lu P (2015) Plasmonic absorption enhancement in periodic cross-shaped graphene arrays. Opt Express 23:8888–8900

    Article  CAS  Google Scholar 

  35. Li K, Ma X, Zhang Z, Song J, Xu Y, Song G (2014) Sensitive refractive index sensing with tunable sensing range and good operation angle-polarization-tolerance using graphene concentric ring arrays. J Phys D Appl Phys 47:405101

    Article  Google Scholar 

  36. Han X, Wang T, Li X, Xiao S, Zhu Y (2015) Dynamically tunable plasmon induced transparency in a graphene-based nanoribbon waveguide coupled with graphene rectangular resonators structure on sapphire substrate. Opt Express 23:31945–31955

    Article  CAS  Google Scholar 

  37. Xiao S, Wang T, Liu Y, Xu C, Han X, Yan X (2016) Tunable light trapping and absorption enhancement with graphene ring arrays. Phys Chem Chem Phys 18:26661–26669

    Article  CAS  Google Scholar 

  38. Wang Z, Li T, Almdal K, Mortensen NA, Xiao S, Ndoni S (2016) Experimental demonstration of graphene plasmons working close to the near-infrared window. Opt Lett 41:5345–5348

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author Shuyuan Xiao (SYXIAO) expresses his deepest gratitude to his Ph.D. advisor Tao Wang for providing guidance during this project. SYXIAO would also like to thank Prof. Jianfa Zhang (National University of Defense Technology) for his guidance to the modeling of the light-absorbing semiconductor and Dr. Qi Lin (Hunan Univerisity) for beneficial discussion on graphene optical properties. This work is supported by the National Natural Science Foundation of China (Grant No. 61376055, 61006045 and 11647122), the Fundamental Research Funds for the Central Universities (HUST: 2016YXMS024) and the Project of Hubei Provincial Department of Education (Grant No. B2016178).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, S., Wang, T., Jiang, X. et al. A Spectrally Tunable Plasmonic Photosensor with an Ultrathin Semiconductor Region. Plasmonics 13, 897–902 (2018). https://doi.org/10.1007/s11468-017-0586-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0586-1

Keywords

Navigation